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Abstract--The dtstrtbuted outstar, a generahzatwn of  the outstar neural network for spatial pattern learning, ts 
mtroduced In the outstar, signals from a source node cause wetghts to learn and recall arbitrary patterns across a 
target field of  nodes The dtstrtbuted outstar replaces the outstar source node with a source field o f  arbitrardy many 
nodes, whose activity pattern may be arbitrardy dtstrtbuted or compressed Learning proceeds accordmg to a principle 
of  atrophy due to disuse, whereby a path weight decreases m joint proportion to the transmitted path signal and the 
degree of  disuse of  the target node. During learning, the total signal to a target node converges toward that node's 
activity level Wetght changes at a node are apporttoned accordmg to the distributed pattern of  converging signals 
Three synapttc transmtssion functions, a product rule, a capacity rule, and a threshold rule, are examined for this 
system. The three rules are computattonally equivalent when source field acttvtty is maximally compressed, or 
wmner-take-all. When source field acttvtty is dtstrtbuted, catastrophw forgettmg may occur Only the threshold rule 
solves thts problem. Analysis of  spattal pattern learning by distributed codes thereby leads to the conjecture that the 
unit of  long-term memory m such a system is an adapttve threshold, rather than the multiplicattve path wetght 
wtdely used m neural models 

Keywords--Spatial pattern learning, Distributed code, Outstar, Adaptive threshold, Rectified bias, Atrophy due to 
disuse, Transmission function, Neural network. 

1. INTRODUCTION: OUTSTAR LEARNING 
AND DISTRIBUTED CODES 

An outstar is a neural network that can learn and recall 
arbitrary spatial patterns (Grossberg, 1968a). Outstar 
learning and recall occur when a source node transmits 
a weighted signal to a target, or border, field of nodes. 
This network is a key component of various neural 
models of cognitive processing. For example, the outstar 
has been identified as a minimal neural network capable 
of classical conditioning (Grossberg, 1968b, 1974). In 
terms of stimulus sampling theory (Estes, 1955), the 
source node plays the role of a sampling cell. When the 
sampling cell is active, long-term memory (LTM) 
traces, or adaptive weights, learn stimulus sampling 
probabilities of border field activity patterns. A se- 
quence of outstars, called an avalanche, forms a min- 
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imal network capable of learning and ritualistic per- 
formance of an arbitrary space-time pattern (Grossberg, 
1969). Within the adaptive resonance theory of self- 
organizing pattern classification, outstars learn the top- 
down expectations that are critical to code stabilization 
(Grossberg, 1976). All neural network realizations of 
adaptive resonance theory (ART models) have so far 
used outstar learning in the top-down adaptive filter 
(Carpenter & Grossberg, 1987a,b, 1990; Carpenter, 
Grossberg, & Rosen, 1991 a). The supervised ARTMAP 
system (Carpenter, Grossberg, & Reynolds, 1991 ) also 
employs outstar learning in the formation of  its pre- 
dictive maps. Outstars have thus played a central role 
in both the theoretical analysis of  cognitive phenomena 
and the neural models that realize the theories, as well 
as in applications of these systems. 

An outstar is characterized by one source node 
sending weighted inputs to a target field. We will here 
consider spatial pattern learning in a more general set- 
ting, in which an arbitrarily large source field replaces 
the single source node of the outstar. This distributed 
outstar network (Figure 1 ) reduces to the original out- 
star when the source field F2 consists of  a single node. 
Then, weights in the F2 --~ F1 adaptive filter track the 
FI activity pattern when the one F2 node is active. 

At first, distributed outstar learning would appear 
to be modeled already in the ART top-down adaptive 

159 



160 G A Carpenter 

B Q 

F, © 

© 

i~_ lYl  = 1 

® 
×l  

I, 

N 
o = T:,= S ~_x 

I 1 P I 

FIGURE 1. Distributed outstar network for spatial pattern leam- 
ing. During adaptation a top-down weight w~, from thejth node 
of the coding field F2 to the/th node of the pattern registration 
field/:1, may decrease or remain constant. An atrophy due to 
disuse learning law causes the total signal ul from F2 to the/th 
F1 node to decay toward that node's activity level x .  if as is 
initially greater than x.  Within this context, three synaptic 
transmission rules are analyzed. 

filter. However, to date, networks that explicitly reahze 
adaptive resonance assume the special case in which 
F2 is a choice, or winner-take-all, network. In this case, 
only one 1:2 node is actwe during learning, so each F2 
node acts, m turn, as an outstar source node. We wdl 
consider how to design a spatial pattern learning net- 
work that allows the actwity pattern at the coding field 
F2 to be arbitrarily distributed (Section 2). That is, 
one, several, or all of the F2 nodes may be active during 
learning. 

One possible design ~s simply to implement outstar 
learning in each active path. However, such a system 
is subject to catastrophic forgetting that can quickly 
render the network useless, unless learning rates are 
very slow (Section 3 ). In particular, if all F2 nodes were 
active during learning, all F2 -'~ F~ weight vectors would 
converge toward a common pattern. 

