 [image: image41.png]


 [image: image2.emf] 

 [image: image3.png]


 [image: image4.png]



ClasserScript v1.1
User’s Guide

Siegfried Martens

May 23, 2005

Technical Report: CAS/CNS-TR-05-009
This document describes ClasserScript Version 1.1, a script-based interface to Classer (CLASSifier simulation managER). Classer is a modular set of software tools for encapsulating classifier implementations, handling data set management and collecting test results. Layered on top of ARTMAP neural network classifier implementations, the Classer toolkit lets the user define classifier models, apply them to process data sets, and automate output data collection and parameter space exploration. More concretely, ClasserScript is a miniature language for defining views of data, classifier models, and iterative combinations of the two to generate a variety of output metrics. 

In addition to classifier simulation management, version 1.1 offers a set of tools implementing the ARTMAP Fusion System for rule discovery, a process for extracting knowledge from a data set in the form of rules relating data classes to each other.
[image: image1.png]


[image: image33.png]



Table of Contents:

11
Introduction


11.1
Software Component Overview


11.1.1
Classer


21.1.2
ClasserScript


21.1.3
Related Projects


21.1.3.1
ClasserKD


21.1.3.2
Classer2D


21.1.3.3
ClasserUI


21.1.3.4
Classer / MATLAB Integration


31.1.4
Technical Details


31.1.5
Intended Audience


31.2
Language Overview


31.2.1
Data Sets, Views and ViewSets


31.2.2
Classifiers and Models


41.2.3
Iteration and OutputControl → Feature/Parameter Space Explorations


41.2.4
Rule Discovery


42
ClasserScript Basics – Writing Scripts


42.1.1
Running the Script


52.2
A Simple Example


52.3
Miscellaneous Commands


82.3.1
Heartbeat Output


82.4
Defining the Input data – Data, Views and ViewSets


82.4.1
Data Sets


82.4.1.1
Plain Text  Data Format


9Customizing class numbering


10Unlabeled data set format


102.4.1.2
Binary Data Format


102.4.2
Data Objects


102.4.2.1
Creating / Loading a Data Object


112.4.2.2
Data Object Operators


122.4.2.3
Working with Multiple Labels Per Sample


132.4.3
View objects


132.4.3.1
View  Orderings


142.4.3.2
Creating a View Object


142.4.3.3
View Object Operators


152.4.4
ViewSet Objects


152.4.5
Image Objects


162.4.6
Specifying Input Features – DimList Objects


162.5
Defining and Using Classifiers


162.5.1
Creating a Classifier Object


172.5.2
Setting Classifier Parameters


182.5.3
Applying the Classifier


182.5.3.1
Training – Learning Multi-Dimensional Mappings


192.5.3.2
Testing – Evaluating the Trained Classifier


192.5.3.3
Classifying – Putting the Classifier to Work


192.5.3.4
Cross-Validation – Using All the Data


202.5.3.5
Saving and Loading the Classifier


202.5.3.6
Looking Inside the Classifier – Inspect


202.5.4
Output Control


212.5.4.1
Print Statement


232.5.4.2
Output Statement


242.6
Iteration and Output Control


242.6.1
Loops


242.6.1.1
Foreach Loops


252.6.1.2
Foreach2D Loops


262.7
Rule Discovery


262.7.1
Key:


262.7.2
Filtering methods:


272.7.3
Rule extraction methods:


282.7.4
Scoring Extracted Hierarchies


282.7.5
Extracted Hierarchy Summary


303
ClasserScript Use Cases


303.1
Train & Test on Ground Truth, Classify Larger Unlabeled Set


303.1.1
Applying the Classifier


313.1.2
Variations of the Train/Test Argument


323.1.3
Capping Classes


343.1.4
Confirming Robustness of Result: Random Sampling


343.2
Maximize Data Set Use: Cross-Validation


383.3
Iteration: Exploring Feature and Parameter Spaces


383.3.1
Feature Space Exploration


393.3.2
Parameter Space Explorations


393.3.2.1
Varying the ARTMAP Model


403.3.2.2
Varying ARTMAP Parameters


403.3.2.3
Two-Dimensional Iteration


413.4
Graphical Outputs


413.4.1
Graphical Confusion Matrix


423.4.2
Graphical Prediction Plot


433.4.3
Working with Image Objects


443.4.3.1
Data visualization


443.4.3.2
Thematic map generation


464
Disclaimer


465
Acknowledgements


466
References


47Appendix A: Data Set Descriptions


47A.1
Circle-in-the-Square (CIS)


47A.2
Frey & Slate Letter Data Set


48A.3
Boston Remote Sensing Testbed


50Appendix B: ClasserScript Reference




Table of Figures:

5Figure 1: Simple applied classification


7Figure 2: Default color legend (horizontal)


29Figure 3: Rule discovery - Extracted hierarchy summary


38Figure 4: Increasing the number of features used for classification


39Figure 5: Performance of ARTMAP models for three data sets


40Figure 6: Increasing ARTMAP vigilance


42Figure 7: Visual confusion matrix


43Figure 8: Prediction plot - Letters data, width x height


44Figure 9: Data visualization


45Figure 10: Thematic map





1 Introduction

This document describes ClasserScript Version 1.1, a script-based interface to Classer (CLASSifier simulation managER). Classer is a modular set of software tools for encapsulating classifier implementations, handling data set management and collecting test results. Layered on top of classifier implementations, the Classer toolkit lets the user define classifier models, apply them to process data sets, and automate output data collection and parameter space exploration.

More concretely, ClasserScript is a miniature language for defining views of data, classifier models, and iterative combinations of the two to generate a variety of output metrics. The parser csd, short for ClasserScript driver, reads ClasserScript, either from the command line or from a file. The csd software is implemented in C++ and is currently available as a Windows binary program. It is provided for research or educational purposes on an ‘as is’ basis.

1.1 Software Component Overview

Classer is the cornerstone of a series of projects, of which ClasserScript is the most advanced at the moment. This section provides an overview of this set of related projects.
1.1.1 Classer

Classer is a set of C++ classes representing the components of a supervised learning experiment. The Classer toolkit provides a framework for training and testing classifier models with arbitrary data sets, as well as:

· Training / testing / classification operators applied to classifier models

· Operations work with whole data sets, or parts of them defined via views or viewsets
· Cross-validation mode is available to maximize data set use
· Iteration of simulations while varying:

· Classifier model parameters

· Classifier models
· Selection of input features

· Reporting of iterated simulation results in series or table format, including: 

· Memory required.

· Time required (for testing, training, or classification).

· Percent of samples classified correctly.

· Confusion matrices showing a class-by-class breakdown of predicted vs. actual label.

· Prediction plots in the unit plane.

· Classifier-specific outputs.
· Files of predictions for each data entry.

In the initial implementation of Classer, these classes are wrapped around implementations of a set of ARTMAP neural network models, ranging from fuzzy ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds and Rosen, 1992) to the more recent default ARTMAP (Carpenter, 2003) and and distributed ARTMAP (Carpenter, Milenova and Noeske, 1998) models. 

1.1.2 ClasserScript

ClasserScript is the first of a series of projects layered on top of the Classer toolkit, and is being released as an introduction to the Classer project. ClasserScript has been used in-house over a year in the technology laboratory in the department of Cognitive and Neural Systems at Boston University for supporting research into applied neural networks. No upgrades of ClasserScript are planned, however, beyond the ClasserKD release (section 1.1.3.1). Rather than continuing to develop a script interface, we plan to leverage MATLAB as a framework for further Classer development (section 1.1.3.4). 
1.1.3 Related Projects

1.1.3.1 ClasserKD
This addendum to ClasserScript provides tools for implementing the “knowledge discovery” (KD) model, described in Carpenter, Martens & Ogas (2005). This research describes a novel approach to sensor fusion: several sets of labels related to a data set of interest are combined during classifier training; the classifier then produces distributed predictions, i.e. a probability distribution of the class predicted for each sample; from these the new tools automatically infer relationships between labels, yielding a single hierarchy of labels reconciling independently collected label sets. This model makes use of the filtering and rule extraction tools described in Section 2.7, which have been incorporated into ClasserScript as of version 1.1.
1.1.3.2 Classer2D
Classer2D is a java applet intended as a web-based educational demo. It provides a glimpse of Classer’s capabilities, restricted to a toy example of two dimensions (x and y) and three classes. 

The user can enter training samples by clicking on a canvas, which displays a decision surface updated in real-time to show the effects of training. In addition, the user can visualize in real-time the results of adjusting model parameters.

1.1.3.3 ClasserUI
A graphical user interface is planned for Classer, both to simplify interaction with the toolkit, and as a testbed for applying research into data visualization. Where Classer2D gives access to a limited range of Classer’s functionality, ClasserUI will be an interactive, visual interface to the full Classer toolkit, intended to make the data and transformations applied to it as transparent as possible.

1.1.3.4 Classer / MATLAB Integration

The goal of the Classer project has been to simplify work with classifiers and related systems. Development of ClasserScript as an interface language,  however, has drawn the project into the unintended direction of focusing on language development issues. In order to redirect the project back to its original intent, we plan to integrate Classer as a modular toolkit within MATLAB’s Simulink framework, allowing us to leverage MATLAB’s interface and pre- and post-processing capabilities. This approach should simplify project maintenance, while offering a ready-made framework for extensibility.
1.1.4 Technical Details

Classer and ClasserScript are implemented in C++, compiled in Microsoft’s Visual C++ development enviroment, .NET edition. No Microsoft-specific C++ extensions have been used, however, and initial development used the GNU project’s gcc compiler, so in principle the code could be redeployed in a different operating systems without much effort.
The executable program for parsing ClasserScript is called csd (ClasserScript driver), and is provided as a command-line driven executable running under Microsoft Windows. It has only been tested on Windows XP, but should in principle run in other versions of Windows.
1.1.5 Intended Audience

This document is intended for someone looking to apply classifier or neural network models to a data set of interest to them, for either research or educational purposes. Please also note disclaimer (Section 4).

This document assumes a basic knowledge of supervised learning theory, and of terminology such as samples, feature dimensions, labels, ground truth, etc. Also, while not essential, an awareness of the ARTMAP family of neural networks is useful, as the first version of Classer is wrapped around a set of implementations of ARTMAP neural network models.

1.2 Language Overview

This section provides an overview of ClasserScript’s organization. We go into much more detail in Section 2, which provides the main syntax reference for the language. Section 2.7 discusses a series of case studies applying ClasserScript to real data sets. Finally, Appendix B provides a condensed reference to the syntax of ClasserScript.
1.2.1 Data Sets, Views and ViewSets

At the most basic level, using Classer involves applying classifiers to process data samples. These samples can be loaded as text-based or binary data sets, describing each sample as a vector of feature values, possibly paired with a label identifying it as belonging to a particular class. In the remote sensing context, the samples that are labeled are referred to as ‘ground truth’ samples.

ClasserScript can use data sets directly, or for more advanced applications, view and viewset objects are defined, providing capabilities for arbitrary subsets and orderings of the data, automated permutation, and built-in support for cross-validation.
1.2.2 Classifiers and Models

At the core of Classer are classifier model implementations (currently four versions of the ARTMAP neural network classifier). These models work with one sample at a time, learning during training to associate a feature vector with a label, and during testing or classification to predict the label for a feature vector. ClasserScript moves the user’s point of view from processing a sample at a time to processing sets of views of the data at a time. ClasserScript provides a variety of:

· Ways to specify the data on which to operate, 
· Ways to operate on the data, or classifier operations,
· Ways of collating and presenting outputs.
If required, Classer maintains several internal copies of the model implementations, to support both voting and cross-validation. With voting, each copy evaluates a sample with a different point of view and they all vote as to what the label should be. With cross-validation the data set is broken into N pieces, and each is assigned to a copy of the classifier to serve as its test set. If used in combination, voting and cross-validation yield a large number of internal copies of the classifier (25 = 5 x 5 is a typical number), each managing their own internal representations.
Iteration and OutputControl → Feature/Parameter Space Explorations
The real power of Classer comes from its ability to iterate blocks of classifier operations, e.g., training and testing, simplifying the exploration of parameter and feature spaces. ClasserScript offers one or two dimensional iteration.
Each iteration can yield a large number of output metrics. The format in which they are displayed depends on the degree of iteration:

· Zero-dimensional (not iterated) – Outputs shown as a list

· One-dimensional (Foreach loop) – Outputs shown as a table
· Two-dimensional (Foreach2D loop) – Outputs shown as sets of tables. 
The contents of these tables are then easily turned into a variety of graphs for visualizing how a particular metric varies over a 1D or 2D parameter or feature space.

1.2.3 Rule Discovery

Once a classifier has generated a set of (distributed) predictions, filtering/rule extraction tools are available for processing the outputs, and extracting a set of rules describing relationships between the output classes. Confidence values are associated with each such rule, and the rules are structured into a hierarchy. This process can be used in situations where several different sets of ground truth labels describing part of a data set are available. For example, the ways in which the different sets of labels relate to each other may be unclear; by using the classifier to integrate the information from the different sets of labels, and then applying the rule discovery tools, a coherent framework is obtained, showing how all the labels are related.
2 ClasserScript Basics – Writing Scripts

2.1.1 Running the Script

Classer Script may be used either interactively or by submitting a script for processing. In either case, the executable that is invoked is called csd (Classer Script Driver), and is called from the command-line (using the program "Command Prompt" in Windows) as follows:

C:\> csd -i




(interactive session)

or

C:\> csd –s <scriptFile> 

(script-driven session)

An interactive session runs until the ‘quit’ command is entered. A script-driven session runs until all commands have been processed. 

