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Definitions

Classer: Classer is a set of software tools for applying machine learning classifier models to arbitrary data sets. Layered on top of implementations of ARTMAP neural networks, the Classer toolkit lets the user define classifier models, apply them to process data sets, and automate output data collection and parameter space exploration. 
API: "Application Programming Interface". Classer is implemented in C++, and available in open-source format. The API represents the Classer objects that are available to the client application developer, and the functions that can be called on each of the objects. 
Use Cases: "A use case is a technique for capturing the potential requirements of a new system... Each use case provides one or more scenarios that convey how the system should interact with the end user or another system to achieve a specific business goal." – Wikipedia's definition of Use Cases (http://en.wikipedia.org/wiki/Use_cases)

Background

Classer is an open-source software project that simplifies research on ARTMAP neural networks. It is provided to the general public at the Technology Laboratory of the Department of Cognitive and Neural Systems at Boston University: http://cns.bu.edu/techlab/. 
The first interface to Classer was offered by ClasserScript, a small scripting language for controling batch ARTMAP simulations. More recently, detailed API documentation has been provided for the Classer code, making it possible for programmers to integrate Classer's functionality directly into their own applications. As an alternative to calling Classer's API, programmers needing lower-level access can bypass it, and directly call the ARTMAP implementation's API, which is also available from the Technology Laboratory's web site. 
The ARTMAP implementation and Classer are implemented in C++, in open source, under CopyLeft terms, allowing their modification and incorporation into larger tools.
Introduction
This document illustrates the Classer API's use cases by applying Classer to a remote sensing data set. The intended audience is a software developer who needs to integrate Classer's functionality into an arbitrary client program, for example a geographic information system (GIS). To make each of the use cases more concrete, ClasserTester is a program that implements each of them. In each of the use case descriptions that follow, the developer is referred to the appropriate section in ClasserTester. The code examples simplify the task of integrating an application with Classer.

Classer API Docs: The Classer DLL API is documented by a set of HTML reference pages generated by Doxygen, a documentation generation system that extracts the descriptions from the source code, and formats them as web pages (HTML).

ClasserScript: To work with Classer's without having to do any C++ programming, ClasserScript offers a language for writing scripts that drive Classer from the Windows (DOS) command line. The ClasserScript User's Guide goes into more detail about some of the objects used in Classer, though the emphasis in that document is not on the internals. The ClasserScript User Guide is recommended as background reading for this document, however, as it provides a more comprehensive foundation for understanding the concepts and objects in the Classer toolkit.
Use Cases:
The use cases in this document illustrate some of the ways that a program calling the Classer API can combine:

· A remote sensing data set / image with one or more bands of data describing each pixel

· Spectral bands

· Bands derived from a Digital Elevation model (DEM)

· Bands derived from the spectral or DEM data

· A ground truth set defining training information for a classifier

· A set of class labels 

· The 'ground truth': delineated polygons associated with each of the classes
· A classifier model, in this case ARTMAP, with associated settings:

· Model variations
· ARTMAP Model type

· ARTMAP Vigilance parameter
· Voting systems
· Input features
Each use case corresponds to a step in exploring and optimizing classification of the data by the ARTMAP models, in the process generating a variety of performance metrics and maps of the remote sensing area.
Format of Use Case Descriptions: For each use case, the rationale ('Why') is explained, followed by an outline of how the use case is implemented in ClasserTester ('How'). Finally, the functions implementing each use case in the ClasserTester source code are listed (‘Implementation’), along with some hints about how long each use case takes to run on a 3 GHz Intel Xeon CPU, with 3.5 GB of RAM (‘Timing’). As the timing varies from machine to machine, this information is intended solely as a guide to the relative speed of Classer’s operations. On the same machine, running all of the use cases takes about 7½ minutes, plus an extra minute for preprocessing the first time ClasserTester is run.
Notation: Classer's objects and the methods they implement are written in Courier font.