A learning prinople of atrophy due to disuse leads 
toward a solution of the catastrophic forgetting problem 
(Section 4). By this principle, a weight in an active 
path is assumed to atrophy, or decay, in joint proportion 
to the size of the transmitted synaptic signal and a suit- 
ably defined degree ofdtsuse of the target cell. During 
learning, the total transmitted signal from F2 converges 
toward the activity level of the target Fl node. Atrophy 
due to disuse thereby dynamically substitutes the total 
F~ --~ F~ signal for the individual outstar weight. This 
seems a plausible step toward spatial pattern learning 
by a coding source field instead of by a single source 
node. Unfortunately, th~s development is, by itself, in- 
sufficient. In particular, the network still suffers cata- 
strophic forgetting if signal transmxssion obeys a product 
rule This rule, now used in nearly all neural models, 
assumes that the transmitted synaptic signal from the 
j t h / ' 2  node to the ith F~ node is proportional to the 

product of the path signal 3) and the path weight w~,. 
An alternative transmission process, one that has been 
used in a neural network realization of fuzzy ART 
(Carpenter, Grossberg, & Rosen, 199 lb; Carpenter & 
Grossberg, 1993 ), is described by a capacity rule (Sec- 
tion 5 ). However, catastrophic forgetting is even more 
serious a problem for this rule than for the product 
rule. 

Fortunately, another plausible synapnc transmission 
rule solves the problem (Section 6). This threshold rule 
postulates a transmitted signal equal to the amount by 
which the F2 --~ F~ signal )'j exceeds an adaptive thresh- 
old rj,. Where weights decrease during atrophy due to 
disuse learning thresholds increase' formally, rj, IS 
identified with ( 1 - ~),). When synaptlc transmission 
is implemented by a threshold rule, weight/threshold 
changes are bounded and automatically apportioned 
according to the distribution of F2 activity, with fast 
learning as well as slow learning. When F2 makes a 
choice, the three synaptic transmission rules are com- 
putationally idenncal, and atrophy due to d~suse learn- 
ing ~s essentially the same as outstar learning. Thus, 
functional differences between the three types of trans- 
mission would be experimentally and computationally 
measurable only in situanons where the F2 code is dis- 
tributed. 

Computational analysis of distributed codes hereby 
leads unexpectedly to a hypothesis about the mecha- 
nism ofsynapnc transmission m spatial pattern learning 
systems. That is, the unit of long-term memory m these 
systems IS conjectured to be an adaptive threshold, 
rather than a multiplicative path weight. Historically, 
early definitions of the perceptron specified a general 
class of synaptic transmission rules (Rosenblatt, 1958, 
1962 ). However, the electrical switching circuit model, 
which reahzes multiplicative weights as adjustable gains, 
qmckly became the dominant metaphor (Widrow & 
Hoff, 1960). Over the ensuing decades, effioent inte- 
grated hardware realization of the hnear adaptwe filter 
has remained a challenge. In opto-electronic neural 
networks, the adaptive threshold synapt~c transmission 
rule, realized as a rectified bias, may be easier to im- 
plement than on-line multiplication (T. Caudell, per- 
sonal communication). Thus, even in networks where 
the product rule and the threshold rule are computa- 
tionally equivalent, their diverging physical interpre- 
tations may prove significant, in both the neural and 
the hardware domains. 

The adaptwe threshold hypothes~s leads to the dis- 
tributed outstar learnmg law, summarized m Section 
7. Section 8 concludes with an example that illustrates 
distributed outstar dynamics by means of a network 
that has two nodes in the source field. 

2. SPATIAL PATTERN LEARNING 

The distributed outstar network (Figure 1 ) features an 
adaptive filter from a coding field F2 to a pattern reg- 
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lstration f i e ld  F~. The role of this filter is to carry out 
spatial pattern learning, whereby the adaptive path 
weights track the activity pattern of the target field, F~. 
When F2 consists of just one node (N = 1 ) the network 
reduces to the outstar. During outstar learning, weights 
in the paths emanating from an Fz node track F~ ac- 
tivity. That is, when the j th  F2 node is active, the weight 
vector wj =- (wjL . . . .  wj, . . . .  win) converges toward the 
FI activity vector x -= (Xl . . . .  x, . . . .  xM) of the target, 
or border, nodes at the outer fringe of the filter. 

Although many variants of outstar learning have 
been analyzed (Grossberg, 1968a, 1972), the essential 
outstar dynamics are described by the equation: 

Basic outstar 

d 
~ wj, = yj( x, - wj,) ( l ) 

This is the learning law used, for example, in the top- 
down adaptive filters of ART 1 (Carpenter & Grossberg, 
1987a), ART 2 (Carpenter & Grossberg, 1987b), and 
fuzzy ART (Carpenter et al., 1991a). By eqn (1), wj, 

--~ x, when yj > 0. When yj = O, wj, remains constant. 
The term yjx,  in eqn (1) describes a Hebbian corre- 
lation whereby the weight tends to increase when both 
the presynaptic F2 node ) and the postsynaptic FI node 
t are active. The term - yj wj, describes an anti-Hebbian 
process whereby the weight wj, tends to decrease when 
the presynaptic node j is active but the postsynaptic 
node t is inactive (pre- without post-). 