A file name may optionally be provided following a ‘-o’ flag, in which case all system outputs will be echoed to the file. This can be useful both for collecting outputs for further processing, and for removing the ‘heartbeat output’ described in section 2.3.1.
Typing csd –h yields the following output describing the command-line syntax:

Usage:  csd [-h|-i|-s <scriptFileName>|-o <outputFileName>|-v]

  Where the command line flags are interpreted as follows:

    - h    Prints this message

    - i    Turns on interactive mode

    - s    Used to specify the name of a Classer script

    - o    Used to specify the name of a file to which all output is logged

    - v    Prints the version of the Classer executable
2.2 A Simple Example

The following script introduces ClasserScript:
data d = load CIS\data1k.txt

classifier c = Artmap d

c set model fuzzy rhobar 0.99

c output predPpm cis_pic.ppm

c train d

The first line defines a data set d, loading the 1000 sample “circle-in-the-square” data set (described in appendix A.1, page 47). The script then defines a classifier object c, based on a fuzzy ARTMAP model, with its vigilance parameter rhobar set to 0.99. Finally, a graphical output ‘predPpm’ is requested, and the classifier is trained with all the samples in the data set. It then generates the requested output figure, by generalizing the training data to every point in a 200 x 200 square, yielding the output shown at right. 
[image: image5.png]



Figure 1: Simple applied classification
2.3 Miscellaneous Commands
This section lists general-purpose commands that don’t depend on the existence of a defined data set. Script commands may be upper- or lower-case (case is ignored), and no more than one command per line is allowed. For more on syntax and file types, see Appendix B.4.
Import <fName>

Includes the contents of the named ClasserScript file. Used to modularize pieces of scripts that are used repeatedly.

Quit
Terminates an interactive session. Can also be used to exit a script before the end.

Verbose <int level = 0>

Sets the verbosity level, which determines the amount of logging generated during the course of a simulation. When it’s not clear if a simulation is proceeding as expected, gradually turning up the verbosity level and examining the output can help confirm what is happening. Verbosity level option are:

· 0 – No logging besides requested outputs.

· 1 – The processing of script commands is echoed

· 2 – Simulations are logged at the data set level

· 3 – Simulations are logged at the individual transaction level

· 4 – Outline of classifier processing

· 5 – Classifier details

· 6 – Verbose classifier details

Version 
Prints the version of the csd executable.
TimeStamp
Prints the time and date

Echo [<int level = 0>] message…
Prints a message (which may not begin with a number). If a value is specified for the level, the message is only printed if the current verbosity setting is greater than or equal to the level value.
System …arbitrary shell command…


The system command provides access to the shell (e.g. the DOS command line). In other words, any text following the keyword is passed directly to the shell for execution. This is useful for invoking third-party tools to perform a function not offered by Classer.
ClassNames [ class1name class2name … classNname ]

This command provides a simple way to define the list of class names for the system. When working explicitly with data sets, this value is inherited from the data sets in use (which must share the same set of class names). For scripts that just deal with filtering or rules extraction, however, a data set may not have been defined. Since the rule extraction methods need the names of classes for display purposes, this command offers a simple approach for defining them.
Randomseed <int value>

Seeds the random number generator (See discussion of when this matters in section 3.1.4). The value 1 is used if this command is not invoked.

Randomness in Classer: 

· When permuting entries in views or viewsets (sections 2.4.3.1, 2.4.4)

· In the internals of the ARTMAP implementation, if two candidate nodes are equally eligible, i.e., their activations are identical, one of them is chosen at random.

DeleteCols idx1 idx2… <predsFname> <outputFname>
This utility is used to strip columns (feature dimensions or distributed predictions) from files. One or more column indices must be provided (starting at 0), and the output is identical to the input, minus the specified columns.

Erdas2Txt
<inputFname> <outputFname>


This command filters the output of the ERDAS Imagine GIS’ ASCII Export command to plain text. More specifically, it strips off the four header lines, as well as the first two columns of the data entries, which just specify the entry coordinates in pixels.

SavePalette <outputFname>
A palette is an association between a set of colors and the set of classes used by a Classer data set. A default palette is provided defining colors for 30 classes; the SavePalette command writes the default palette to a file, simplifying the job of creating a new for loading with the LoadPalette command. The saved file is in text form, with the following format: first an integer specifying the number of colors defined, then an integer specifying the largest color value (color values may range from 0 to this value), and then a line for each color with three integers per line, one per Red, Green, Blue color component. 

Comments may be inserted into the file by starting a line with a ‘#’ symbol. For example, the first few lines of the default palette file are:
# Number of colors defined:

30

# Maximum color value:

3

3 0 0

3 0 3

3 3 0

…

LoadPalette <inputFname>
Loads a palette from the named text file, in the same format as described for the SavePalette command. The palette must define at least as many colors as there are classes in use. This command is used to customize the set of colors used in three places:
1. Thematic maps – see Section 2.5.3.3.

2. Prediction plots (Output predPpm command) – see Section 2.5.4.2
3. Color legends (see next command).

OutputLegend [V|H] <outputFname.ppm>
This command generates a color legend, i..e., it draws the colors of the palette for each of the classes in current use. The format of the palette can be either vertical or horizontal, as determined by the first command argument. The extension of the output file should be “.ppm”, for portable pixel map. An eight-class example is shown in Figure 2.
[image: image6.png]



Figure 2: Default color legend (horizontal)
2.3.1 Heartbeat Output

This isn’t an actual Classer Script command. When testing or training with large data sets, a series of dots will be seen on screen, e.g., “......”. Each dot correspond to training or testing 1000 data samples, and provide a system ‘heartbeat’, confirming that processing is ongoing. For complex problems, processing can be slow enough that it can be useful to confirm that something is actually happening. The heartbeat output is seen on standard output, but is not echoed to the log file, if one was specified at the command line via ‘csd –o’.

2.4 Defining the Input data – Data, Views and ViewSets
Before it can do much of anything, a script must define at least one data set. Once a classifiers is defined, it can operate either directly on data objects, or views or viewsets can be used to define more specialized ways of looking at data sets. Image objects are also available – these are special cases of data objects that have associated image dimensions (width and height in pixels), allowing the data set to be partitioned spatially.
2.4.1 Data Sets

ClasserScript can load data sets in a variety of formats:

· The simplest approach is plain text, preceded by a header describing the number of entries, data dimensions and names, and class label names.
· To speed loading of larger data sets, they may be converted to binary format. 

· Data and labels may be loaded separately. This feature supports both the loading of unlabeled data sets (for classification), and trying out different label sets describing a single set of data.
Each option starts by creating a ClasserScript data object. A variety of options for doing so are covered in the next few sections.
2.4.1.1 Plain Text  Data Format

A simple example of Classer’s plain text format for a data set is provided below, showing documentation embedded in the data set using ‘#’ for comments:

# Data set example (‘#’ is the comment symbol)

# ----------------

# Number of entries:

2

# Data dimensions 

[ Red Green Blue ]

# Data class label position, and values

# -------------------------------------

# The ‘0’ indicates that the class label is

# the first entry on the line. 

0 [ Field Barren Forest Urban Water ]

# The data entries, preceded by the class label (0-based)

0 0.2 0.3 0.8

1 0.2 0.5 0.2


or, more tersely, with no comments:

2

[ Red Green Blue ]

0 [ Field Barren Forest Urban Water ]

0 0.2 0.3 0.8

1 0.2 0.5 0.2

Classer represents labeled data samples as vectors of floating point numbers, associated with an integer class label. The data set is represented as a grid of samples, where each row describes a single sample’s properties: floating point measurements of the sample features in M dimensions, along with an integer label specifying the class of the sample. 

The structure of a plain text data set is as follows:

1. A header describing the structure of the data (optional, may also be specified in script):
a. An integer specifying the number of entries, or data samples

b. A list of the names of the M data dimensions, in square brackets

c. A description of the data labels (omitted for unlabeled data):

i. The position of the label (0 to M, or ‘-1’ for last place)

ii. A list of the names of the data categories, or class labels, in square brackets

2. The data samples, one per line:

a. The sample label, in the position specified in the header (except for unlabeled data, in which case the label is omitted),

b. The values of each feature, specified as a floating point number.
Values must be provided for all dimensions, and they must be in the range expected by the classifier to which they are applied. For ARTMAP classifiers, this is the range [0 – 1]. Conversion to this range can be performed using the function <Data> normalize (see section 2.4.2.2). The normalization process can be slow for large data sets, and in such cases it should be done separately, using a dedicated Classer script, and then the resulting normalized set can be saved to file. Also, note that normalization rescales the data with respect to the extrema of each dimension separately, not to the extrema of all dimensions. In other words, the data set:
0 2 4

2 4 8

is rescaled to

0 0 0

1 1 1

rather than to
0.00 0.25 0.50

0.25 0.50 1.00
Customizing class numbering

ClasserScript works with class names rather than numbers where possible, but for parsing efficiency, labels are represented in the data as indices rather than by name. Class labels are numbered starting at 0. To accommodate class labels starting at 1, one may supply a dummy name for the 0-th label when the class names are supplied to the system. This is done either in the data file header, as shown above, or in the Classer script itself, via the Data _ = define _ command, in the case of binary files or when loading values separately. For example, the same script as above is shown with class labels starting at 1, rather than 0, by including the value ‘DummyLabel’ in the list of class labels:

2

[ Red Green Blue ]

0 [ DummyLabel Field Barren Forest Urban Water ]

1 0.2 0.3 0.8

2 0.2 0.5 0.2

Unlabeled data set format

To load unlabeled data, first define its structure using Data _ = define _, and then load it using <Data> loadvalues <f_array>, where <f_array> is an array of floating point values as follows:
0.2 0.3 0.8

0.2 0.5 0.2

2.4.1.2 Binary Data Format

Data sets can also be specified in binary format, which is useful for large data sets, as parsing large plain text data sets can take time. Binary data sets can be generated by external applications if they produce a compatible format, or a plain text data set can be loaded by Classer, and then saved in binary format. Classer’s binary data format is one of:

· Single file for data values and labels: The data and labels are sequential, rather than interleaved. First is an array of data values, represented either as C++ floats or doubles (single or double precision floating point numbers in IEEE format), iterating an inner loop over the M feature dimensions, and an outer loop over the N data samples. This is followed by N class labels, represented as C++ integers.

· Separate files for values and labels: The data value file is the same as in the single file format, minus the class labels. The class label file allows the format to be either C++ integers or shorts (a variable with a smaller range of values), rather than the restriction to integer type alone seen in the single file format.

2.4.2 Data Objects
2.4.2.1 Creating / Loading a Data Object

Data <name> = load <fName> 

Used to load a self-describing (i.e., it starts with a descriptive header) plain text data set, as described in section 2.4.1.1. The file first defines the number of data entries, and the names of the data classes and dimensions. <name> is used in referring to the data object later (shown as <Data>), and <fName> is the file containing the data set. 
Data <name> = load <fName> binary <float | double> <int numEntries> <list dimNames> <list classNames>

When data files grow large, loading them is more efficient when they’re maintained in binary format. This version of the Data _ = load _ statement requires that the information that describes the data set be provided explicitly. Specifically, one must specify whether the entries are stored as C++ floats or doubles (single or double-precision floating point values), the number of data entries, and lists of the names of the dimensions and classes, in square brackets. As an example, the following line request the loading of a file containing one million single-precision floating-point data entries, with three dimensions per entry, and two output class labels. The data set is assigned to the data object d, and loaded from the file fName.

Data d = load fName binary float 1000000 [ x y z ] [ in out ]
Rather than trying to generate the correct binary format manually, the simplest way of binarizing a data file is to first load it in plain text, and to then save it in binary format (see ‘<Data> save <fName> binary’ command)

Data <name> = define <int numEntries> <list dimNames> <list classNames>

In cases where the feature data and class labels are available as separate files, their meta-information describing the data must first be defined explicitly in the script via a ‘Data _ = define _’ statement. For example:

Data d = define 1000000 [ x y z ] [ in out ]

2.4.2.2 Data Object Operators

To invoke a ClasserScript object operator, start with the object’s name (denoted here by <Data>), defined when the object was created, followed by the name of the operator, and any operator arguments.
<Data> loadvalues <fName> [binary <float | double>]

<Data> loadlabels <fName> [binary <int | short>]

Once the meta-information for the data set has been specified via ‘Data _ = define _’, the actual data and labels are specified using the ‘<Data> loadvalues’ and ‘<Data> loadlabels’ commands. In this case, the data are assumed to be in plain text format unless the ‘binary’ flag is specified. If the data are binary one must specify whether the feature values are stored as C++ floats or doubles, and whether the data labels are specified as C++ ints or shorts.

<Data> save <fName> [binary]

The ‘<Data> save’ command can be used to save a normalized data set, or to convert it to binary. The file is saved to the specified file name, as plain text by default, or as binary if specified. In plain text format, a header specifying the meta-data is saved at the top of the file; in binary, just the data are stored, with the data values stored as single precision floating point values (C++ floats), and the class labels as integers (C++ ints).

<Data> normalize
Once the data have been loaded, the ‘<Data> normalize’ statement can be used to rescale it to the range [0-1] (required before presentation to an ARTMAP classifier). Rather than going through this potentially time-consuming step each time the data are loaded, it’s recommended to use a separate normalization script to load the data, normalize it, save it, and then just use the normalized version.

<Data> hist

This command generates a histogram of the entries in the data set, by class. For example:

Classes   Entries

  beach:      313

  ocean:     1280

    ice:      146

  river:      192

   road:       58

   park:      418

  resid:      400

  indst:        0

-----------------

  Total:     2807

<Data> list
This is a convenience function, useful for small data sets or for debugging. It enumerates the entries in the data set.

