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While most forest maps identify only the dominant which establish initial benchmark standards. Elsevier
Science Inc., 1999vegetation class in delineated stands, individual stands

are often better characterized by a mix of vegetation
types. Many land management applications, including
wildlife habitat studies, can benefit from knowledge of
mixes. This article examines various algorithms that use INTRODUCTION: ESTIMATING

VEGETATION MIXTURESdata from the Landsat Thematic Mapper (TM) satellite to
estimate mixtures of vegetation types within forest stands. Fundamental to remote sensing methodology is the fact
Included in the study are maximum likelihood classifica- that sensor readings are integrated over a given area, or
tion and linear mixture models as well as a new method- pixel. However, limits on the implied hypothesis of land-
ology based on the ARTMAP neural network. Two para- scape uniformity within a pixel have long been observed.
digms are considered: classification methods, which One way to define the issue uses the dichotomy pro-
describe stand-level vegetation mixtures as mosaics of posed by Strahler et al. (1986) to characterize the rela-
pixels, each identified with its primary vegetation class; tionship between the size of landscape units and the
and mixture methods, which treat samples as blends of pixel. In this formulation, a high(H)-resolution condition
vegetation, even at the pixel level. Comparative analysis features landscape units that are significantly larger than
of these mixture estimation methods, tested on data from pixels, so that pixels may be accurately considered repre-
the Plumas National Forest, yields the following conclu- sentative samples from larger populations. The alterna-
sions: 1) Accurate estimates of proportions of hardwood tive low(L)-resolution case features units that are smaller
and conifer cover within stands can be obtained, particu- than pixels, so that each pixel typically represents a mix-
larly when brush is not present in the understory; 2) AR- ture of landscape components.
TMAP outperforms statistical methods and linear mixture Corresponding to the high-/low-resolution dichot-
models in both the classification and the mixture para- omy of the landscape is a mapping method dichotomy:
digms; 3) topographic correction fails to improve map- classification methods assign a single label to each pixel,
ping accuracy; and 4) the new ARTMAP mixture system and mixture methods assign fractional labels to each
produces the most accurate overall results. The Plumas pixel. This article compares these two classes of methods
data set has been made available to other researchers for in a single setting. To accomplish this goal, a new data-
further development of new mapping methods and com- base, designed for this purpose, was collected in the Plu-
parison with the quantitative studies presented here, mas National Forest. Quantitative studies investigate

site–level vegetation mixture estimation capabilities of
both classification and mixture methods. Among the mix-
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been made publicly available for ongoing research and problems. ARTMAP systems self-organize arbitrary map-
pings from input vectors, representing features such asdevelopment (plumas@crsa.bu.edu).
spectral values and terrain variables, to output vectors,
representing predictions such as vegetation classes or en-Classification Methods: Maximum Likelihood
vironmental variables. Internal ARTMAP control mecha-and ARTMAP
nisms create stable recognition categories of optimal sizeImage classification has been used for decades to pro-
by maximizing code compression while minimizing pre-duce vegetation maps. In many respects these maps re-
dictive error.semble the thematic maps produced from interpretation

of aerial photography, with each location characterized
Mixture Methods: Endmembers and ARTMAPby a single vegetation type (Strahler, 1981). In addition,

image classification has been used at times to estimate Mixture models postulate “blender” dynamics, which mix
vegetation types at the pixel scale as well as at the standmixes of vegetation types, usually at the scale of vegeta-

tion stands that include many remotely sensed pixels. In scale. One such method is spectral mixture analysis (Ad-
ams et al., 1986). The sma program in IPW (Frew, 1990)one approach, each pixel in a stand is characterized by

a single vegetation type. The stand-level fraction of a was used here for the linear mixture analysis, with singu-
lar value decomposition (unconstrained).vegetation type is then predicted to be the proportion of

pixels assigned to that class. Woodcock et al. (1996) as- The linear mixture model is defined in terms of a
set of image endmembers, with mixture compositions cal-sessed the accuracy of this approach for providing sec-

ondary vegetation types within individual stands using culated by linear interpolation within the convex set de-
fined by the endmembers. In the Plumas application,Landsat TM imagery. Stenback and Congalton (1990)

used image classification to detect shrubs in the un- endmembers represent the mean spectrum of TM bands
averaged over all pixels in selected “pure” stands, whichderstory of conifer forests by labeling unsupervised clus-

ters with respect to both canopy overstory characteristics are dominated by single vegetation types. Note, however,
that even the pure stands are mixtures in their own right.and the presence of understory shrubs.