Note that the distributed outstar network in Figure 
1 does not constitute a stand-alone pattern recognition 
system. Typically, this module would be embedded 
within a larger neural network architecture for super- 
vised or unsupervised pattern learning and recognition. 
For example, in an ART system the top-down F2 --~ 
F1 filter plays a crucial role in ART code stabilization. 
However, additional network elements are needed to 
determine which F2 code will be selected by an input 
I in the first place, as well as to implement search and 
other mechanisms of internal dynamic control (Car- 
penter & Grossberg, 1987a). We will focus only on 
design issues pertaining to the top-down adaptive filter. 

3. CATASTROPHIC FORGETTING 

The distributed outstar network for spatial pattern 
learning (Figure l ) needs to be designed in such a way 
as to solve a potential catastrophic forgetting problem. 
Suppose, for example, that all F2 nodes are active (yj 
> 0) at some time when the ith FI node is inactive (x, 
= 0) due, say, to the fact that there is no input to that 
node at that time (I, = 0). With fast learning, an outstar 
(1) would send all weights wj, (j = 1 . . . . .  N) to 0. 
Within an ART system, general stability requirements 
would imply that these weights then remain 0 forever. 
Moreover, no future input L to the ith F~ node could 
even activate that node, once F2 became active. If sim- 

ilar weight decays occurred at each F~ node, all weights 
would decay to 0. The network would thus quickly be- 
come useless, quenching all F~ activity as soon as any 
F2 code was selected. 

The special class of F2 networks called choice, or 
winner-take-all, systems sidesteps this catastrophic for- 
getting problem. A code representation field F2 is a 
choice network when internal competitive dynamics 
concentrate all activity at one node (Grossberg, 1973 ). 
An F2 code that chooses the Jth node is described by: 

F2 choice 

{~ if j = J  

yj = ff  J # J. (2) 

In this case, each F2 node may then be identified with 
a class, or category, of inputs I. Outstar learning (1) 
permits a weight wj, to change only if the j th  F2 node 
is active. When Fz chooses the node J, all other nodes 
(j 4: J) are inactive. Thus, only the weight w j, tracks 
activity at t he / th  F~ node: 

w r "-~ x. (3) 

Even if w jr decays to 0, all other weights to the ith FI 
node remain unchanged when the J th  category is se- 
lected. These other weights are thus able to learn their 
own Ft patterns when they later become active. 

Choice represents an extreme form of STM com- 
petition at F2. By confining all weight changes to a 
single category, F2 choice protects the learned codes of 
all the other categories during outstar learning. How- 
ever, outstar learning poses a problem when F2 category 
representations can be distributed. If a code y were 
highly distributed, with all y~ > 0, then the outstar 
learning law ( 1 ) would imply that all weight vectors wj 
would converge toward the same Fl activity vector x. 
The size of yj would affect the rate of convergence, but 
not the asymptotic state of the weights. The severity of 
this problem can be reduced if learning intervals are 
required to be extremely short. Then, because the rate 
at which wj approaches x is proportional to yj, little 
change will occur in weights wj, with small yj. If, how- 
ever, many of the yj values are nearly uniform or if 
learning is not always slow, catastrophic forgetting will 
occur as all weight vectors approach one common pat- 
tern, independently of all their prior learned differences. 

A new adaptation rule, called the distributed outstar 
learning law, solves this problem. Even with fast learn- 
ing, where weights approach asymptote on each input 
presentation, the distributed outstar apportions weight 
changes across active paths without catastrophic for- 
getting. In the distributed outstar, the rate constant for 
an individual weight wj, becomes an increasing function 
both of yj, as in eqn (1), and of wj, itself. When wit 
becomes too small, further change is disallowed. 
Weights, initially large, can only decrease monotonically 
during learning. Small weights can decrease further only 
when Y/is close to 1, which occurs when most of the 
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F2 activity is concentrated at node j .  When F2 activity 
is highly distributed only large weights, close to their 
initial values, are able to change. Moreover, for highly 
distributed codes, the maximum possible weight change 
in any single path is small. 

The distributed outstar is derived from the notion 
that the sum of all F2 --~ Fl transmitted signals, rather 
than individual path weights, track target node activity 
during learning. Weight changes are governed by a 
principle of atrophy due to disuse, as described in the 
next section. Within this context, three signal trans- 
mission rules are examined (Section 5). An adaptive 
threshold rule for synaptic transmission is more com- 
putationally successful than either of the other two 
rules, as shown in Section 6. 

4. LEARNING BY ATROPHY D U E  
TO DISUSE 

The principle of atrophy due to disuse postulates that 
the strength of an active path will decay when the path 
is disused. Active dis-use is distinct from passive non- 
use, where the strength of an inactive path remains 
constant, as in eqn ( 1 ). To define disuse, a specific class 
of target fields F~ will now be considered. So far, no 
assumptions about the FI activity vector x have been 
made. The main hypothesis on FI will be that, when 
F2 is active, the total top-down input from F2 to Ft 
imposes an upper bound, or limit, on the maximum 
activity at an F~ node. In addition to a bottom-up input 
It, a top-down p r i m i n g  input from F2 is assumed to be 
necessary for an Fl node to remain active, once F2 
becomes active. This hypothesis is reahzed by: 

Top-down prime 

0 < x, -< a,, (4) 

where a, is the sum of all transmitted signals Sj, from 
F2 to the lth FI node: 

N 

~, = Z sj,. (5) 
J - I  

In particular, when Fz is active but a, = 0, no activity 
can be registered at the ith F1 node, for any bottom- 
up input / ,  E [0, 1]. 