<Data> plot <dim1Name> <dim2Name>
This is a convenience function providing a text-based plot of the data set in the two specified dimensions (using a 10 x 20 character-based grid). This can be useful as a quick, first-order view of the data, but real plotting packages are recommended for serious data analysis. The data must be in the range [0 – 1]; when more than one data sample falls in a particular grid cell, the most frequent class is shown. If it’s a tie, and asterisk is used.
<Data> plot
When the data set consists only of two or three dimension, then their names need not be specified. In this case, either one or three plots will be produced. For example:

   +--------------------+     +--------------------+     +--------------------+               

  9|                5 5 |    9|                5 * |    9|  1               55|               

  8|                  5 |    8|    1           3 5 |    8|      *         5   |               

  7|                  2 |    7|          4         |    7|      4             |               

G 6|                    |  B 6|        4         3 |  B 6|    3     4         | 1 - Field  

r 5|    2   4           |  l 5|      4           2 |  l 5|        4     2     | 2 - Barren 

e 4|      4             |  u 4|      4       3     |  u 4|  3  4              | 3 - Forest 

e 3|  2 1     4     3   |  e 3|                    |  e 3|                    | 4 - Urban  

n 2|      4           3 |    2|    2               |    2|          2         | 5 - Water  

  1|              3   1 |    1|  2                 |    1|      2             |               

  0|                    |    0|                    |    0|                    |               

   +--------------------+     +--------------------+     +--------------------+               

    0 1 2 3 4 5 6 7 8 9        0 1 2 3 4 5 6 7 8 9        0 1 2 3 4 5 6 7 8 9                 

             Red                        Red                       Green                       

2.4.2.3 Working with Multiple Labels Per Sample
In some circumstances, more than one set of labels describing a data set may be available. For example, the rule discovery research discussed in Section 2.7 allows training with more than one label per sample when available. Note that this approach is no different from storing multiple copies of a sample, each with a different label. The methods described here just save on the preprocessing required.

There are two ways of associating multiple labels with a data sample: 
1. The first is simply to invoke the loadlabels operator several times, each time with a different file of labels. When using this approach, the user should make sure that the class names that are defined cover all of the label sets. In other words, suppose that N class names have been defined (either via the classNames operator or the “data <name> = define …” operator). In that case any indices used in any of the label sets should range from 0 to N-1.
2. The second approach to associating multiple labels with a data sample starts with a single set of  labels (the ‘base’ labels), and then defines mappings from each base label to zero or more ‘composite’ labels. To use this approach, use the multiplyLabels operator:
<Data> multiplylabels <fName>

This operator loads a set of mapping from the passed file. It then works its way through the data set, adding labels to each sample as specified by the mappings in the file. The following is an example of such a file. Note that the labels ‘unlab.’ and ‘miss’ are left as is, i.e., no new labels are associated with them. In every other case, two new labels are added, except in the case of ‘road’, where only ‘manMd’ is added. 
# Label mapping definition:

# 

# Defines mapping from old set of labels to new multiple set.

# - first line defines full set of labels, which should be a superset

#   of the old label names, with new names at end of list.

# - then, on one line for each old label:

#     - label name, followed by:

#     - one or more class label substitutions to be performed.

[ unlab. miss beach ocean ice river road park resid indst water openSp built natur manMd ] 

unlab. unlab.

miss   miss

beach  beach openSp natur

ocean  ocean water  natur

ice    ice   water  natur

river  river water  natur

road   road         manMd

park   park  openSp natur

resid  resid built  manMd

indst  indst built  manMd

2.4.3 View objects

Data sets may be used directly, or for more precise control, one may create view objects to describe subsets of the data used for training or testing a classifier.

2.4.3.1 View  Orderings

A view object defines a subset of a labeled data set, and is made up of one or more ‘orderings’, which are sets of indices into the named data set. Learning in some classifiers, ARTMAP networks in particular, are sensitive to the order of presentation of samples. By storing multiple orderings of a subset of data within a view object, Classer can train multiple copies of a particular classifier, each with a different ordering of the subset in question. Orderings may be automatically generated within Classer, or passed from text files if specific orderings are desired. If an ordering is file-based, it is just a set of integer indices into the data set (i.e., line numbers, starting at 1), one per line.

2.4.3.2 Creating a View Object
Three options are available for creating a view object:
View <name> = whole  <Data>
Used to create a view object that covers the whole of the data set, in order. This may seem redundant with the data object, but it can be used, for example, in conjunction with a viewset object to join together data sets kept in separate files, to serve as a training set.
View <name> = random <Data>
Creates a view object covering the entire data set, but in random order. The randomseed command (section 1.1) can be used to vary the sequence of random numbers. See the shuffle command for adding additional random orderings to a view object.
View <name> = subset <Data> <f_ints ordering1>…<f_ints orderingN>
Provides more fine-grained control: orderings files specify which data samples are included in the view, and their order. The data set name is followed by one or more file names, each containing a set of indices describing an ordering (section 2.4.3.1).
2.4.3.3 View Object Operators

<View> shuffle <int numOrderings>

This command generates numOrderings permutations of the view’s first stored ordering. As with the random constructor, the ordering is affected by settings of the randomseed command (section 1.1). If using voting to improve classifier performance, there must be as many view orderings available as there are voting classifiers (see section 2.5.3.1).  Note that the permutations that are generated are stored in addition to any existing orderings, so if there’s already one ordering, to obtain a total of N orderings, the argument to the shuffle operator should be N - 1.
<View> plot
The ‘<View> plot’ command is analogous to the ‘<Data> plot’ command, and restricts itself to the data specified by the first ordering in the view. It only applies to 2D or 3D data sets.

<View> list
This is a convenience function, useful for small data sets or for debugging. It enumerates the entries in the view.
<View> hist [int orderingIdx = 0]
This command generates a histogram by class of the samples in the view, for the specified ordering (defaulting to 0).
2.4.4 ViewSet Objects

ViewSets are a generalization of view objects, bundling several of them together. This simplifies both training or testing on more than a single subset of the data at once, and the implementation of cross-validation protocols.
ViewSet <name> = union <View_1> ... <View_n>

Creates a named ViewSet made up of the given views. Samples are evaluated in the order specified, i.e., all of the samples in view 1, followed by all of those in view 2, etc. Exception: in striping mode (see section 2.5.2), sampling alternates continuously from one view to the next.
ViewSet <name> = split <Data> <int #views> [<int #Orderings = 1>]

Creates a ViewSet by automatically breaking the named data set into the given number of views. This method simplifies the generation of partitions for cross-validation. The optional numOrderings may be used to generate random orderings of the individual partitions, which supports the use of voting systems (see section 2.5.3.1). Note that the first ordering is in-order, while subsequent ones are in random order.
For example, the following line partitions the whole data set into five view objects.

ViewSet vs5 = split 5

If the data set is not evenly divisible into the specified number of views, the remaining samples are tacked onto the last view, so the last one can be slightly larger than the others.

<ViewSet> list
This command lists the sample indices of the views and orderings in a viewset, and can be used to examine the partitioning performed by the split constructor.

2.4.5 Image Objects

Image objects are a special class of Data objects, which they supplement with the addition of parameters specifying the width and height of the image. In addition to the operators shown here,  Image objects may also be used with the Data object operators, as they are instances of Data objects.
Image <name> = define <int width> <int height> [ d1 d2 d3] [ c1 c2 ]

Image <name> = load <fname> binary [float | double] <int width> <int height> [ d1 d2 d3 ] [ c1 c2 ]

The storage format is identical to Data objects: the ‘load’ command is applied to a binary file that was produced by saving a Data object in binary format. If using the ‘define’ command, the data are then loaded using separate ‘loadvalues’ and ‘loadlabels’ commands.

<Image> split [V|H] <int numStrips> <baseFname>
Splits the image into the specified number of strips, either horizontally (H) or vertically (V). The resulting data set fragments are written (as text-format data sets) to files formed by combining the string <baseFname> with the strip index and the suffix “.txt”.

<Image> flip

Flips the image about the diagonal. This changes the order in which the pixels are processed. Used before the split operator, this command can be used to get column-major ordering of the pixels, rather than row-major. 

<Image> show d1 d2 d3 <fName.ppm>

A simple utility for visualizing the feature data. The specified data dimensions (d1 d2 d3) are used as red, green and blue when drawing the image. The output image is in portable pixel map format (PPM).

2.4.6 Specifying Input Features – DimList Objects
The optional DimList object defines a set of input features. By specifying it as a named object, one can easily compare different sets of features (as described in section 3.3.1), or iterate over different combinations of features to see which set optimizes classifier performance on the problem.

DimList <name> = list <list dimNames>

DimList <name> = alldims <data>

Both commands create a dimlist object. The list version requires an explicit list of dimension names, in square brackets. The alldims version just uses all dimensions specified for the named data set. For example:
DimList all = alldims d
Dimlist some = list [ x y ]
2.5 Defining and Using Classifiers

Once the data have been loaded, the next step is defining the classifier. ClasserScript makes a distinction between classifiers and models:

· A model is a single instance, or copy, of a model implementation. It is the lowest level object encapsulated by Classer, and deals with samples one at a time: during training, it learns to associate a set of input features with a class label, and during testing or classification to generate a prediction in response to a set of input features (optionally distributed, i.e., a probability distribution over the set of labels). It also accepts parameter settings, and requests for output metrics.

· A classifier is a collection of one or more model copies maintained as an aggregate. Within the classifier, when voting, each voter has its own copy. Also, when doing cross-validated training and testing, a model copy is assigned to test each view. In other words, if a system is doing four-fold cross validation with 5 voters, the classifier holds 20 model copies in all.
2.5.1 Creating a Classifier Object

Classifier <name> = <classifierType> (<data>|<dimList>) [<int #Voters>]

To create a classifier, one must specify the model (<classifierType>), the input features, and optionally, a number of voters (defaults to 1). In this version of ClasserScript, the only model available is ‘Artmap’. If a data set name is specified as the second argument, all dimensions available for the data set are used as input features. Alternatively, the specific features to use can be specified using a dimList object as the second argument. To change model parameters, or to turn on cross-validation, the ‘<Classifier> set _’ command can be used once the classifier is defined.
Voters: By using multiple classifier instances, with each voting during testing to determine the final prediction, performance can be improved , at a cost in storage and train/test time. Specifically, each classifier instance yields a distributed prediction, which are summed across voters. This result is recorded for the predVector output. The predClass output corresponds to the class with the most active output value (or -1 if there are ties for most active). Note that if #Voters > 1, then the classifier must be used with views or viewsets with at least #voters orderings (as described in sections 2.4.3.3 and 2.4.4). In other words, there must be a data ordering available to supply each voter with training data.
2.5.2 Setting Classifier Parameters
<Classifier> set <property1> <value1> … <propertyN> <valueN>

This command is used to alter the classifier’s default settings, in particular for setting model-specific parameters. Properties and their values are passed as name/value pairs, and one or more may be specified per set command. The settings that may be altered are:
· CV [ on | off ] – Turn cross-validation on or off  (Detailed in Section 2.5.3.4).
· ClassCap <int> – Turns on class-capping: this option is used to limit the number of samples per class that are submitted for training or testing. For example, ‘c set classcap 10’ will limit training and testing for the classifier c to no more than ten samples per class. This option is useful with data sets that have large differences in the sampling of classes. In these situations, the classes that are over-represented can tend to overwhelm the others during training. Using a class cap helps ensure a more even-handed training regimen.
To turn off class capping, use ‘set classCap 0’. This is used, for example, to train with class capping but then test without it.

Finally, a special case: if class capping is used with a viewset, then training works in a special striping mode – rather than evaluating each sample in each view in the viewset in order, sample selection alternates between views. Otherwise, with class capping, all samples would be drawn from the first view to the exclusion of the others. Striping mode ensures that samples are drawn evenly from each view, when class capping is limiting the sampling of the data.
· Model-specific parameters – The ARTMAP classifier supports the following parameter settings (followed by the legal range of values, and the default):
· Model 
[fuzzy, default, ic, distrib]
default

· RhoBar 
[0 – 1]

0.0

· RhoBarTest  
[0 – 1]

0.0

· Alpha
[0 – 1)

0.01
· Beta
[0 – 1]

1.0
· Eps
|ε| small

-0.001
· P
(0 - ∞)

1.0
The following defines a fuzzy ARTMAP model and sets the RhoBar parameter:

Classifier c = artmap d

c set model fuzzy RhoBar 0.9

· LabelChoice [allMin | allMax | rand | any] – Defines the training protocol, or what to do during training when multiple labels are available (as described in Section 2.4.2.3), and class capping is turned on. If class capping is not active, then all training protocols are the same. In general, if multiple labels are available for a pixel, one or more of them are chosen for training according to the training protocol. Since the runtime capping of classes can bias the sampling towards the first samples encountered, the data should always be presented in random order when using class capping. More specifically:
· AllMin - If all labels available for sample are below the class cap, train with all labels. On one hand, all labels for a point are used in training, and all classes are subject to the class cap, including composite classes. On the other hand, the requirement that all labels for a sample must be below the cap results in a considerable under-sampling of the base classes, as the cap for the composite classes is met quickly, and it’s then difficult to find eligible base class samples. This method minimizes the amount of training data.

· AllMax - If any label available for sample is below the class cap, train with all labels. On one hand, all labels for a point are used in training, and adequate amounts of the base classes are sampled. On the other hand, the composite classes are allowed to exceed the class cap, so the benefits of capping class membership are partially negated.
· Rand - If any labels are below the class cap, train with one of them, selected at random. This comes close to implementing the class cap exactly, though under-sampling of the base-classes is still seen in some cases. 
· Any - Train with any available labels that are below the class cap. This comes closest to exactly implementing the class cap. Is a hybrid between the AllMax and Rand approaches, as it relaxes the constraint that all labels for a point are used in training, but allows more than one label to be used for a given sample. 
2.5.3 Applying the Classifier

Once the data are loaded and the classifier and model are defined, the following commands put ClasserScript to work.
2.5.3.1 Training – Learning Multi-Dimensional Mappings

When training a classifier, it works its way through a set of data, learning to associate each sample’s input features with the specified output label.
<Classifier> train (<data>|<view>|<viewset>) [<int epochs = 1>]
To train the classifier, one provides an argument describing the training data, optionally followed by an argument specifying the number of training epochs. Three distinct options are available for describing the training data: for quick or preliminary investigations, one can use a data set object directly; for more fine-grained control over training, one can specify a view or viewset object, allowing one to control order of presentation, or to tie together several data sets.