UC-0. Define the meta-data, then load and preprocess the raw data
a. Why: 
Defining the names of the class labels and input features is the first step in performing Classer simulations. Using this information, the raw data are loaded and any necessary preprocessing is performed (in this case, the data are normalized, a prerequisite for presentation to the ARTMAP model). Note that the preprocessing only has to be done the first time the data are used, and that the preprocessing results can be stored and reused later. In the example provided, the data are stored in text format, which is slow to load. After preprocessing, the data are saved in binary format, which loads more quickly by several orders of magnitude. The data are also stored in text format, as a concrete example of Classer’s default data set format.
b. How: 
Two NameList objects are used to define the names of the classes and input features. The raw data are read into an array, which is then used to initialize an Image object, which had been preallocated. If Classer were embedded in a larger application such as GIS, the data could be passed in from memory, so the slow parsing of the data file could be avoided.
c. Implementation: UC_0_defineClassesAndFeatures(), UC_0_preprocess()
d. Timing: 
Overall: 



0:58
i. Defining classes and features
0:00

ii. Reading data from text file: 
0:21
iii. Reading labels from text:

0:01

iv. Normalizing data:


0:01

v. Saving in binary format:

0:02

vi. Saving in text format:

0:33
UC-1. Define Image objects (from a data file, or via API)
a. Why: 
Image objects encapsulate the data representing a remotely sensed area of interest. Classer can generate thematic maps of the area (see UC-6), where each pixel is assigned to one of the ground truth classes, by using a Classifier object trained with ground truth information to process the Image object. In addition, with voting systems, or with mixture predictions, confidence maps can be generated that describe the confidence of the classifier's predictions by area.
b. How: 
Image objects can be loaded into Classer either from data files, or directly from memory via the API. This can be done one data point at a time in situations where the data accumulates incrementally (e.g., a robot exploring its environment), but in a remote sensing context, the whole set of data can be submitted at once, encoded as floating point values. In the implementation provided, a rough plot of the data in the space of the input features 1 and 2 is provided, as well as a histogram of the data by class. These outputs serve as a rough check that the data have been correctly loaded.
c. Implementation: UC_1_loadImage()
d. Timing:  
Overall: 



0:01
UC-2. Define ground-truth data (from a data file, or via API)
a. Why: 
Ground-truth data usually consists of polygonal subsets of an Image with which class labels have been associated. In other words, they are parts of the image for which the desired answers are known. They serve a dual role, both in training a classifier, and in assessing the accuracy of the trained classifier.
b. How: 
Ground truth data correspond directly to Classer's Data objects. As with Image objects, they may be loaded either from data files, or directly via the API. In addition, they may be loaded as an entire set of data points with associated labels, or incrementally, as the polygons are designated in a GIS application. In the implementation provided, they are extracted from the larger Image set, by stripping out all samples with the label '0', which correspond to unlabeled points. As in UC-1, a histogram is provided, which is identical to the previous one, except that the 186,997 samples of class 'unlab.' (unlabeled) have now been removed, leaving just the samples with associated ground truth information.
c. Implementation: UC_2_defineGroundTruth()
d. Timing: 
Overall: 



0:05
i. Removing unlabeled samples
0:00

ii. Generating histogram

0:00
iii. Saving in binary format

0:00

iv. Saving in text format

0:04
UC-3. Train classifier with one subset of ground-truth, test accuracy on another 

a. Why: 
To tune a classifier model of interest, while maintaining control over which portions of the ground-truth are used for training, and which are used for accuracy assessment. For example, the analyst may want to ensure that the training and testing samples come from spatially disjoint areas.
b. How: 
Load a ground-truth set as described in UC-2, then define two View objects defining the subsets of interest. The subsets defined by the View objects may be explicitly specified by the user, or Classer can divide the ground-truth set automatically. Create a Classifier (if desired, set parameters as described in UC-7), and train with the first View, then test on the second. In the implementation provided, the ground truth data are automatically partitioned into two halves, and each half is associated with five orderings, which are used to train five classifier model instances. During testing, each model instance votes as to the final prediction, which has been shown to improve predictive performance in some cases. To demonstrate the results of testing, a confusion matrix is then printed, breaking down the classifier performance by class label.
c. Implementation: UC_3_trainTest()
d. Timing: 
Overall: 