The top-down prime eqn (4) is closely related to the 
2 /3  Rule of ART (Carpenter & Grossberg, 1987a), 
which implies that the ith F~ node will be inactive (x, 
= 0) if either the bottom-up input I, is small or the 
total top-down input a, is small when F2 is active. The 
2 /3  Rule was derived both from an analysis of system 
requirements for input registration, priming, and stable, 
self-organizing pattern learning and classification and 
from an analysis of the corresponding cognitive phe- 
nomena. In binary ART 1 systems with choice at Fz, 
the 2 /3  Rule is realized by allowing the ith F~ node to 

be active, when the Jth F2 node is active, only if/ ,  = 1 
and c9, exceeds a criterion level, where: 

a, = yjws,. (6) 

Fuzzy ART (Carpenter et al., 199 la) ,  an analog exten- 
sion of ART 1, realizes the 2 /3  Rule by setting: 

x, = I, A wj, =- min(L, wj,) (7) 

when the J th  F2 node ~s chosen. The symbol A in eqn 
(7) denotes the fuzzy AND, or intersection, operator. 
By eqns (2) and (6),  when F2 makes a choice, 

~, = wj,. (8) 

Equations (7) and (8) suggest setting: 

x, =1, A a, (9) 

to define one class of FI systems that realize a, as a 
top-down prime, or upper bound, on target node ac- 
tivity x,.  

When F2 primes Fl ,  by eqn (4),  the degree o f  d isuse  

D, of the ith Fl node is defined to be: 

D, = (a, - x,) >- 0. (10) 

When eqn (9) holds. 

{ ~ , - I ,  if a,>_l, 
D, = (a, - l, A a , ) =  If a, < 

= [ a , - l , ]  +, (11) 

where 

[0] + -= 0 v 0 =- max(0, 0) (12) 

denotes the rectification operator. In this case, the de- 
gree of disuse at the tth F1 node is the amount  by which 
the top-down input a, exceeds the bottom-up input I, 

at that node. A learning principle of atrophy due to 
disuse postulates that a path weight decays in propor- 
tion to the degree of disuse of its target node. We here 
consider a class of learning equations that realize this 
principle in the form: 

d 
%, = -Ss, D ,. (13) 

Weights can then decay or stay constant, but never grow, 
when Ss, >_ 0 and D, >_ 0. With the degree of disuse D, 
defined by eqn (10),  the learning law (13) becomes: 

Atrophy due to disuse 

d 
dt %' = - S , ( a ,  - x, ). (14) 

In Sectmn 5 three synaptic transmission rules will each 
define Sj, as a function of yj and wj,. In Section 6 we 
will analyze atrophy due to disuse learning for these 
three types of transmission. 

Initially, 

%,(0) = 1 (15) 
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for i = 1 . . . . .  M and j = 1 . . . . .  N. The learning law 
(14) implies that a path weight wj, can start to decay 
when the total top-down signal a, to the ith target Ft 
node exceeds the node's activity x,. The rate of decay 
is proportional to a path's contribution, Sj,, to the top- 
down signal. Note that if the Ft pattern x and the F2 
pattern y are constant during a learning interval, and 
if or, > x, at the start of that interval, then one or more 
weights wj, must continue to decay until a, converges 
to x,. As some Sj, fall toward 0, the corresponding 
weights wj, will cease changing. However, because a, is 
the sum of signals Sj,, at least one wj, will continue to 
fall until a, ~ x,. In fact, 

dt wj, = -cr,(cr, - x , ) .  (16) 

When Fz makes a choice, by eqn (2), we will see 
that: 

a, = S~t = wj,, (17) 

while Sj, = 0 (j  4 = J) ,  for all three transmission rules. 
In this case the atrophy due to disuse eqn (14) reduces 
to: 

dwj, = - S j , ( w j , -  x , )  
dt 

= {oWJ,(wj,--x,)If J=J  
if j +  J. 

(18) 

Comparing eqn ( 18 ) with eqn (16) illustrates the sense 
in which the total weighted signal a, in a distributed 
code replaces the weight w j, in a system where F2 makes 
a choice. Note that w j, approaches x, at a rate propor- 
tional to w j,. Equation (18) is thereby slightly different 
from the outstar eqn ( 1 ), which reduces to: 

d w . n _ f - ( w j , - x , )  if J=J 
(19) 

dt 1 0  if j q: J 

when F2 makes a choice. Because w j, = a, >-_ x , ,  x,  = 
0 if Ws, = 0. Thus, eqns ( 18 ) and (19) both imply that 
ws --~ x while other wj remain constant, as long as the 
Jth F2 node remains active. With fast learning, the two 
laws are equivalent. Therefore, neither computational 
nor experimental analysis of such a system, with choice 
at F2 and fast learning, can differentiate outstar learning 
from atrophy due to disuse. The three synaptic trans- 
mission rules are similarly indistinguishable. However, 
when F2 activity y is distributed, qualitative properties 
of learned patterns depend critically on both the learn- 
ing law and the signal transmission rule, as follows. 