If the epochs parameter is greater than 1, the entire set of training data are presented (in the same order) the specified number of times. 
2.5.3.2 Testing – Evaluating the Trained Classifier

Given a trained classifier, the testing operator evaluates its performance at classifying a specified set of samples. 

<Classifier> test (<data>|<view>|<viewset>)
By setting the appropriate output requests, the user can retrieve metrics of the classifier’s accuracy. These performance metrics accumulate as distributed class predictions are made for each sample in the specified data. These include the percentage of samples classified correctly, a confusion matrix, or files specifying the output for each sample, either as a discrete label (winner-take-all), or as a distributed prediction (see section 0).
2.5.3.3 Classifying – Putting the Classifier to Work

<Classifier> classify <view>
The classify operator applies the classifier without comparing the results to target labels, as in the test operator. In other words, once performance is deemed adequate, the classify operator is used to generate sets of predictions for the samples in the specified view object. These are produced by invoking the Output directives predClass or predVector (see section 2.5.4.2).
<classifier> classify <image> <fName.ppm>
This variation of the classify method offers a simple approach to generating a thematic map, i.e., a map that assign each pixel to one of the available output classes. The output image is in portable pixel map format (PPM). The colors used are from the current palette, which may be customized by the user (see LoadPalette command, in section 1.1), and a legend may be printed to record the correspondence between classes and colors. An example is provided in Section 3.4.3.2.
2.5.3.4 Cross-Validation – Using All the Data

Cross-validation, a protocol for training and testing, allows the analyst to simultaneously avoid bias in the selection of the training and test sets, and maximize use of the data. It does so by creating N copies of the classifier, and testing each on 1/N of the data set, after training it on the remainer. In other words, each classifier makes predictions for its 1/Nth of the data, yielding predictions for the whole set.
Cross-validation is turned on via the ‘<classifier> set cv on’ statement (section 2.5.2).
<Classifier> train (<data>|<viewset>) [<int epochs = 1>]
<Classifier> test  (<data>|<viewset>)
If cross-validation is on, the train and test operators are restricted to data and viewset objects. If it’s a data object, N-fold cross-validation is applied, using N=5. If it’s a viewset object containing N views, N copies of the classifier are each tested using one of the views, after training with the other N-1 views.
A number of training epochs may be specified, as with non cross-validating training. IN each epoch of training, the data are presented in the same order.
2.5.3.5 Saving and Loading the Classifier

Training a classifier can be time-consuming. By saving the learned internal representations accumulated by the classifier (e.g., ARTMAP weights), multiple tests using a variety of different parameter settings may be done without having to repeatedly train the classifier.

<Classifier> save <f_wgt>
<Classifier> load <f_wgt> [<int #views>]
The <f_wgt> argument is a template to which is appended a numeric suffix indicating which classifier copy it refers to, followed by the extension ‘.wgt’. For example, for a 5-fold cross-validating classifier with three voters, fifteen files are generated when the classifier is saved.
When loading a cross-validating classifier, the number N of views may be provided, to tell the system how many copies to load (if not specified, it defaults to 5).
2.5.3.6 Looking Inside the Classifier – Inspect

The verbose command can be useful for seeing simulation details, but with real data sets, the amount of output can become overwhelming, which is where inspect comes in.

<Classifier> inspect <int verboseLevel> <int sampleIndex>
The inspect command temporarily turns up the verbosity level to the value specified, just for the training and/or testing of the specified entry. The verbosity levels are as specified in section 1.1.  The following example shows the output from an inspect command for the second training sample in the CIS test set:
train([0.59 0.71 ] --> 1)

  F0_to_F2_signal() - evaluating 1 node
  CAM_WTA() - Node 0 wins

  F1signal_WTA()

  passesVigilance()

    Passed vigilance w/ rho = 0

  prediction_WTA()

    Predicting class 0

  matchTracking() Raised vigilance to 0.547447

  Out of eligible nodes, allocating new one

  Committing new node: 2 mapping to category 1
2.5.4 Output Control

ClasserScript generates output in one of three ways:

· Via the ‘echo’ command (Section 1.1)
· Via the logging controlled by the verbose mechanism.

· Via the print and output statements, which must be explicitly requested by the user. This section documents these statements.
2.5.4.1 Print Statement 

ClasserScript outputs are requested in advance via print statements, and generated when a train, test or classify operator is used. Outputs are displayed differently depending on whether or not iteration is being used (see section 2.6.1):

· No loops - each print request is shown on its own line. For example:

Simulation Results:

    Train (secs):    0.11

     Test (secs):    0.01

       % correct:   95.0

     Memory (Kb):    0.9

· A foreach loop is used – one row per iteration, and one column per print request:

Sim  RhoBar    Train     Test  Percent   Memory  

---  ------     time     time  Correct     (Kb)  

  0  0.0        0.11     0.01     95.0      0.9  

  1  0.3        0.12     0.01     94.9      0.9  

  2  0.6        0.16     0.02     94.5      1.5  

  3  0.9        1.74     0.06     97.2      8.6  

· A foreach2D loop is used – a table is generated for each print request (see section 2.6.1.2)
Syntax: Print request1 … requestn

Makes a set of requests, to be fulfilled by any train, test or classify operations. Each print statement supersedes any prior ones, so all requests should be made on one line.
Print TrainTime TestTime ClassifyTime 

Returns the time required for training/testing/classifying, in seconds.

Print PercentCorrect 

The percentage of samples classified correctly. When predictions are distributed, fractional credit is awarded when a partial prediction for the correct class is made.
Print LtmRequired
Returns the kilobytes required to store the long term memory (LTM) of the classifier. This is the amount of internal storage, i.e., in binary, rather than the file size of the weight files. If more than one classifier is produced (because of cross-validation or voting), the number returned is a sum over all the classifiers, i.e., the total memory required.

Print ConfusionMatrix
A confusion matrix breaks classification performance down by class, showing which classes are confused with which. For example, in the following confusion matrix all samples are classified correctly, except for a ‘Forest’ sample predicted to be ‘Field’:

                    Predicted                               

          Field Barren Forest  Urban  Water                 

A       +----------------------------------+                

c  Field|     1                            |  2 (100.0%)    

t Barren|            3                     |  3 (100.0%)    

u Forest|     1             3              |  3 ( 75.0%)    

a  Urban|                          4       |  4 (100.0%)    

l  Water|                                 3|  3 (100.0%)    

        +----------------------------------+                

              1      3      4      4      3  15 ( 93.3%)    

The first column at right shows the number of samples per class, followed by the percentage of these classified correctly (in parentheses). Along the bottom is a breakdown of the number of predictions by class. Note that although the numbers shown are rounded off, distributed predictions award partial credit across a row.
Print Plot2d
Generates a text-based two-dimensional plot of predictions ranging across the unit plane. This shows how the classifier generalizes from the training samples to predictions for 100 points distributed across the unit plane. Note that the classifier must have been trained with the two given dimensions only (selected via the DimList command), or an error message will be obtained. For example, the following shows predictions for 10x10 values of the dimensions Red and Green:

   +--------------------+

  9|2 2 2 4 5 5 5 5 5 5 |

  8|2 2 2 4 4 5 5 5 5 5 |

  7|2 2 2 4 4 4 2 2 2 2 |

G 6|2 2 2 4 4 4 4 2 2 2 |

r 5|2 2 2 4 4 4 4 4 3 2 |

e 4|2 2 2 4 4 4 4 3 3 3 |

e 3|2 2 1 4 4 4 4 3 3 3 |

n 2|2 2 1 4 4 4 4 3 3 3 |

  1|2 2 1 4 4 4 3 3 1 1 |

  0|2 2 1 4 4 4 3 3 1 1 |

   +--------------------+

    0 1 2 3 4 5 6 7 8 9  

             Red         

Print <classifierOutputName> [<filter = All>]

This command provides for classifier model-specific outputs. The request is passed to the underlying model implementation, i.e., ClasserScript doesn’t interpret a particular <classifierOutputName>, it just passes it on to the model for interpretation.
· <classifierOutputName> is the name of the classifier-specific variable to retrieve. This varies depending on the details of the classifier. In the current ARTMAP implementation, two are available:

· F2Nodes  
the number of category nodes 

· Memory 
the number of bytes required for the ARTMAP weights.

· <filter> - Specifies how to combine results from multiple classifier copies. If a classifier output request is not the last print request listed, then filter  must be included (or the next request will be interpreted as a filter value). The options are:

· Avg  
return the average of the values.

· Range  
return the min and max values.

· All  
return a list of all the values.

For example, the following line requests that the average number of ARTMAP F2 nodes (category exemplars) be displayed, for each iteration of the simulation:

Print f2Nodes Avg
2.5.4.2 Output Statement

Used in situations where more detail is needed than is available from Print statements, Output statements sends sample labels or graphics to a files. 
Syntax: Output request1 <fName_1>… requestn <fName_n>
The requests are registered with the classifier, and during the next appropriate operation (in parentheses at end of each specific request), outputs are sent to files.
Output labels <fName>
Writes to file the actual class label for each data sample, one sample per line. This is useful when working with permuted samples, i.e., from a view or viewset (gen. during test).
Output labelVector <fName>
Writes the class label for each data sample, in vector form. This can be useful in multiple-label situations. For example a sample with three associated labels might generate the vector [0.0 0.0 0.33 0.0 0.033 0.0 0.33 0.0]  (gen. during test).
Output predClass <fName>
Writes to file the predicted class label for each data sample, one sample per line (generated during test or classify). In case of a tie, the label ‘-1’ is used. This can happen using distributed predictions, or if voting model copies disagree on the answer.
Output predVector <fName>
Writes to file the full distributed class label vector for each data sample, one per line (generated during test or classify).
Output cmatPgm <fName>
Generates a graphical confusion matrix (see example in section 3.4.1), stored as a portable gray map file (pgm). Output file should have extension ‘.pgm’. (generated during test).
Output predPpm <fName>
Writes a unit plane prediction plot, as a portable pixmap file (“.ppm”). This is a graphical version of the plot described for the print plot2d request (see section 2.5.4.1) Also see examples in sections 2.2 and 3.4.2 (train or test). The colors used are from the current palette, which may be customized by the user (see LoadPalette command, in section 1.1), and a legend may be printed to record the correspondence between classes and colors (see OutputLegend command, in section 1.1).
Output Yjs <fName>
ARTMAP-specific output: Writes Yj values to file, one line per sample, and one entry per node. Yj values are the activation of the ARTMAP category nodes, i.e., they represent internal activation patterns in response to a particular input. (generated during test).
2.6 Iteration and Output Control

In order to support parameter space explorations, Foreach and foreach2D loops iterate blocks of classifier operations, varying either one or two parameters at a time. The output of print requests differs in format depending on whether or not the operations are enclosed in a loop, and if so, whether the loop is one or two dimensional. 
Because loops collate print requests over a range, any print requests must be made before the loop body.The next section describes the parameters that can be iterated, followed by sections describing the syntax and output of both types of loops.
2.6.1 Loops

Both types of loops define iterations over classifier parameters, defined as one of the following:
DimList: 
Used to define a feature space exploration; a block of classifier operations is iterated, starting each time by redefining the classifier implementation(s) using a new feature set, defined by a DimList instance, created as described in section 2.4.5.                                                                     
NumVoters: 
Used to explore the role of voting in improving classifier performance. A range of integer values is provided, e.g. NumVoters [ 1 3 5 ], and the block is iterated using the specified number of copies of the model each voting to determine the result during testing. Note that sufficient data orderings must be available to support the maximum number in the range specified, as described in the note in section 2.5.1. More specifically, data orderings are specified using either view or viewset objects.
TrainEpochs: 
Used to repeatedly apply the training data, as described in 2.5.3.1. The block is repeated, starting by clearing the classifier and re-running any training operations according to the current TrainEpochs number.
Model param:
If it’s none of the previous three, it’s assumed to be model-specific, e.g. RhoBar, as described in section 2.5.2. The block is repeated, starting by clearing the classifier and resetting the specified model parameter to each specified value in turn.
2.6.1.1 Foreach Loops

Syntax:  The following shows the syntax for a loop iterating a single variable paramName over a set of parameter values v_1 to v_n:

foreach paramName [ v_1 … v_n ]

<classifier> op_1
…
<classifier> op_m
end
Print requests (which must be specified before the loop) are shown in a table with a row per parameter value and a column per print request. The following varies ARTMAP’s RhoBar param:
Sim  RhoBar    Train     Test  Percent   Memory  

---  ------     time     time  Correct     (Kb)  

  0  0.0        0.11     0.01     95.0      0.9  

  1  0.3        0.12     0.01     94.9      0.9  

  2  0.6        0.16     0.02     94.5      1.5  

  3  0.9        1.74     0.06     97.2      8.6  

2.6.1.2 Foreach2D Loops
Syntax: The following shows the syntax for a loop iterating two distinct variables:

Foreach2D paramName_a [ va_1 … va_n ] paramName_b [ vb_1 … vb_n ]

<classifier> op_1
…
<classifier> op_m

end
A foreach2D loop runs the block of classifier operations repeatedly, for all parameter combinations for the two variables. Print requests are each shown in their own table, with values collected in terms of the two parameters being varied. The following varies both RhoBar and model:

                         RhoBar                   

                0.0     0.3     0.6     0.9       

M fuzzy        0.11    0.12    0.17    1.73       

o default      0.12    0.12    0.16    1.74       Train (secs)                   
d ic           0.11    0.13    0.18    1.73       

e distrib      0.16    0.21    0.28    2.23       

l                                                 

-----------------------------------------------------------------

                         RhoBar                   

                0.0     0.3     0.6     0.9       

M fuzzy        0.01    0.01    0.01    0.06       

o default      0.02    0.02    0.03    0.15       Test (secs)                   
d ic           0.02    0.02    0.03    0.14       

e distrib      0.01    0.02    0.03    0.14       

l                                                 

-----------------------------------------------------------------

                    RhoBar              

              0.0   0.3   0.6   0.9     

M fuzzy      95.0  94.9  94.5  97.2     

o default    95.0  95.6  95.1  97.5               % correct               
d ic         92.0  92.8  95.2  96.5     

e distrib    82.8  87.9  95.2  96.5     

l                                       

-----------------------------------------------------------------

                         RhoBar                   

                0.0     0.3     0.6     0.9       

M fuzzy         0.9     0.9     1.5     8.6       

o default       0.9     0.9     1.5     8.6       Memory (Kb)               
d ic            0.9     0.9     1.5     8.6       

e distrib       0.7     1.2     1.5     8.6       

l                                                 

To produce these tables, all iterations must be performed before any outputs are generated, which may take some time. 
2.7 Rule Discovery

Rule discovery is a process for mining sets of distributed predictions for rules that describe “is-a” associations between output classes. This process, part of the ARTMAP Fusion System,  is described detail in Carpenter, Martens & Ogas (2005).  
Applying the rule discovery algorithm to a data set is a three-step process:
1. Generate a set of distributed predictions by applying a classifier model to a set of data samples (the larger the better). Distributed predictions are obtained by requesting the vector output format via the output predVector classifier command.