0:04
i. Training



0:02

ii. Testing



0:02

UC-4. Cross validate training/testing on ground-truth
a. Why: 
Cross-validation is used to tune a classifier model by performing accuracy assessments that make full use of the available ground-truth. By using cross-validation, all of the ground-truth can be used for training and for testing, without ever testing on a sample that was used to train the classifier. This is done by dividing the ground-truth into N pieces, and then dedicating N copies of the classifier to the task. Each copy is assigned one of the N pieces of the ground-truth as a test set, after training on the remaining N-1 pieces.
b. How: 
First load a ground-truth set as described in UC-2. Then create a ViewSet object to automatically partition the ground-truth into the N pieces. Create a Classifier and then call CvTrain and then CvTest on the ViewSet. Classer handles the details of cross-validation internally, reporting test results for the union of the N subsets. The provided implementation sets N=5
c. Implementation: UC_4_CVtrainTest()
d. Timing: 
Overall: 



0:21
i. Training



0:15

ii. Testing




0:05
UC-5. Train a classifier with all of ground-truth
a. Why: 
Once a classifier model has been adequately tuned according to either UC-3 or UC-4, one may go back and train it anew using all of the ground-truth, before using the classifier for production purposes, e.g., the generation of thematic maps as described in UC-6. This way, all available training information will have been used, presumably optimizing classification performance on the larger data set of interest.
b. How: 
Load the entire ground-truth set as described in UC-2. Create the Classifier and set any parameters derived from the tuning process. Train the classifier directly on the ground-truth set, in the form of a Data object. In the provided implementation, the trained classifier is retained for later use in UC-6, UC-10, and UC-11.
c. Implementation: UC_5_trainAllGt()
d. Timing: 
Overall: 



0:05
UC-6. Generate a thematic map, given an Image object and a trained classifier 

[image: image1]        
a. Why: 
Given a Classifier trained according to UC-3, UC-4 or UC-5 (preferably the latter, as it is based on more information, and so should yield more accurate maps), a thematic map can be generated by classifying the data in an Image object (loaded as in UC-1). By thematic map, we mean a map that assigns one of the ground-truth labels to every pixel. In other words, a thematic map is one in which the pixels have been classified according to the associations learned during training. The thematic map may be output as a portable pixmap ('.ppm' format), or may be retrieved internally as an array of floating point values for further processing by the host application. In addition to thematic maps, Classer can generate grayscale 'confidence maps', which can guide further editing of the thematic maps, by directing the analyst to areas where the classifier is less sure of its performance (dark shading). Furthermore, as shown above, Classer can generate a legend that can be used to interpret the colors used in the thematic map.
b. How: 
Load an Image as described in UC-1, create a Classifier and set any parameters desired as indicated from any performance tuning (UC-3 or UC-4). Then, train the Classifier according to UC-5. Finally, apply the trained Classifier's thematicPpm() method to the Image object to direct the thematic map output to a portable pixmap file ('.ppm'). Alternatively, to get the raw floating point values instead of an output image, redefine the Image object as a View object, and use classify(), this time retrieving the output data as an array of floating point values. To generate a confidence map, add a second parameter to the thematicPpm() call, naming the output stream to which to direct a portable graymap containing the confidence map. The map will be in grayscale, with light shades indicating high confidence, and dark shades low confidence.
c. Implementation: UC_6_genThematicMap()
d. Timing: 
Overall: 



0:57
UC-7. Change classifier model parameters, type and input features
a. Why: 
The goal of applied work with a classifier is to optimize classification on a particular data set. To do so, the analyst varies classifier parameters, looking for a combination of parameters that yields improved performance. Performance can be measured in a variety of ways. The most basic is the percentage of test set samples classified correctly. Alternatively, a confusion matrix (see UC-12) can break performance down by ground-truth class. Another way of assessing performance is to visually inspect thematic maps (UC-6) and/or to generate companion confidence maps. Parameter settings that may be changed include the ARTMAP model, the vigilance setting (rhobar), the capping of classes during training, and a variety of internal ARTMAP parameters (alpha, beta, eps and P – see papers on the ARTMAP model at http://cns.bu.edu/techlab for details). In addition, the analyst may also vary the number of voting instances and the set of input features used for training and testing.
b. How: 
Create a Classifier object and then use one of two methods to set parameters, depending on whether or not they are internal:
· If internal to the ARTMAP model (parameters model, rhobar, alpha, beta, eps, or p), call getModelParams() on the classifier to get a handle to its PropertyList object, and then pass in name/value pairs for the parameters to change. Once all parameters have been set, call registerParams(). In the provided implementation, this is demonstrated in UC_7_a_raisedVigilance(), which shows how to modify the ARTMAP vigilance parameter rhobar. This slows training and testing, but can dramatically improve performance, at the cost of reduced speed and increased size.
· If external to the ARTMAP model (number of voters, input features), call the setNumVoters() or setDimList() methods on the classifier object. In the provided implementation, this is demonstrated in the method UC_7_b_differentInputFeatures(), which demonstrates varying the input features to the classifier.
c. Implementation: UC_7_a_raisedVigilance(), UC_7_b_differentInputFeatures()
d. Timing: 
Overall: 