5. SYNAPTIC TRANSMISSION FUNCTIONS 

We will analyze computational properties of three rules 
for synaptic transmission. The F2 path signal vector y 
= (yl . . . .  yj . . . .  y~) is assumed to be normalized: 

N 

yj = 1, (20) 
J=| 

but is otherwise arbitrary. Given a signal yj from the 
j th  F2 node to the ith Ft node, via a path with an 
adaptive weight wj,, the net signal Sj, received by the 
ith Ft node is assumed to be a function of yj and wj,: 

Sj ,= f ( y j ,  wj,). (21) 

Each of the three rules that will now be considered 
corresponds to a physical theory of synaptic signal 
transmission in neural pathways. The present analysis 
uses computational considerations alone to select one 
of these three rules over the others in a neural system 
for spatial pattern learning. 

The first synaptic transmission rule postulates that 
the F2 --~ F~ signal is jointly proportional to the path 
signal yj and the weight wj,: 

Product rule 

S~, = yjwj,. (22) 

Synaptic transmission by the product rule is an implied 
hypothesis of a large majority of neural network models. 
The rule implies that a,, the sum of all transmitted 
signals to the t th Fl node, equals the dot product be- 
tween the Fz "-* F1 path vector (y~ . . . .  yj . . . .  YN) and 
the converging weight vector (wl ,  . . . .  wj, . . . . .  WN,). 
That is, the total signal from Fz to the ith F~ node is 
a linear combination of the path signals yj: 

N 

or, = ~] y?*),, (23) 
)=1 

with the coefficients wj, fixed (McCulloch & Pitts, 1943 ) 
or determined by some learning law. The total trans- 
mitted signal ¢, thereby computes the correlation be- 
tween the F2 --~ Ft path vector and the converging 
weight vector. Rosenblatt (1962) considered synaptic 
transmission rules in the general form eqn (21) when 
defining the perceptron. However, the product rule (22) 
and its linear matched filter (23) have since come into 
almost universal use. 

A different synaptic transmission rule assumes that 
the path signal yj is itself transmitted directly to the ith 
F~ node until an upper bound on the path's capacity 
is reached. With this upper bound equal to the path 
weight wj,, the net signal obeys the: 

Capacity rule 

Sj, = yj A wj, ~ min(yj, wj,). (24) 

A capacity rule is suggested by the computational re- 
quirements of neural network realizations of fuzzy set 
theory, as in fuzzy ART (Carpenter et al., 1991b; Car- 
penter & Grossberg, 1993). Figure 2 illustrates how 
the product rule compares to the capacity rule. For 
each, the signal Sj, grows linearly when yj is small. 
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However, a product rule signal increases with )) for all 
)) C [0, 1], and a capacity rule signal ceases to grow 
when Ys reaches the upper bound n)l. 

The geometry of the graph in Figure 2 suggests con- 
slderation of a third signal function, to complete a 
transmission rule parallelogram. The third signal de- 
scribes a: 

TABLE 1 
Synapt~c Transmission Functions 

(a) Product rule: S/, = y j%, (22) 
(b) Capao t y  rule S/, = y/ /~ wj, (24) 
(c) Threshold rule. S~, = [yj - (1 - wj,)] + (25) 

Threshold rule 

Sj, = [ 3 ) - ( 1  - ;,),)]+. (25) 

It ]s awkward to try to interpret eqn (25) in terms of 
the weight %,. However, a natural interpretation can 
be made if the unit of  long-term memory  is taken to 
be a signal threshold rs, rather than the path weight %,. 
Namely, by setting: 

r,, ~- 1 - w/,, ( 26 ) 

the threshold rule (25) becomes: 

S, = [)) - rs,] + (27) 

In eqn (27), the transmitted s~gnal from the j th / ' 2  node 
to the t th F] node is the amount by which the path sig- 
nal 3) exceeds an adaptive synaptic threshold rj,. 

Note that the three rules (22). (24), and (25) are 
identical if F2 actiwty is binary, because for each rule: 

S:, {~ )' ' f  3)= 1 
= (28) 

1) TM 0. 

In particular, the three synaptic transmission rules are 
computationally indistinguishable if F2 makes a choice, 
by eqn (2).  However, when a normalized F2 code ]s 
dmtnbuted, an adaptive system that uses either the 
product rule or the capacity rule can suffer catastrophic 
forgetting. The threshold rule solves this problem. 