2. Filter the set of distributed predictions. Rule discovery can run without this step, but filtering removes much of the noise, yielding much improved sets of rules. The output of filtering can be a smaller set of distributed predictions (retaining relative activations), or a set of label indices (where all remaining classes are considered to have the same activation).
3. Apply the rule extraction tool to the filtered predictions. The result is a printout showing the extracted rules and their confidences, as well as more verbose details about the rule extraction process.
The next three sections provide more details about the filtering and rule extraction commands, starting with a key explaining the nomenclature used in the command descriptions.
2.7.1 Key:
[# | #file]
A number (integer or floating point), or the name of a file containing a single number
fDpreds 
A distributed predictions file, with a floating point number for each class, and the predictions across all classes sum to 1.

fProbDist 
File containing one (floating point) number per class, describing a probability distribution over the set of classes.

fFiltPreds 
Filtered predictions: one or more label indices, one line per pixel (sample). Actually, with Threshold filtering there may be no labels for a sample, if all activations are low.

fdFiltPreds 
Distributed filtered predictions: On each line, one floating point value per class. Each line represents the predicted probability distribution for a particular sample.

fExpectedRules 
A file describing the expected rules against which to gauge and score the extracted rule set. Specified as one line per rule, with each rule described by a pair of class names, e.g. “ocean water” describes the rule ocean
[image: image7.wmf]Þ

water.
2.7.2 Filtering methods:
FilterMethod: one of  TopN, Threshold, PerPixel, or Random
Describes the method used by the Filter or Dfilter commands: 

· TopN uses only the classes with the top N activations; 

· Threshold uses the classes with activation higher than the specified floating point number; 

· PerPixel looks at the relative activations for each sample: it first orders the classes by decreasing activation, and then retains the classes that come before the largest drop-off in activation.

· Random retains just one class with non-zero activation, chosen at random.
Filter FilterMethod [# | #file] 
fDpreds 
fFiltPreds
Filters the distributed predictions contained in fDpreds (using the method specified by the FilterMethod parameter), using the specified [# | #file] for the TopN and Threshold methods and sends the resulting sets of labels to fFiltPreds. 
Dfilter FilterMethod [# | #file] 
fDpreds 
fdFiltPreds
Filters the distributed predictions contained in fDpreds (using the method specified using FilterMethod). Instead of yielding label indices, however, the filtered classes have their relative activations preserved, i.e., the output is in distributed form, as is the input, except that some or most of the activations have been set to 0, and the remainder have been normalized to sum to 1. 
AprioriFilter  fProbDist fDpreds fFiltPreds  



An experimental approach to filtering that lets one specify the desired distribution of classes in the filtered predictions: 

1. Take the numbers specified by fProbDist as explicit class count targets.

2. Generate an array of labels based on these count targets, and randomize its order.

3. Work through the randomized array, and for each label:

a. Select the sample from fDpreds with the highest activation for that label, 

b. Output that label for the selected sample, 

c. Mark that label/sample combination ineligible to be selected again.
Bias fProbDist fDpreds(in) fDPreds(out)

An experimental method for biasing a set of distributed predictions. fProbDist describes a class-by-class bias vector, used to multiply the activations for each sample. After multiplication, the activation vector for each sample is normalized to sum to 1.
2.7.3 Rule extraction methods:
ExtractRules fFiltPreds fExpectedRules
This method takes a set of filtered predictions (zero or more label indices per sample), applies the rule extraction algorithm, and prints out the set of rules obtained. It also builds a crude text-based graph showing the level each class was assigned to, and generates scores to provide a rough estimate of performance as compared to the ideal rule set.
DextractRules [fDPreds | fdFiltPreds] 
fExpectedRules

This method is identical to ExtractRules, except that it starts with distributed predictions, rather than filtered predictions, i.e., an activation vector for each sample rather than a list of zero or more indices.
2.7.4 Scoring Extracted Hierarchies
To simplify side-by-side comparison of different methods of extracting a knowledge hierarchy from a set of distribute results, Classer compares the hierarchy to the desired set of rules (as specified by the fExpectedRules file, with one rule per line), and generates a three-part error score.
Define:


[image: image8.wmf]L

: 
# of class labels



[image: image9.wmf]E

: 
# of rules expected (from definition)



[image: image10.wmf]P

: 
# of possible rules = 
[image: image11.wmf]2

)

1

(

-

L

L




[image: image12.wmf]W

:
# of possible wrong rules = 
[image: image13.wmf]E

P

-




[image: image14.wmf]m

:
# of expected rules not predicted



[image: image15.wmf]w

: 
# of predicted rules not expected


[image: image16.wmf]s

MissedRule

: 

[image: image17.wmf]E

m



[image: image18.wmf]WrongRules

: 

[image: image19.wmf]W

w



(as 
[image: image20.wmf]W

w

<<

in most cases, 
[image: image21.wmf]is used to stretch range)


[image: image22.wmf]s

WrongLevel

: 
The fraction of class levels assigned incorrectly.

2.7.5 Extracted Hierarchy Summary

Both rule extraction operators produce a detailed report specifying:

· Rules and their confidences; if the confidence is 100%, it’s not shown. The examples that show a confidence of 100% are due to rounding, i.e., the actual confidence was something like 99.8%.
· Pixel counts: the number of pixels with predictions for a given class.

· Details: For each class pair x and y, the number of pixels predicting both x and y, and the confidence that x→y and that y→x

· Marginal & Equivs: The list of marginal equivalences and rules. These are not considered real equivalences (where two classes are deemed equivalent because both x→y and y→x have high confidence) or rules, because the confidence in them is relatively low, but the information is provided for purposes of analysis.

· Summary: Reports the error scores, as defined in the previous section, broken down in terms of missed rules, wrong rules, and wrong levels.
Figure 3 on page 29 provides an example of an extracted hierarchy summary.
[image: image34.png]


[image: image35.emf]

[image: image36.png]


[image: image37.emf]fuzzy

default

ic

distrib

Letters

Boston

CIS

50

60

70

80

90

100


[image: image23]
[image: image38.png]


Figure 3: Rule discovery - Extracted hierarchy summary
3 ClasserScript Use Cases

While the previous reference section describes the syntax of each command, this section provides examples of how a user might apply ClasserScript in a research context.

3.1 Train & Test on Ground Truth, Classify Larger Unlabeled Set

This section considers manual tuning of a classifier to optimize test set classification. In a real application one would then use the classify operator to generate label predictions for some larger data set.
3.1.1 Applying the Classifier

This is the most straightforward application of ClasserScript: one or more parameters are tuned by hand to optimize classification performance on a data set. Generally, one maintains separate training and test sets, or uses cross-validation to ensure that the test data have not been seen during training. In a real application, the optimized classifier is then applied to a larger, unlabeled data set to generate a set of labels.

Frey & Slate’s Letters data set is used to illustrate the idea (see appendix A.2 for data set details). We load two data sets, one with 16,000 and one with 4,000 samples. We then define a default ARTMAP classifier, using all features, train the classifier with the large data set, test on the small one, and print out a confusion matrix showing 80.2% of samples were assigned the correct label.

data d16k = load Letters\data16k.txt

data d4k  = load Letters\data4k.txt

classifier c = Artmap d16k

c train d16k

c print confusionmatrix 

c test  d4k

                                                       Predicted

        A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

A    +-------------------------------------------------------------------------------------------------------+

c   A|110   4       8              23           3           2               2   3                       1    |  156 ( 70.5%)

t   B|    106      10       1   7   2                                       8   2                            |  136 ( 77.9%)

u   C|        107       6      22   2                       1   2           1                               1|  142 ( 75.4%)

a   D|      5     151              11                                                                        |  167 ( 90.4%)

l   E|      1         128      14               3                       2   1   2                   1        |  152 ( 84.2%)

    F|      1       1     142   5   1                               2                           1            |  153 ( 92.8%)

    G|      1       2   2     151   3           2                       1   1   1                            |  164 ( 92.1%)

    H|      3       5           3 123           9       1       3           4                                |  151 ( 81.5%)

    I|      1       2   2   3       2 131  11                       3           8                   2        |  165 ( 79.4%)

    J|      3      11       1       2   4 123                   1               1                           2|  148 ( 83.1%)

    K|              4   4   1   3  11         116                           6                       1        |  146 ( 79.5%)

    L|      2       2   1       6   1           3 131                       5   6                            |  157 ( 83.4%)

    M|      1       1           1  52          16      65   2               3           1       2            |  144 ( 45.1%)

    N|      5       9               3           5         139               2           1   1   1            |  166 ( 83.7%)

    O|          1  17           7   4           1              98       7   2   1               1            |  139 ( 70.5%)

    P|      3       9      31   3   8           1                 110   1   1                           1    |  168 ( 65.5%)

    Q|  1   4       2          10   1           3               8     136   2                               1|  168 ( 81.0%)

    R|      3       6           3   9           2           1             137                                |  161 ( 85.1%)

    S|      8       1   3   2   1               3   2                       1 138   1                       1|  161 ( 85.7%)

    T|      1       2   1  11   4   2           1                           3   3 113                  10    |  151 ( 74.8%)

    U|      3       3   1       2   5           2           2   2                     144       2       2    |  168 ( 85.7%)

    V|      1               5   2   4                               3       1             109   1      10    |  136 ( 80.1%)

    W|      3                       3                       2                               2 129            |  139 ( 92.8%)

    X|      5       6   1       2   1          14   1                       1   1                 127        |  159 ( 79.9%)

    Y|      3       3       3       6                               1   5       1   6                 117    |  145 ( 80.7%)

    Z|      6       1  11   3   2               2                       1       3                   1     128|  158 ( 81.0%)

     +-------------------------------------------------------------------------------------------------------+

      111 173 108 256 160 203 248 279 135 134 186 134  66 149 114 119 153 181 170 120 146 112 137 132 141 133  4000 ( 80.2%)

An analyst might start with a manual exploration of the parameter space, testing to see for example, what raising the vigilance parameter 
[image: image24.wmf]r

 does for performance. By adding the line

c set rhobar 0.9

the performance of the classifier can be raised from 80.2% to 84%. To continue this exploration, the analyst might try varying the undelying classifier model. By adding the following line:

c set model fuzzy

the classifier performance is raised to 93.4%, as illustrated by the following confusion matrix:

                                                       Predicted

        A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z

A    +-------------------------------------------------------------------------------------------------------+

c   A|155                                                                                               1    |  156 ( 99.4%)

t   B|    122       1       1       1                               1       5   1           1       3        |  136 ( 89.7%)

u   C|        129       2       5               1               3                   1           1            |  142 ( 90.8%)

a   D|      4     160                                       1           1                           1        |  167 ( 95.8%)

l   E|      1   3     134       5               2   1                           1                   2       3|  152 ( 88.2%)

    F|                    141               1   1                   8               1       1                |  153 ( 92.2%)

    G|          2   2         156                       1       1       2                                    |  164 ( 95.1%)

    H|      3       7           1 125           5       1       3           5                           1    |  151 ( 82.8%)

    I|              1       2         157   4               1                                                |  165 ( 95.2%)

    J|                      1           6 140                   1                                            |  148 ( 94.6%)

    K|      1           1           8         126                           5   1                   4        |  146 ( 86.3%)

    L|                  1           1       2     150                       2                       1        |  157 ( 95.5%)

    M|                          1                     142                                       1            |  144 ( 98.6%)

    N|              2               2                     154   1           4               3                |  166 ( 92.8%)

    O|      1                   2                             130       6                                    |  139 ( 93.5%)

    P|      3           1   9       2                             152                                   1    |  168 ( 90.5%)

    Q|              2           1                               5     160                                    |  168 ( 95.2%)

    R|      6       3               5           3           2             140               2                |  161 ( 87.0%)

    S|      2               2       1       1       1                       1 148                   1   1   3|  161 ( 91.9%)

    T|              2               1                               1             141               1   5    |  151 ( 93.4%)

    U|      1   2                   1                           1                     163                    |  168 ( 97.0%)

    V|      3                                                                             133                |  136 ( 97.8%)

    W|                                                                                      1 138            |  139 ( 99.3%)

    X|      1       1   2                       4   1                                             149       1|  159 ( 93.7%)

    Y|                      1                           1               1           1       2       1 138    |  145 ( 95.2%)

    Z|                  3                           1                           1                         153|  158 ( 96.8%)

     +-------------------------------------------------------------------------------------------------------+

      155 148 136 181 144 157 171 147 163 148 142 154 145 158 145 162 170 162 152 144 163 143 140 163 147 160  4000 ( 93.4%)

While this approach can be fruitful for initial exploration, a more systematic exploration of parameter spaces is offered by ClasserScript’s iteration capabilities.

3.1.2 Variations of the Train/Test Argument 

A classifier’s train and test operators accept three different argument types describing the data to be processed. The advantages of each are described below:
Data 
If possible, the easiest approach is to use data objects directly. This is possible when the data are already divided into train / test / validation sets, and training with the data in order is acceptable.
View 
Defining data views offers several advantages over raw data objects:
· Detailed customization of subset selection by using orderings files. For example:

· The first 100 samples, in reverse order.