3:21
i. Raised vigilance 


3:18

1. Training


0:58
2. Testing



2:20
ii. Different input features

0:03

1. Training


0:01

2. Testing



0:02

UC-8. Iterate train/tests, tests, and cross-validated train/tests over parameter and feature spaces
a. Why: 
The approach of tuning the classifier parameters described in UC-7 can become time-consuming if performance has to be optimized over many different parameters. Using Classer's API, the analyst can automate the exploration of ranges of parameter values or an input feature space.
b. How: 
Set up arbitrarily nested sets of loops, each iterating a parameter of interest. In the innermost loop, perform a training and/or testing operation, and retrieve the performance metrics of interest for logging/display. The provided implementation shows how to iterate over the input feature space, both in regular train/test mode (a), and in cross-validating mode (b).
c. Implementation: UC_8_a_iterateTrainTest(), UC_8_b_iterateCvTrainTest()
d. Timing: 
Overall




1:15
i. Iterate train/test


0:11

ii. Iterate train/test (CV)


1:04
UC-9. Generate decision surfaces 
[image: image2.png]



Decision Surface in dimensions 1 and 2 

(same colors as thematic map)
a. Why: 
Classer can generate images to let the analyst visualize system generalization in any pair of input feature combinations. More specifically, one of the strengths of a classifier is its ability to classify input samples it has not seen during training, that is, to generalize. To see how this works for a given data set, the analyst can generate color images showing classification in the plane, where the dimensions associated with the plane are two of the input feature dimensions available for the data set.
b. How: 
Train the Classifier with ground-truth data, with the input features restricted to just two. Before training, call setPredPpmStream() to have the Classifier generate a portable pixmap of the decision surface after training.
c. Implementation: UC_9_genDecisionSurface()
d. Timing:  
Overall




0:11
UC-10. Save/load a trained classifier
a. Why:
In some cases it makes sense to train a classifier once, but then use the trained classifier to repeatedly test or classify other data sets. By saving the classifier's learned internal representations (i.e., ARTMAP category weights), the potentially slow training process need only be done once, and can then be used over and over. In addition, it can be deployed later in time and/or on different hardware than the training was done on.
b. How: 
Invoke the Classifier object's save() or load() methods. The save() method generates files on disk containing the state of the Classifier, which are then read in by a load() method call. One or more files are stored, each corresponding to a voting model instance, if voting is used (UC-14), or corresponding to the model instances dedicated to each of the N pieces of the ground-truth when cross-validation is used (see UC-4). A large number of model instance may be stored when doing cross-validation with voting.
c. Implementation: UC_10_saveLoadClassifier()
d. Timing:   
Overall




0:00
UC-11. Request outputs to files during training/testing/classification
a. Why:
In addition to generating performance metrics to help tune the classifier, Classer can generate a variety of outputs for each sample. These outputs can serve as the starting point for further processing by tools external to Classer.
b. How: 
Call any of the following methods, passing it an output file stream:
· setOutputClassStream() - Set up a file destination for storing output predictions. These single-class predictions are contrast-enhanced derivations of the distributed prediction vector (winner-take-all). If more than one class label is tied to be the winner, then the label -1 is written. This output is available during test and classify operations.
· setOutputVectorStream() - Set up a file destination for storing distributed prediction vectors, one per sample. This output is available during test and classify operations.
· setDataLabelsStream() - Set up a file destination for storing sample labels. As samples are routinely submitted in randomized order, this is the only way of knowing after the fact which labels go with which predictions. A single label is written per line, each corresponding to a test sample. This output is available during test operations. 