6. PATH W E I G H T S  VERSUS SIGNAL 
T H R E S H O L D S  AS T H E  U N I T  

OF L O N G - T E R M  M E M O R Y  

We will analyze atrophy due to disuse learning laws 
when Ss, is described by one of the three synaptic trans- 

Sl~ = f ( Y l ' W j ' )  

c a p a c i t y  

wj~ (1 - wj~ ) 1 

Tjr 
Yj 

FIGURE 2. A synaptic transmission parallelogram. Ss is the 
transmitted signal from the jth F2 node to the/th/=1 node. (a )  
By the product rule, S~ = yjw~. (b)  By the capacity rule, Sp = yj 
/~ wj~. (c )  By the threshold rule, S~ = [)1 - (1 - wp)] + = [yj - 
T~] +. The three rules agree when y is a binary code. 

mission rules, listed in Table 1. Note that eqn (14) 
could also be used for spatial pattern learning in a sys- 
tem where x, may be greater than o,. Then, the top- 
down signal vector o would still track the Fl spatial 
pattern vector x. However, the top-down prime hy- 
pothesis (4) implies that weights can only decrease, 
and hence are guaranteed to converge to some limit in 
the interval [0, 1] for arbitrary learning and input re- 
gimes. 

Consider an atrophy due to disuse system (14) in 
~ts initial state, when no learning has yet taken place. 
Then, all ~,), = 1. Thus, for each of the three synaptlc 
transmission rules (Table 1 ): 

S,(0) - y/(0) (29) 

Therefore, because the F2 actwity vector y is normal- 
ized, by eqn (20), 

a,(0) = ~ S,,(0)= 1. (30) 
/ I 

Suppose that x, = a, A I,, as in eqn (9).  Then 

_-¢,(0)- I, E [0, l], (31) 

by eqn (30). Moreover, eqns (14) and (30) imply that 
x, will remain equal to 1l for as long as I remains con- 
stant. During that time, as some or all weights v~), de- 
crease, the top-down input a, will decay toward the 
bottom-up input I , ,  no matter which transmission rule 
is selected. For each rule, 

d 
~twJ, = Ss , (a , -1 , )  (32) 

When ~ makes a choice, as in eqn (2),  a, = wj,, 
which converges toward I,, by eqn (32). All other 
weights ws, ( j  4= J) remain constant. Competition at F2 
hereby limits the maximum total weight change at each 
F1 node. In fact, when F2 makes a choice, 

A ~), =- E [w,,(0)-  w,,(~)] 
J = l  

= [Ws,(0) - wj,(~)] = (1 - I,) (33) 

for all three signal transmlss]on rules. 
An F2 code is maximally compressed when the sys- 

tem makes a choice. Consider now the opposite ex- 
treme, when an F2 code is maximally distributed. That 
is, let: 

1 
~) N (34) 
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for j  = 1 . . . . .  N. All weights wl, . . . . .  WN, obey eqn 
(32) and all are initially equal, by eqn (15). Therefore 
the weights wj, ( j  = 1 . . . . .  N) to a given F~ node will 
remain equal to one another during learning, for any 
transmission function Sj,. However, these individual 
weight changes under the three transmission rules show 
important qualitative differences, despite the fact that 
the total F2 --~ FI signal vector ~ correctly learns the 
F~ activity vector x = I for all three. In particular, the 
nature of the pattern encoded by a given weight vector 
and the size of the total weight change at each F~ node 
clearly distinguish the three rules, as follows. 

With the product rule (22), 

Therefore: 

and 

1 
s~, = ~ w,,. (35) 

= 

~ 2 V  
J=l  J=[ 

(36) 

) ~ w j ,  Ar = w k , - I ,  . (37) 

Because all weights wj, to the tth F~ node ( j  = 1 . . . . .  
N) remain equal during learning, 

w~, ~ L. (38) 

Thus, the maximum total weight change at an F~ node 
i is 

A wj, = N ( 1 - 1 , ) ,  (39) 

which could be anywhere from 0 (when I, = 1 ) to N 
(when I, = 0 ) .  

With the capacity rule (24), 

N 

1 
1 [ if  ~ <  wj ,<  1 

w,,= 
1 

wj, if O < wj, <_ ~ .  

(40) 

Therefore: 

1 
1 if ~ _< wj, _< 1 for all j 

a, = ( 4 1 )  
l 

Wj, If 0 --< Wj, --< ~ for all j. 
J=l  

Equation (41 ) accounts for all cases because Wl, = . . .  
= WN, during learning. Weights adapt according to: 

1 
d = I -  (1 - I,) if ~ <  wj,< 1 

dtWJ' -wj ,  w k , - L  if 0 < wj, < ~ .  
(42) 

By eqn (42), unless/, = 1, all weights wj, shrink until 
they enter the interval [0, 1/N]. Thus: 

I~ if 0_<I ,<  1 
w~, ~ (43) 

if / , = 1  

for each j = 1 . . . . .  N. The maximum total weight 
change at the ith F~ node is: 

( ~ ) { ( o N - I , )  if 0 < I , < 1  
A wj, = (44) 

I If I, = 1 

which lies between (N - 1 ) and N, unless I, = 1. 
With the threshold rule (25), 

By eqns (14) and (45), weight N, would cease to change 
if it fell to ( 1 - 1 / N ) .  Thus, because all wj,(0) = l, 

N 

e,  = 1 - ~ (1 - wj,). ( 4 6 )  
j = |  

During learning, 

dt ~ 

×[1-~(1--Wk,)--I,],k=, ( 4 7 )  

SOl 

N 

wj,-~ N - ( l  - I ,) .  (48) 
J - I  

Therefore, because weights to the ith node remain equal 
as they decay: 

. 9 ,  

In other words, the threshold rj, --- 1 - wj, rises from 0 
until: 

Thus, rj, E [0, l /N]  after learning. The total weight 
change at the ith node is: 

A wj, = ( 1 - I , ) .  (51) 

Like the weights, the maximum total threshold change 
at the ith node equals ( 1 - / ,  ). 