· Training set with just odd numbered samples, and test set with just even samples. 
· A particular random sampling of interest.

· Automated permutation of samples.
· The ability to use voting to improve classification performance, which requires orderings, which are available with view but not data objects.

Viewset
Use of a Viewset object offers the following:
· Automated cross-validation of arbitrary complexity, with voting.
· The ability to train / test a classifier with parts or all of several different data sets, while retaining the ability to control ordering offered by views. For example, when working in remote sensing, we typically break an image into four strips (see Boston testbed, appendix A.3), and use the four in different combinations as training, validation and test sets. Viewsets let us do so while retaining the ability to easily generate permutations of the training data.
3.1.3 Capping Classes

To convey the benefit of capping classes, we require a more realistic example. The following scripts uses the Boston remote sensing testbed, described in appendix A.3. We begin by defining a utility script for defining the data, called BostonDataDefs.csd, which starts by loading four data sets, each representing the ground truth from a vertical strip of the image, and then creates a view for each strip representing a random permutation of the strip’s samples:

data d1 = load Boston\dataStripe1.txt

data d2 = load Boston\dataStripe2.txt

data d3 = load Boston\dataStripe3.txt

data d4 = load Boston\dataStripe4.txt

view v1 = random d1

view v2 = random d2

view v3 = random d3

view v4 = random d4
The next script starts by importing these definitions. Then, for training, a viewset is formed out of the views for strips 4 and 2. A classifier with default ARTMAP settings and using the full set of input features is then created. Finally, we train the classifier using the training viewset, and test it on the samples in view 3. Note the print statements before the train and test operations requesting a class histogram and confusion matrix:
Import BostonDataDefs.csd

viewset vTr = union v4 v2

classifier c = Artmap d1

c print classStats

c train vTr

c print confusionMatrix classStats

c test v3

Running the script yields the following output, which can be read as follows: first are two lines of dots; these are the ‘heartbeat’ output showing the progress of training, 21 dots for the 21,353 samples in strip 4, and 3 for the 3,170 in strip 2. Next is the class histogram generated by the print classStats request, showing that the sampling of classes in the training set is far from uniform. Next we see the two hearbeat dots corresponding to 2,807 samples in the test strip. Finally, we have the confusion matrix at left, and the class histogram for the test set at right. Note that the class histogram shows classes with no samples in the given data set, even though they may exist elsewhere, e.g. indst in the test set. The confusion matrix omits classes with no samples in the test set.
.....................

...

unlab.     0    

miss       0    

beach    185    

ocean  20821    

ice      879    

river   1168    

road     135    

park     305 
resid    492   

indst    538    

Total: 24523    

..

                                                                         unlab.     0    

                             Predicted                                   miss       0    

          beach  ocean    ice  river   road   park  resid                beach    313    

A       +------------------------------------------------+               ocean   1280    

c  beach|   312                                  1       |  313 ( 99.7%) ice      146    

t  ocean|         1118           162                     | 1280 ( 87.3%) river    192    

u    ice|                 141             3              |  146 ( 96.6%) road      58    

a  river|                        192                     |  192 (100.0%) park     418    

l   road|                   1            38             2|   58 ( 65.5%) resid    400    

    park|                                28    390       |  418 ( 93.3%) indst      0    

   resid|                          5    170           225|  400 ( 56.3%) Total:  2807    

        +------------------------------------------------+                               

            312   1118    142    359    239    391    227  2807 ( 86.1%)        


While the overall classification performance across all classes (86.1%) isn’t bad, the results for road (65.5%) and resid (56.3%) show room for improvement. Noting that road has only 135 samples to ocean’s 20,821, we consider imposing a class cap so that the classifier is trained with an even distribution of class samples. 
If instead, we use the following script to cap samples during training at 135 per class, then turn off class capping for testing, allowing us to use all the data:

Import BostonDataDefs.csd

viewset vTr = union v4 v2

classifier c = Artmap d1

verbose 1

c print classstats

c set classCap 135

c train vTr

c print confusionMatrix classstats

c set classCap 0

c test v3
We then obtain the following output, with the first class histogram (for training) showing the effects of class capping:
Model: (Class cap: 135)

.....................

Trained with 1080 entries

unlab.     0    

miss       0    

beach    135    

ocean    135    

ice      135    

river    135    

road     135    

park     135    

resid    135    

indst    135    

Total:  1080    

Model: (No class cap)

..

Tested 2807 entries

                                                                         unlab.     0    

                             Predicted                                   miss       0    

          beach  ocean    ice  river   road   park  resid                beach    313    

A       +------------------------------------------------+               ocean   1280    

c  beach|   313                                          |  313 (100.0%) ice      146    

t  ocean|         1267            13                     | 1280 ( 99.0%) river    192    

u    ice|                 142             4              |  146 ( 97.3%) road      58    

a  river|                        192                     |  192 (100.0%) park     418    

l   road|                   1            41             2|   58 ( 70.7%) resid    400    

    park|                                20    398       |  418 ( 95.2%) indst      0    

   resid|                          1     32           367|  400 ( 91.8%) Total:  2807    

        +------------------------------------------------+                               

            313   1267    143    206     97    398    369  2807 ( 96.9%)            
Note also that class capping is active for training, but not for testing. More importantly, the following performance metrics have dramatically improved: overall classification has gone from 86.1% to 96.9%, for road it’s gone from 65.5% to 70.7%, and for resid from 56.3% to 91.8%. While similar improvements may not be obtained with every data set, this example demonstrates the advantages of capping classes during training.
3.1.4 Confirming Robustness of Result: Random Sampling

Recall that random selection occurs in two places in Classer: in selecting the order of samples when creating permutations for views or viewsets, and for selecting a winner when ARTMAP nodes are tied. To ensure that a particular result is not an accident, i.e., to ensure the robustness of an experiment with respect to ordering or tie selection, one can use the randomSeed statement (section 1.1) to change the random ordering used.

The default random seed is 1, so values other than 1 will generate other orderings. If results using values 2, 3… are qualitatively similar, then a result is robust with respect to random effects in Classer. To affect random choice of category ties without changing the order of sample selection, just place the randomSeed statement after view or viewset creation/permutation, and before any train/test classifier operators.
3.2 Maximize Data Set Use: Cross-Validation

As described in section 2.5.3.4, cross-validation lets us use the entire data set both for training and for testing, without ever testing a classifier on data that it has explicitly seen during testing. It does so by creating N copies of the classifier, and testing each on 1/N of the data set, after training it on the remainer. The following script shows the simplest implementation, automatically breaking the whole 1000 sample CIS data set into five pieces for cross-validation:
verbose 2

data d = load CIS\data1k.txt

classifier c = Artmap d

c set cv on

c train d

c print confusionMatrix

c test d

Running this script yields the following output, with verbosity set at two producing output to clarify the cross-validation process:
Loading data set CIS\data1k.txt as ascii values

Classifier c: Model - Artmap, input features - all from d, 2 classes, 1 voter

Model: (Cross-validating)

Doing cross-validated training for viewSet derived from CIS\data1k.txt

Training with view 1, for testing view 0

Training with view 2, for testing view 0

Training with view 3, for testing view 0

Training with view 4, for testing view 0

Training with view 0, for testing view 1

Training with view 2, for testing view 1

Training with view 3, for testing view 1

Training with view 4, for testing view 1

Training with view 0, for testing view 2

Training with view 1, for testing view 2

Training with view 3, for testing view 2

Training with view 4, for testing view 2

Training with view 0, for testing view 3

Training with view 1, for testing view 3

Training with view 2, for testing view 3

Training with view 4, for testing view 3

Training with view 0, for testing view 4

Training with view 1, for testing view 4

Training with view 2, for testing view 4

Training with view 3, for testing view 4

Trained (cross-validated) with 800 x 5 entries

Doing cross-validated testing for viewSet derived from CIS\data1k.txt

Testing view 0

Testing view 1

Testing view 2

Testing view 3

Testing view 4

Tested 1000 entries

       Predicted             

      Out  In                

A    +-------+               

c Out|477  16|  493 ( 96.8%) 

t  In| 34 473|  507 ( 93.3%) 

u    +-------+               

a     511 489  1000 ( 95.0%)

Note that the whole data set was used for testing, and that five classifier copies were used, each trained with 800 samples (4/5ths of the data). Also, by allowing us to train each classifier copy with a larger fraction of the data, this method confers a slight advantage over the simpler approach of training with half the data and testing on the other half, as seen in the following script (where ord1.txt and ord2.txt are ordering files describing the first and second halves of the data):
data d1000 = load CIS\data1k.txt

view v1 = subset d1000 CIS\ord1.txt

view v2 = subset d1000 CIS\ord2.txt

classifier c = Artmap d1000

c train v2

c print confusionMatrix

c test v1
In this case, the confusion matrix shows:

      Predicted             

      Out  In               

A    +-------+              

c Out|223  15| 238 ( 93.7%) 

t  In| 32 230| 262 ( 87.8%) 

u    +-------+              

a     255 245  500 ( 90.6%)
As we remove cross-validation, note that overall performance has decreased from 95.0% to 90.6%.

A final example with the Boston testbed shows a different approach to cross-validation: instead of letting Classer automatically divide a data set into five identical pieces, we can perform cross-validation between the four image strips. Consider the following script:
Import BostonDataDefs.csd
viewset vs = union v1 v2 v3 v4

classifier c = Artmap d1

c set cv on

verbose 2

c print traintime classstats

c train vs

c print testtime confusionMatrix classstats

c test vs

Which yields the following output:
Doing cross-validated training for viewSet vs

Training with view 1, for testing view 0

...

Training with view 2, for testing view 0

..

Training with view 3, for testing view 0

.....................

Training with view 0, for testing view 1

.

Training with view 2, for testing view 1

..

Training with view 3, for testing view 1

.....................

Training with view 0, for testing view 2

.

Training with view 1, for testing view 2

...

Training with view 3, for testing view 2

.....................

Training with view 0, for testing view 3

.

Training with view 1, for testing view 3

...

Training with view 2, for testing view 3

..

Trained (cross-validated) with 21752 x 4 entries

       Train (secs):    2.50

unlab.     0    

miss       0    

beach   1494    

ocean  66303    

ice     3507    

river   5757    

road     804    

park    2715    

resid   3933    

indst   2496    

Total: 87009    

Doing cross-validated testing for viewSet vs

Testing view 0

.

Testing view 1

...

Testing view 2

..

Testing view 3

.....................

Tested 29003 entries

        Test (secs):    1.28

                                                                                 unlab.     0    

                                 Predicted                                       miss       0    

          beach  ocean    ice  river   road   park  resid  indst                 beach    498    

A       +-------------------------------------------------------+                ocean  22101    

c  beach|   462             1                                 35|   498 ( 92.8%) ice     1169    

t  ocean|        21375           723                    3       | 22101 ( 96.7%) river   1919    

u    ice|     4          1035           129                    1|  1169 ( 88.5%) road     268    

a  river|           87          1832                            |  1919 ( 95.5%) park     905    

l   road|                   2           205      1     21     39|   268 ( 76.5%) resid   1311    

    park|     4                           2    898      1       |   905 ( 99.2%) indst    832    

   resid|                          6    148          1157       |  1311 ( 88.3%) Total: 29003    

   indst|    26                         416                  390|   832 ( 46.9%)                 

        +-------------------------------------------------------+                                

            496  21462   1038   2561    900    899   1182    465  29003 ( 94.3%)

The performance of 94.3% does not reflect any bias in the choice of training or test strips, as it uses all of them for both purposes. This can be an important factor, as seen in the following comparison. Next, we use the same data set, but train with strips 1 and 2, and test on strips 3 and 4:
Import BostonDataDefs.csd

viewset vs1 = union v1 v2 
viewset vs2 = union v3 v4

classifier c = Artmap d1

c train vs1

c print  confusionMatrix

c test vs2

Which yields:
                                 Predicted                                       

          beach  ocean    ice  river   road   park  resid  indst                 

A       +-------------------------------------------------------+                

c  beach|   410                          13      1             7|   431 ( 95.1%) 

t  ocean|        20714           429                   56       | 21199 ( 97.7%) 

u    ice|                 146                                   |   146 (100.0%) 

a  river|           49           988                            |  1037 ( 95.3%) 

l   road|                   2            24            14     22|    62 ( 38.7%) 

    park|                                 2    529      3      1|   535 ( 98.9%) 

   resid|                          2      5           636       |   643 ( 98.9%) 

   indst|     5                           4                   98|   107 ( 91.6%) 

        +-------------------------------------------------------+                

            415  20763    148   1419     48    530    709    128  24160 ( 97.5%)

Which seems like an improvement, until one considers that the choice of training and test sets can be biased. If we try the reverse, i.e., train with strips 3 and 4 and test on 1 and 2, we get:

                                Predicted                                       

          beach  ocean    ice  river   road   park  resid  indst                

A       +-------------------------------------------------------+               

c  beach|    61                           1                    5|   67 ( 91.0%) 

t  ocean|          683           219                            |  902 ( 75.7%) 

u    ice|                 791           232                     | 1023 ( 77.3%) 

a  river|                        882                            |  882 (100.0%) 

l   road|                   1           192             8      5|  206 ( 93.2%) 

    park|                                      370              |  370 (100.0%) 

   resid|                               276           392       |  668 ( 58.7%) 

   indst|                  12           526                  187|  725 ( 25.8%) 

        +-------------------------------------------------------+               

             61    683    804   1101   1227    370    400    197  4843 ( 73.5%)

Demonstrating that indeed, the choice of strips for training and testing can bias the assessment of performance. Cross-validation mitigates this problem by using all views for training and testing.