· clearOutputStreams() – Turn off any prior output requests.
· requestModelOutput() – Takes a model-specific output request string, and a file name pattern for the output destination. Currently only a single output type uses this mechanism: if passed the string "Yjs", the method call causes the ARTMAP classifiers to save to file the activation values of each of their category nodes during testing. When working with the details of the ARTMAP model, this tells the analyst the activation for each category node in reaction to each given input sample.
· clearModelOutputStreams() – Turn off any prior output requests.
c. Implementation: UC_11_fileOutputRequests()
d. Timing:   
Overall




0:00
UC-12. Cap classes to remove training biases
a. Why:
If the quantity of ground-truth information disproportionately represents some classes at the expense of others, classification performance can be affected: the classifier will tend to over-predict that samples belong to the over-sampled classes. A simple solution to this problem is to set a "class cap" during training: if the "class capping" parameter is set to C, then only the first C samples of each class will be used for training. When using class capping, care should be taken to permute the order of training samples, otherwise all samples will be drawn from a geographically limited area, reducing the generality of sampling.
b. How: 
Call the classifier's setClassCap(C) method before training.
c. Implementation: UC_12_cappingClasses()
d. Timing:   
Overall




0:34
UC-13. Turn on Classer logging
a. Why: 
If what Classer is doing is unclear at any point, logging can be turned on, providing a full play-by-play of internal operations, at seven levels of resolution:
· 0 – No logging besides requested outputs.

· 1 – The processing of script commands is echoed

· 2 – Simulations are logged at the data set level

· 3 – Simulations are logged at the individual transaction level

· 4 – ARTMAP internals: Outline of classifier processing

· 5 – ARTMAP internals: Classifier details

· 6 – ARTMAP internals: Verbose classifier details
b. How: 
Call Logger::setLogLevel(level) with the desired level of logging resolution.
c. Implementation: UC_13_classerLogging()
d. Timing:   
Overall




0:01
UC-14. [image: image3.png]


Generate confusion matrices
                                 Predicted

          beach  ocean    ice  river   road   park  resid  indst

A       +-------------------------------------------------------+

c  beach|   485                           2                   11|   498 ( 97.4%)

t  ocean|        20911          1190                            | 22101 ( 94.6%)

u    ice|    11           681            23      2           452|  1169 ( 58.3%)

a  river|          157          1761                           1|  1919 ( 91.8%)

l   road|                               173     14     34     47|   268 ( 64.6%)

    park|                   2           500    400      1      2|   905 ( 44.2%)

   resid|                          8    275          1022      6|  1311 ( 78.0%)

   indst|    32                          18                  782|   832 ( 94.0%)

        +-------------------------------------------------------+

            528  21068    683   2959    991    416   1057   1301  29003 ( 90.4%)
a. Why: 
Confusion matrices are an important tool for assessing the performance of trained classifiers on a class-by-class basis. Beyond the raw "percent correct" figure for predictions of a set of test samples, a confusion matrix specifies which classes are mistaken for which others, and how often. Classer can build confusion matrices during test operations, and these are available via the API in three ways: a text-based tabular version of the matrix, a graphical file-based output, or individual matrix entries can be retrieved in raw form, one table cell at a time.
b. How: 
Classer's ConfusionMatrix objects can be retrieved from the Classifier after testing, and its methods offer access to its internals via its API, and to the text-based tabular output format. Alternatively, the user can request the output of a graphical version of the confusion matrix to file via the setCmatPgmStream() method.
c. Implementation: UC_14_confusionMatrices()
d. Timing:   
Overall




0:21
UC-15. Set the random seed 

a. Why: 
Randomness is important in Classer for two reasons – 1) as described in UC-14 and UC-17, the ordering of training samples can affect performance, and 2) internal to the ARTMAP classifier, when using the Fuzzy ARTMAP model, if two category nodes are tied for matching a given input, the tie is broken randomly. Classer uses a fixed random seed value to drive the choice of random values in these cases, and the user may set this random seed, to obtain reproducible simulation results.
b. How: 
The C++ srand() method is used to set the random seed directly.
c. Implementation: UC_15_randomSeed()
d. Timing:   
Overall




0:04
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