Compare now the different asymptotic weights for 
the three synaptic transmission rules learned under the 
maximally distributed F2 code (34). Although for all 
three rules the total top-down signal a, converges to 
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product :, 

~ j /  c a p a c , t y  

FIGURE 3. Asymptotic weight values for a fully distributed code, 
where yj = 1 /N.  As a function of I .  the dynamic range of w v ( ~  ) 
depends critically upon the choice of synaptic transmission 
rule: (a)  product rule, (b)  capacity rule, or (c)  threshold rule. 
During learning, weights decrease, from an initial value of wp(0) 
- 1, except when I~ = 1. 

the bottom-up signal /, at each F~ node l ,  the total 
weight change varies dramatically (Figure 3). Recall 
that when & makes a choice the maximum total weight 
change at a given node equals ( 1 - / ,  ) E [0, 1] for all 
three rules. With distributed F2 activity and a product 
rule, all weights ,~), converge t o / ,  and the maximum 
total weight change is N(1 - /~) E [0, N]. The full 
range of all weight values is thus spanned upon pre- 
sentation of the very first input. In particular, all weights 
%, (j  -- 1, . ,  N) to the tth Fj node decay to 0 i f / ,  
= 0. Because weight values can only decrease during 
learning, these weights would remain at 0 for all time. 
Moreover, the top-down prime hypothesis (4) implies 
that F~ activity x, would always be zero for any future 
input I and any F2 code y. Thus, the fact that a single 
component was zero on just one input interval would 
render that component useless for all future input pre- 
sentations, unable to be registered in LTM or even in 
STM. Similarly each I, value of the first input would 
set an upper bound on all future x, values, because 

x,  <- ~r, = ~ .~)w, <_ I, Z 3'1 = I, (52) 
/ I J--I 

for any F2 code y. I fa  sequence of inputs I I I ) ,  I (2) . . . .  

were to activate the distributed code (34),  each weight 
w~, would converge toward the minimum of I~ l> 
p c 1  Within a few input presentations, all weights 

l • . . . .  
v,), would, in all likelihood, decay toward zero. Similar 
problems occur for other distributed codes y. In this 
sense, the product rule leads to catastrophic forgetting. 

The situation with the capacity rule is even worse 
(Figure 3). When the F2 code is fully distributed, all 
weights wj, decay to I , / N @  [0, l / N ] ,  unless I ,  = 1; 
and the maximum total weight change at the tth node 
is N( 1 - .I, ). Thus, unless I is a binary vector, the full 
dynamic range of weight values is nearly exhausted 
upon the first input presentation. 

It is the adaptive threshold rule alone that limits the 

total weight change to ( 1 - / ,  ) E [0, 1] for maximally 
distributed as well as maximally compressed codes y. 
In fact, if y is a n y  F2  code that becomes active when 
all wj, are initially equal to 1, then: 

% ,  ~ 1 - -  3 ) (  1 - 1 , ) ,  (53) 

as in eqn (49). Equivalently: 

r,,-+ y,(1 - I,)• (54) 

by eqn (26). Thus, the total weight/threshold change 
at each F~ node l is bounded by ( 1 - I, ) for any code, 
provided only that y is normalized. An/ '2 code y would 
typically be highly distributed, with all yj close to 1/ 
N, when a system has no strong evidence to choose 
one categoryj over another. In this case, the change of 
each threshold rj, is automatically limited to the narrow 
interval [0, 3)], reserving most of the dynamic range 
for subsequent encoding. Only when evidence strongly 
supports selection of the F2 category node J over all 
others, with 3'a therefore close to 1, would wmghts be 
allowed to vary across most of their dynamic range. In 
particular, it is only when yj is close to 1 that a weight 
wa, is able to drop, irreversibly, toward 0, if I, is small. 
Even with fast learning, other weights %, to the lth 
node then remam large, even If3) > 0. This is because, 
by eqns (14) and ( 25 ), weight changes cease altogether 
when: 

v,-< 1 -  % , - = r  a, ( 5 5 )  

The adaptwe threshold rj, thereby replaces strong/ '2 
competition as the guardian• or stabilizer, of previously 
learned codes. 