3.3 Iteration: Exploring Feature and Parameter Spaces

This section introduces the role of iteration in exploring how changes in input features or classifier parameters can affect performance and other classifier metrics.
3.3.1 Feature Space Exploration

Changing the set of input features made available to the classifier can profoundly affect performance, training time, and the efficiency of storage. Generally speaking, the more dimensions of data available, the simpler the classifier’s job, as more information is available for the classifier to distinguish between class exemplars. The following script illustrates this point. Using the Letters data set, it defines eight DimLists with size ranging from two to sixteen dimensions.

data d16k = load Letters\data16k.txt

data d4k  = load Letters\data4k.txt

dimlist dims16 = list [ x-box y-box width high onpix x-bar y-bar x2bar y2bar xybar x2ybr xy2br x-ege xegvy y-ege yegvx ]

dimlist dims14 = list [ x-box y-box width high onpix x-bar y-bar x2bar y2bar xybar x2ybr xy2br x-ege xegvy ]

dimlist dims12 = list [ x-box y-box width high onpix x-bar y-bar x2bar y2bar xybar x2ybr xy2br ]

dimlist dims10 = list [ x-box y-box width high onpix x-bar y-bar x2bar y2bar xybar ]

dimlist dims8  = list [ x-box y-box width high onpix x-bar y-bar x2bar ]

dimlist dims6  = list [ x-box y-box width high onpix x-bar ]

dimlist dims4  = list [ x-box y-box width high ]

dimlist dims2  = list [ x-box y-box ]

classifier c = Artmap d4k

c set model fuzzy

c print percentcorrect  traintime testtime f2nodes

foreach dimlist [ dims16 dims14 dims12 dims10 dims8 dims6 dims4 dims2 ]

c train d16k

c test  d4k

end
Echoing the outputs to a file and plotting them using MATLAB reveals the following trends:

[image: image25.emf]5 10 15

0

500

1000

1500

2000

2500

# dims

Train time (secs) 5 10 15

0

2

4

6

8

10

# dims

Test time (secs) 5 10 15

0

20

40

60

80

100

# dims

% correct 5 10 15

0

1000

2000

3000

4000

5000

6000

7000

8000

# dims

F2 nodes


Figure 4: Increasing the number of features used for classification
The most important trend in Figure 4 is in the third plot, ‘% correct’, showing classification performance going up dramatically as more input features are available. 
The different trend in the other three plots reveals how an obscure aspect of the data representation can affect results: the Frey & Slate Letters features are stored in only four bits, i.e., their values range from 1 to 16. So, with just two dimensions, there are at most 162 x 26 = 6,656 combinations of letter classes and two four bit features. Further analysis revealed that only 1,710 of the 16,000 training samples were unique when only the label and first two dimensions are considered. Accordingly, the ARTMAP classifier forms roughly that number of categories (‘F2 nodes’), a trend which continues with four and six dimensions, and is only reversed starting at eight, when the amount of information available starts to simplify the task of the classifier, and the efficiency of the representation increases. The parallel trend in the training and test time plots is a direct reflection of the number of ARTMAP categories required for each DimList setting.
3.3.2 Parameter Space Explorations
3.3.2.1 Varying the ARTMAP Model 

Using the loop syntax ‘foreach model [ fuzzy default ic distrib ]’, the following performance metrics were derived for the four varieties of ARTMAP model implemented by Classer, for each of the three data sets described in appendix A:
Circle-in-the-square data set (five-fold cross-validated results):
Sim   model    Train     Test  Percent  

---   -----     time     time  Correct  

  0  fuzzy      0.02     0.00     95.0  

  1  default    0.02     0.00     95.0  

  2  ic         0.02     0.00     91.9  

  3  distrib    0.03     0.02     90.7  
Frey and Slate Letters 16,000 sample data set (five-fold cross-validated results):

Sim   model    Train     Test  Percent  

---   -----     time     time  Correct  

  0  fuzzy     23.91     5.67     83.0  

  1  default   23.89    11.13     81.1  

  2  ic        23.91    11.14     62.4  

[image: image39.png]


  3  distrib   83.44    11.30     79.8  
Boston testbed (cross-validation between four strips):

Sim   model    Train     Test  Percent  

---   -----     time     time  Correct  

  0  fuzzy      2.47     0.83     96.7  

  1  default    2.48     1.30     94.3  

  2  ic         2.47     1.28     83.7  

  3  distrib    7.52     1.20     83.4  
The ‘Percent correct’ results can be visualized as shown in Figure 5.
Figure 5: Performance of ARTMAP models for three data sets
3.3.2.2 Varying ARTMAP Parameters

Exploring parameter spaces can be an important part of optimizing a model. As an example, we look at varying ARTMAP’s vigilance parameter RhoBar. The following script iterates the parameter over 100 values, printing train and test time, and percent correct:
data d = load CIS\data1k.txt

classifier c = Artmap d

c set cv on

c print trainTime testTime percentCorrect

foreach rhobar [ 0 0.01 0.02 0.03 … 0.99 ]

c train d

c test d

end

These three metrics were graphed in MATLAB, yielding Figure 6:

[image: image26.emf]0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

Rhobar

Train time (secs) 0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

Rhobar

Test time (secs) 0 0.2 0.4 0.6 0.8 1

80

85

90

95

100

Rhobar

% correct


Figure 6: Increasing ARTMAP vigilance
Besides showing the cost in time of increasing vigilance from 0 to 1, this figure shows a general performance improvement with increased vigilance, though the relationship is nonmonotonic. The erratic course of the performance curve can be improved by using multiple voters.
3.3.2.3 Two-Dimensional Iteration

Exploring a larger parameter space can be expedited by resorting to two-dimensional iteration. The following example applies this approach to the Letters data set, varying both the ARTMAP model and vigilance at the same time:
data d16k = load testData\Letters\data16k.txt

data d4k = load testData\Letters\data4k.txt

classifier c = Artmap d16k

c print trainTime testTime percentCorrect

foreach2D RhoBar [ 0.0 0.3 0.6 0.9 ] model [ fuzzy default ic distrib ]

c train d16k

c test  d4k

end

Yielding the following output, which collates the print requests into one table apiece, simplifying comparison of results for the entire two-dimensional parameter space:
R                       model                               

h         fuzzy default      ic distrib                     

o 0.0      6.36    6.34    6.39   21.69                     

B 0.3      6.36    6.38    6.39   23.41         Train (secs)

a 0.6      6.88    6.83    6.88   23.30                     

r                                                           

----------------------------------------------------------------------------

R                       model                              

h         fuzzy default      ic distrib                    

o 0.0      1.50    2.97    2.98    3.02                    

B 0.3      1.50    2.98    2.98    3.42         Test (secs)

a 0.6      1.59    3.14    3.16    3.14                    

r                                                          

----------------------------------------------------------------------------

R                       model                            

h         fuzzy default      ic distrib                  

o 0.0      83.4    80.2    62.3    83.5                  

B 0.3      83.4    80.2    62.3    62.3         % correct

a 0.6      83.7    83.4    72.3    72.3                  

r                                                        

----------------------------------------------------------------------------

R                       model                          

h         fuzzy default      ic distrib                

o 0.0       636     636     636     642                

B 0.3       636     636     636     636         f2Nodes

a 0.6       671     671     671     671                

r                                                      

3.4 Graphical Outputs

Though the last few figures were generated by processing Classer outputs through MATLAB, Classer can generate two types of graphical outputs: a confusion matrix and a prediction plot.
3.4.1 Graphical Confusion Matrix

When they are large enough, confusion matrices can be difficult to interpret, as shown in the following example, which applies the ARTMAP IC model to the Letters data set (the worst performing result seen in Figure 5)
                                                       Predicted                                                             

        A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z                

A    +-------------------------------------------------------------------------------------------------------+               

c   A|139                                           1  10                                   3   3            |  156 ( 89.1%) 

t   B|  7  73       1                   8              27          16       1   2                           1|  136 ( 53.7%) 

u   C|  3     102               5                      19       3       3                   1   1           5|  142 ( 71.8%) 

a   D|  4          83               1      17       4  36       3  17                   1                   1|  167 ( 49.7%) 

l   E|  4   2          69      29       4   1   4      18              10       9                           2|  152 ( 45.4%) 

    F|  1                  60   2       5               5          54   6           1       8   6   1   3   1|  153 ( 39.2%) 

    G| 11   5  11              97   1                  25              11                   2               1|  164 ( 59.1%) 

    H|  7           1           7  32      17   2   1  49  11  12       1                  10   1            |  151 ( 21.2%) 

    I|  6   3                         137               4          11   2       1                           1|  165 ( 83.0%) 

    J|  6   1                          14 101           7       1   7   3       4                           4|  148 ( 68.2%) 

    K| 13       1   1           5          14  52   2  45               8   1               2               2|  146 ( 35.6%) 

    L|  9   6                   4                 117  14               3                   1       3        |  157 ( 74.5%) 

    M|  8                                             134                                       2            |  144 ( 93.1%) 

    N|  7                                              46  70   6   1                      13  23            |  166 ( 42.2%) 

    O| 19           3           8           3          12      80   3   2                   6   3            |  139 ( 57.6%) 

    P|  3   1                   1       1               8         142   2                   5   5            |  168 ( 84.5%) 

    Q| 19   1       1           7                   1  11      10     110       1           1               6|  168 ( 65.5%) 

    R| 19   8       1           6       8           2  37   1       1   6  71   1                            |  161 ( 44.1%) 

    S| 13  10   2       3       1      13   4       2   8           1   6   1  74   2       6       1   3  11|  161 ( 46.0%) 

    T|      1   1           2   2                      13          13              92      14       1   7   5|  151 ( 60.9%) 

    U|  4                       1                      30       7       1             107   6  12            |  168 ( 63.7%) 

    V|  1                                               4               1                 123   7            |  136 ( 90.4%) 

    W|                                                 14   2                               8 115            |  139 ( 82.7%) 

    X|  7   3                   2          24   4   2  15           2       1   5           2      81   2   9|  159 ( 50.9%) 

    Y|                      1                          18           5   2           8      18   1      91   1|  145 ( 62.8%) 

    Z|  6                       1       3           1   2           1           2                         142|  158 ( 89.9%) 

     +-------------------------------------------------------------------------------------------------------+               

      316 114 117  91  72  63 178  34 193 181  62 133 611  84 122 274 177  75  99 103 108 229 179  87 106 192  4000 ( 62.3%)
Using the cmatPgm output request, this confusion matrix can be inspected visually as follows:

[image: image40.png]


[image: image27.png]



Figure 7: Visual confusion matrix
The figure lets one focus on where there are real performance challenges, without being distracted by all the small numbers in the text version, which don’t relect major issues with classification.

3.4.2 Graphical Prediction Plot
Our final example uses the same Letters data set to show the possibilities of visualization with a prediction plot. The following script is used:
data d = load Letters\data16k.txt

dimlist width_high = list [ width high ]
classifier c = Artmap width_high

c output predPpm lettersPred.ppm
c train d
outputLegend V predLgd.ppm
The output predPpm yields the result in Figure 8. The legend shown above the figure is generated by the last command in the script; it shows the colors associated with each class (the legend labels were added manually). 
[image: image28.png]



[image: image29.png]



Figure 8: Prediction plot - Letters data, width x height

This figure shows a prediction for every point in the space spanned by the dimensions width and height, by letter. In other words, thin letters are at left, wide ones at right, and short letters at the bottom, and tall letters at the top. For example, the color white at lower left corresponds to  ‘i’, and the cyan at lower right corresponds to ‘m’).
3.4.3 Working with Image Objects

Image objects are data sets with associated image dimensions (i.e., height and width). Typically, they are associated with remotely sensed imagery.
3.4.3.1  Data visualization

The following script loads the Boston testbed image described in Appendix A.3, and then generates a portable pixel map (“.ppm”) image, shown in Figure 9. The three feature dimensions d33, d34 and d35 have been assigned as the red, green, and blue layers in the image.
image bosImg = load allData.bin binary float 360 600 [ d1 … d41 ] [ unlab. miss beach ocean ice river road park resid indst ] 

bosImg show d33 d34 d35 bosImg.ppm

[image: image30.emf] 


Figure 9: Data visualization

3.4.3.2 Thematic map generation

The following script generates a thematic map based on the Boston testbed, as shown in Figure 10.
image bosImg = load Boston\allData.bin binary float 360 600 [ d1 … d41 ] [ unlab. miss beach ocean ice river road park resid indst ] 

# Load ground truth for the four image strips gt_1, gt_2, gt_3, gt_4

import dataDefs_bin.csd

View v1 = random gt_1

View v2 = random gt_2

View v3 = random gt_3

View v4 = random gt_4

ViewSet vs = union v1 v2 v3 v4

Classifier c = Artmap dimsDef

c set model distrib classcap 268

c print classStats f2nodes

c train vs

c classify bosImg r\thematic.ppm

[image: image31.png]


     
Figure 10: Thematic map

4 Disclaimer

While they have been tested and used in-house for a year, no claim is made that Classer, ClasserScript, or the encapsulated ARTMAP classifier implementations are correct or bug-free. They are used and provided solely for research and educational purposes. No liability, financial or otherwise is assumed regarding any application of ClasserScript.

5 Acknowledgements

The development of Classer and ClasserScript would not have been possible without the support of Dr. Gail Carpenter or of the Technology Laboratory at Boston University’s Department of Cognitive and Neural Systems. The author was supported in this work by postdoctoral fellowships from the National Geospatial-Intelligence Agency and the National Science Foundation (NMA 501-03-1-2030 and NSF DGE-0221680);
The Frey and Slate Letters data set was obtained from the UCI Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html).

The Boston testbed was obtained in part thanks to BU’s Department of Remote Sensing, and Suhas Chelian and Brad Rhodes helped create the ground truth set. 
Gail Carpenter and others developed the ARTMAP family of neural networks that form Classer’s computational core.
6 References

Carpenter, G.A. (2003). “Default ARTMAP”, Proceedings of the International Joint Conference on Neural Networks (IJCNN'03), Portland, Oregon, 1396-1401
Carpenter, G.A., Martens, S., & Ogas, O.J. (2005). “Self-organizing information fusion and hierarchical knowledge discovery:  a new framework using ARTMAP neural networks.” Neural Networks, 18(3), 287-295
Carpenter, G.A., Milenova, B., & Noeske, B. (1998). “dARTMAP: A neural network for fast distributed supervised learning”. Neural Networks, 11(5), 793-813
Frey, P. W. and Slate, D. J. (1991) “Letter Recognition Using Holland-style Adaptive Classifiers", Machine Learning 6(2), March 1991, 161-182

Appendix A:  Data Set Descriptions

Three data sets of varying complexity are used to illustrate the examples in this document. This appendix describes these data sets in further detail.

A.1 Circle-in-the-Square (CIS)

This is a simple data set with just two classes and two dimensions, describing whether or not points fall within a circle set within a square.

Data Details: 

· 2 dimensions, x and y, 

· 2 classes, Out and In.

· 1000 samples

All points fall within the unit square; a centered circle with area exactly half that of the square partitions the two classes. When samples are drawn at random from the square, on average half are in the circle, and half are outside.

Data obeying these rules can be generated at will; simulations described in this document use the thousand point data set shown in Figure 11.

A.2 Frey & Slate Letter Data Set

This data set describes statistical attributes of 20,000 digitized pictures of letters, and was used to study machine learning using Holland-style adaptive classifiers (Frey & Slate, 1991). Our copy was obtained from the UCI repository (http://www.ics.uci.edu/~mlearn/MLRepository.html).

Data Details: 

· 16 dimensions (listed below). 

· 26 classes representing letters of the alphabet (A-Z). 

· 20,000 samples, divided into a 16,000 sample training set and 4,000 sample test set.

x-box - 
horizontal position of box

y-box - 
vertical position of box  

width -
width of box  

high - 
height of box  

onpix - 
total # on pixels  

x-bar - 
mean x of on pixels in box  

y-bar - 
mean y of on pixels in box  

x2bar - 
mean x variance  

y2bar - 
mean y variance  

xybar - 
mean x y correlation  

x2ybr - 
mean of x * x * y  

xy2br - 
mean of x * y * y  

x-ege - 
mean edge count left to right  

xegvy - 
correlation of x-ege with y  

y-ege - 
mean edge count bottom to top  

yegvx - 
correlation of y-ege with x  

A 20,000 point data set is broken into two pieces: one with 16,000 points, and one with 4,000 points. Each data point is derived from a pixellated image of a letter. As stated in the description accompanying the data set: “The objective is to identify each of a large number of black-and-white rectangular pixel displays as one of the 26 capital letters in the English alphabet. The character images were based on 20 different fonts and each letter within these 20 fonts was randomly distorted to produce a file of 20,000 unique stimuli.  Each stimulus was converted into 16 primitive numerical attributes (statistical moments and edge counts) which were then scaled to fit into a range of integer values from 0 through 15.  We typically train on the first 16000 items and then use the resulting model to predict the letter category for the remaining 4000.”
A.3 Boston Remote Sensing Testbed


[image: image32]
The Boston remote sensing testbed describes a remotely sensed area (data from a Landsat 7 Thematic Mapper satellite), 360 pixels wide by 600 pixels in height, or 5.4 km x 9 km in area.

Data Details: 

· 41 dimensions (more details below)

· 8 classes (Beach, Ocean, Ice, River, Road, Park, Residential, Industrial). 

· 216,000 samples total, of which 29,003 are labeled 

41 layers of data are available for each pixel (lower resolution bands were upsampled to 15m):

· 6 Thematic Mapper (TM) bands at 30m resolution.

· Two thermal bands at 60m resolution,

· One panchromatic band with 15m resolution

· 32 derived bands representing local contrast, color and texture.

Of the 216,000 points in the image, 29,003 have been assigned one of the eight labels (i.e., represent the ground truth information). As shown in Figure 12, the image is divided into four vertical strips.

The distribution of ground truth from strip to strip is far from uniform, as shown in Table 1. 

Table 1: Boston Data - Ground truth class Distributions

	
	Strip 1
	Strip 2
	Strip 3
	Strip 4
	Totals

	Beach
	      0
	67
	313
	118
	498

	Ocean
	      0
	    902
	   1280
	  19919
	22101

	Ice
	    144
	    879
	    146
	      0
	1169

	River
	    559
	    323
	    192
	    845
	1919

	Road
	     75
	    131
	     58
	      4
	268

	Park
	    182
	    188
	    418
	    117
	905

	Residential
	    419
	    249
	    400
	    243
	1311

	Industrial
	    294
	    431
	      0
	    107
	832

	Totals
	1673
	3170
	2807
	21353
	29003


Appendix B:  ClasserScript Reference

This appendix provides a reference to ClasserScript’s syntax. For more detail, see Section 2.

Miscellaneous

# commented line indicated by initial ‘#’

version (prints the version of the Classer executable)
timestamp

randomSeed <int seed> 

import <f_csd>

verbose <int level>

echo [<int level = 0>] message…

system … shell command …
classNames [ c1 c2 c3 c4 … cN ]

deleteCols idx1 idx2 … idxN <predsFname> <outputFname>

savePalette <outputFname>

loadPalette <inputFname>

outputLegend [V|H] <outputFname.ppm>`

Defining the data

At minimum, a data object is required; for more control, define view, viewset, or Image objects.

data <name> = load <f_data>

data <name> = load <f_dbin> binary [float|double] <int entries> [ d1 d2 d3 ] [ c1 c2 ]
data <name> = define <int entries> [ d1 d2 d3 ] [ c1 c2 ]
  loadvalues <f_array> [binary (float|double)]

  loadlabels <f_label> [binary (int  |short )]

  save <f_data>, or 
  save <f_dbin> binary
  normalize
  multiplyLabels <fName>
  list
  plot [ d1 d2 ]
  hist       (histogram of data by class)
view <name> = whole  <data>   (in order)
view <name> = random <data>   (random order)
view <name> = subset <data> <f_ints ordering1> … <f_ints orderingN>

  shuffle <int numOrderings>

  plot

  list
  hist [int orderingIdx = 0]
viewset <name> = union <view1> … <viewN>

viewset <name> = split <data> <int numPieces> [<int numOrderings>]

  list
image <name> = define <int width> <int height> [d1 d2 d3] [c1 c2]
image <name> = load <f_dbin> binary [float|double] <int w> <int h> [d1 d2 d3] [c1 c2]

  split [V|H] <int numStrips> <baseFname>

  flip
  show d1 d2 d3 <outputFname.ppm>
dimList <name> = list <list dimNames>

dimList <name> = alldims <data>

Defining and applying the classifier and model

classifier <name> = <classifierType> (<data>|<dimList>) [<int numVoters>]

  set <property1> <value1> … <propertyN> <valueN>

  train (<data>|<view>|<viewset>) [<int epochs = 1>]
  test  (<data>|<view>|<viewset>) 


(→ train / test: If in CV mode, <view> is not allowed; <data> are broken into 5 pieces.)

  classify [<view> | <image> <outputFname.ppm>]
  save <f_wgt>

  load <f_wgt> [<int>] (→ if in CV mode, # of partitions may be specified, defaulting to 5) 

  print request   

  output request <f>   

  inspect <int level> <int sampleIndex>



Iteration – foreach loops
foreach <str paramName> <list values>
end
foreach2d <str paramName1> <list values1> <str paramName2> <list values2>

end

Rule discovery commands

filter  [topN|threshold|perPixel|random] [#|#file] <f_array_in> <f_label_out>
dFilter [topN|threshold|perPixel|random] [#|#file] <f_array_in> <f_array_out>

aprioriFilter <f_floats> <f_array_in> <f_label_out>

bias <f_floats> <f_array_in> <f_array_out>

extractRules  <f_label> <f_expectedRules>
dExtractRules <f_array> <f_expectedRules>
Definitions – Syntax and file types

Type <Name> = … – creates an object of type Type,  referred to as <Name>

method – a method or function applied to an object. Called as ‘<Name> method’
(a|b|c) - a choice, [token] – token is optional, <int a> - integer, <str b> - string , <list c> - list of strings, in square brackets, <classifierType> - model to use (currently only ‘Artmap’ is available)
<f_csd>    - ClasserScript file
<f_data>   - data file (text format), starting with a descriptive header
<f_dbin>   - data file (binary format), raw format (no header)

<f_array>  - data file (text or binary), no header, just a matrix of floating point values
<f_ints>   - a list of integers, one per line
<f_floats> - a list of floating point numbers, one per line
<f_wgt>    - Weight-file (classifier-dependent contents and naming convention)

<f_label>  - Labels file – one line per sample, and one or more label indices per line

<f_pgm>    - Portable gray map (binary image format)

<f_ppm>    - Portable pixel map (binary image format)
Classifier properties


cv [ on | off ]


classCap <int>


labelChoice [ allMin | allMax | rand | any ]





Print requests


General:


trainTime


testTime


classifyTime


percentCorrect


ltmRequired


confusionMatrix


classStats


plot2D


Artmap:


F2nodes, memory











Artmap properties


model 


rhoBar rhoBarTest alpha 


beta 


eps


p








Foreach params:


dimList


numVoters 


trainEpochs


or 


Artmap property








Output requests


predClass 	<f_ints>


predVector 	<f_array>


labels 	<f_label>


labelVector 	<f_array>


cmatPgm 	<f_pgm>


predPpm 	<f_ppm>


yjs	<f_array>





4














Beach


Ocean


Ice


River


Road


Park


Residential


Industrial





Columns show level of label in hierarchy:











Frey & Slate Letter data : List of input features





Figure � SEQ Figure \* ARABIC �11�: Circle-in-the-square: 


1000 point data set








Top


level








Level


2








Level


1








Missed


rules








Wrong


rules








Wrong levels


score








Pixels per class pair








Pixels per class








Rule 


confidences








3





 +-----Rules (100%, unless noted)-----+    +--Pixel counts--+


 |beach -> openSp                  92%|    |                |


 |      ->          natur          97%|    | beach   2920   |


 +------------------------------------+    | ocean  89941   |


 |ice   -> water                   74%|    | ice    21964   |


 |      ->          natur          85%|    | river  30081   |


 +------------------------------------+    | road  130551   |


 |river -> water                   99%|    | park   48791   |


 |      ->          natur         100%|    | resid 285457   |


 +------------------------------------+    | indst  43202   |


 |indst -> built                   84%|    | water 161819   |


 |      ->          manMd          98%|    | openSp 53156   |


 +------------------------------------+    | built 326385   |


 |park  -> openSp                  76%|    | natur 280893   |


 |      ->          natur          91%|    | manMd 468834   |


 +------------------------------------+    |                |


 |         openSp-> natur          91%|    +----------------+


 +------------------------------------+


 |ocean -> water                  100%|    +---Marginal & Equivs.---+


 |      ->          natur         100%|    |                        |


 +------------------------------------+    | Marginal equivalences  |


 |road  ->          manMd          99%|    |   park  <-> openSp 70% |


 +------------------------------------+    |   ocean <-> water  55% |


 |         water -> natur          98%|    |   water <-> natur  56% |


 +------------------------------------+    |   resid <-> built  67% |


 |resid -> built                   77%|    |   resid <-> manMd  60% |


 |      ->          manMd          99%|    |   built <-> manMd  69% |


 +------------------------------------+    |                        |


 |         built -> manMd         100%|    | Marginal Rules         |


 +------------------------------------+    |   beach -> manMd   10% |


 +----------------Details---------------+  |   ice   -> road    12% |


 |                                      |  |   ice   -> manMd   25% |


 | x        y        #x&y  x->y%  y->x% |  |   indst -> road    12% |


 | beach  & openSp   2675  91.61   5.03 |  |   park  -> manMd   25% |


 | beach  & natur    2832  96.99   1.01 |  |   openSp-> manMd   24% |


 | beach  & manMd     300  10.27   0.06 |  |   road  -> natur   18% |


 | ice    & road     2571  11.71   1.97 |  |   road  -> resid   38% |


 | ice    & water   16343  74.41  10.10 |  |   road  -> built   33% |


 | ice    & natur   18770  85.46   6.68 |  |   water -> manMd   15% |


 | ice    & built     586   2.67   0.18 |  |   natur -> manMd   37% |


 | ice    & manMd    5408  24.62   1.15 |  |                        |


 | river  & water   29839  99.20  18.44 |  +------------------------+


 | river  & natur   30073  99.97  10.71 |


 | indst  & road     5162  11.95   3.95 |  +---------Summary--------+


 | indst  & natur    1344   3.11   0.48 |  |                        |


 | indst  & resid     550   1.27   0.19 |  | Missed Rules:          |


 | indst  & built   36407  84.27  11.15 |  |    [1.4 of 18] -> 0.08 |


 | indst  & manMd   42403  98.15   9.04 |  |                        |


 | park   & openSp  36945  75.72  69.50 |  | Wrong Rules:           |


 | park   & road     3031   6.21   2.32 |  |    [0.0 of 60] -> 0.00 |


 | park   & natur   44197  90.58  15.73 |  |                        |


 | park   & resid     654   1.34   0.23 |  | Wrong Levels:          |


 | park   & manMd   12191  24.99   2.60 |  |     [ 0 of 13] -> 0.00 |


 | openSp & road     1727   3.25   1.32 |  +------------------------+


  …








Figure � SEQ Figure \* ARABIC �12�: Boston Testbed – Image strips (left), ground truth (right)








Rules – One per line, grouped by antecedent





Predicted








Actual





a b c d e f g h i j k l m n o p q r s t u v w x y z 





a b c d e f g h i j k l m n o p q r s t u v w x y z 








2





1























PAGE  
48

_1143963217.unknown

_1143963573.unknown

_1173257175.unknown

_1176885551.unknown

_1159794967.unknown

_1159868787.unknown

_1169559055.unknown

_1143963612.unknown

_1143963235.unknown

_1143963242.unknown

_1143963227.unknown

_1143963199.unknown

_1143963207.unknown

_1143963153.unknown

_1143963188.unknown

_1143963143.unknown

_1143962990.unknown