7. DISTRIBUTED OUTSTAR LEARNING 

The analysis of distributed spatial pattern learning leads 
to the selection of a synaptic transmission rule with an 
adaptive threshold. In terms of the threshold Tj, in the 
path from the j th  F2 node to the lth F~ node, a stable 
learning law for distributed codes is defined as the: 

D i s t r i b u t e d  o u t s ta r  

d r  j, _ S,,( ~r, - A, ). (56) 
dt  

where S~, is the thresholded path signal [Ya - rJ,] + 

transmitted from the j t h / ' 2  node to the ith FI node 
and a, is the sum: 

N N 

~,-= ~ s , , -  ~ [ ~ -  T,,] +. (57) 
J - I  J--I 

Imtially, 

r,,(0) = 0. (58) 

In a system such as ART 1 or fuzzy ART, where F~ 
dynamics are defined so that the total top-down signal 
~, is always greater than or equal to x, ,  the distributed 



Distributed Outstar 167 

( a }  
Yl + Y 2 =  1 ( b )  0 _< I i < Y2 -< Yl  <-- 1 

l"2 i = Yl - li 

/ ~ : . + . . . l Y 2  -~'i 

0 li Yl 1_1i 1 1..li 

( c )  
0 < y2<_ li<_ yl<_ 1 

1"2 ~ I  1 - I ~  
"% 

i = li 

1-  li- ~ " ' ' ' ' ' " . . . .  

Y2 ~ ~i~-.-.---:-~"e'(Yl "Y2 
, ' ~  t i , "-. 

( d  

T 2 i ~ 
1 

I. 
I 

1-1. 
I 

0 _< Y2 < Yl < l i -< 1 

0 1-1i Yl l i  T l i  

= I i 
.:::.: ." :  

i 

1-1. 
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"%. 
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""... 
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/:. (yl,y2) 

1 I 
Yl li 1 

FIGURE 4. ( a )  A d is t r ibu ted  ou ts ta r  w h o s e  cod ing  f ie ld F= has just two nodes (N = 2) .  For each code  y, Yl + Y= = 1; and  xl = Ii A 
~l. When thresholds start out smal l  enough ,  rl~ a n d / o r  r~  increase toward { (rl~, ~ ) :a~  = I~ }.  Threshold changes are greatest for 
small Ii ( b ) .  When I~ > Yt, the j th  node  canno t  dominate leaming (c).  When I~ is large, only small thresholds can change at all ( d ) .  

outstar allows thresholds zj, to grow but never shrink. 
The principle of atrophy due to disuse implies that a 
threshold rj, is unable to change at all unless (i) the 
path signal yj exceeds the previously learned value of 
rj,; and (ii) the total top-down signal ~, to the ith node 
exceeds that node's activity x,. In particular, if rj, grows 
large when the node j represents part of a compressed 
F2 code, then rj, cannot be changed at all when node j 
is later part of a more distributed code, because thresh- 
old changes are disabled if yj < z j,. 

8. DISTRIBUTED OUTSTAR DYNAMICS 

The dynamics of distributed outstar learning will now 
be illustrated by means of a low-dimensional example. 
Consider a coding network with just two F2 nodes (Fig- 
ure 4a). Two top-down paths, with thresholds r~, and 
~'2,, converge upon each Fi node. Assume that x, = / ,  
A ~r,, as in eqn (9), and fix an F2 code y = (yl,  Y2), 
with: 

O<_y2<yl< 1. (59) 

By the F2 normalization hypothesis (20), Yt + Y2 = 1. 
By eqns (27) and (56), for j  = 1, 2: 

d 
rj, = [yj - rj, l+[a, - 1,1+, (60) 

where, by eqn (5), 

a, = [Yl - r,,] + + [Y2 -- r2,] +- (61) 

Figure 4b-d shows the 2-D phase plane dynamics of 
the threshold vector (zl,, ~2, ) for a fixed inpu t / , .  In 
each plot, trajectories that begin in the set of points 
where a, > /, approach the set where a, = /,.  As t 
increases, the point (zt ,( t) ,  r2,(t)) moves along a 
straight line from small (rl, (0), r2, (0)) toward (Yl, 
Y2), slowing down asymptotically as: 

a, = [Yl - zl,(t)] + + [Y2 - rz,(t)] + -'~ I,. (62) 

Only if~, = 0 does (z~,, r2, ) approach (y~, Y2). Larger 
thresholds rj,, which make tr, < / , ,  are unchanged dur- 
ing learning. Small /, allow the greatest threshold 
changes (Figure 4b). I f / ,  = 0, 
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rj, --~ k) (63) 

as a, decreases to 0. Both thresholds grow if  both are 
initially small.  However, i f  one  threshold is so large as 
to prevent F2 --~ F~ signal transmiss ion in the corre- 
sponding path, the other F2 node  takes over the code.  
For example,  i f  r2, ( 0 )  >- Y2 there will be no  signal from 
the F2 node  j = 2 to the t th Fl node,  and hence no  
threshold change in that path. If, then, rl, ( 0 )  < yj - 
I~, r~, will increase unttl: 

a, = yj - rl, --~ x, = I,. (64) 

Larger I, values permit  threshold changes only for 
smaller initml threshold values. In Figure 4c, rz, can 
change only ifr~, changes as well, when both are initially 
small. In contrast, because ),~ is greater than I , ,  r~, may 
increase, by itself, toward (y~ - / ~  ). Finally, for / ,  close 
to 1 (Figure 4d)  adaptive changes can occur  only if  
both Zl, and z2, are initially small,  as they are before 
any learning has taken place. 
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