A variation on this theme uses the distributed output A conifer forest stand, for example, is at least a mixture
of sunlit tree crown, shadowed tree crown, and back-signal of a classification algorithm to characterize mix-

tures within pixels. A pixel label might then represent ground visible through gaps in the canopy. Two types of
endmember sets were tested. The first set represents thethe strength of association with or probability of mem-

bership in classes, rather than a single category. Statisti- most extreme, or exterior, spectral values for conifer,
hardwood, and barren stands. The second set of interiorcal classifiers such as maximum likelihood (Marsh et al.,

1980; Foody et al., 1992) and neural networks (Foody, endmembers solves some specific problems that arose
when using the exterior endmembers (see Discussion).1996; Moody et al., 1996) have been applied in this way.

The approach is related to fuzzy set theory, since an indi- The spectral mixture method has proved successful
in many applications, particularly with hyperspectral im-vidual pixel may be viewed as having degrees of mem-

bership in multiple classes (Robinson 1988; Fisher and agery (with many spectral bands) and when the materials
to be estimated are elemental (e.g., mineral constituentsPathirana, 1990).

This article evaluates two types of classification in rocks and soils) (Adams et al., 1993). This method has
been used for vegetation analysis, but most such applica-methods for mixture estimation: the maximum likelihood

algorithm and the ARTMAP neural network (Carpenter tions seek to quantify proportions of broadly defined
components such as bare soil, photosynthetic vegetation,et al., 1991; 1992). Maximum likelihood is a standard al-

gorithm (Richards, 1993) in the remote sensing litera- nonphotosynthetic vegetation, and shadow (Smith et al.,
1990; Roberts et al., 1993; Ray and Murray, 1996), ratherture. Introduced more recently, ARTMAP is already be-

ing used in a variety of application settings, including than the life-form components of a vegetation mix. Ad-
ams et al. (1995), measuring land-cover change in theindustrial design and manufacturing, robot sensory motor

control and navigation, machine vision, and medical im- Amazon, use endmember fractions to produce a thematic
map, evidently the first use of linear mixture analysis foraging (Carpenter, 1997), as well as remote sensing (Car-

penter et al., 1997). ARTMAP belongs to the family of this purpose.
In summary, in the past, endmembers have typicallyadaptive resonance theory (ART) networks, which are

characterized by their ability to carry out fast, stable, on- represented fundamental classes, such as vegetation, soil,
and shade, rather than vegetation types, such as coniferline learning, recognition, and prediction. These features

differentiate ARTMAP from the family of feed-forward and hardwood. For the Plumas vegetation mapping
problem, performance of the spectral mixture model ismultilayer perceptrons (MLPs), including backpropaga-

tion, which typically require slow, off-line learning. The compared with that of an ARTMAP neural network, in-
troduced here, that estimates fractions of classes withininherent instability of MLP learning may make such a

system unsuitable for large-scale, unconstrained mapping pixels. During learning, mixture ARTMAP associates a
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site-level vegetation fraction with each training set pixel. Image Data
Output resolution is determined by a free parameter, The satellite sensor data in this study are from a 20 June
called vigilance, described in the system algorithm. A 1990 Landsat TM image. The image was registered to a
small vigilance value produces a coarse-resolution sys- map projection and resampled using a nearest neighbor
tem, which might predict low/medium/high vegetation algorithm. Mapping studies use as system input the six
fractions; while a larger vigilance value produces a fine- spectral bands TM1–5 and TM7. Classification and mix-
resolution system, which would more closely track pre- ture methods were tested on both the original spectral
cise field measurements. During testing, fractional pixel- data and on data that had been corrected for topographic
level vegetation class outputs are averaged across all pix- effects, as follows.
els at a given site to obtain the site-level mixture pre-
diction. Topographic Correction

One factor complicating the task of extracting informa-
tion from multispectral imagery is the topographic effect.MATERIALS: THE PLUMAS NATIONAL
That is, surface reflectance in mountainous terrain variesFOREST DATA SET
as a function of surface properties, slope, and aspect, due

Field Observations and Measurements primarily to changes in amounts of incident solar radia-
The setting of the present study, the Plumas National tion and the anisotropic reflectance of vegetated sur-
Forest, is located at the northern tip of the Sierra Ne- faces. The magnitude of the topographic effect depends
vada Mountains in California. The Plumas National For- upon solar elevation, surface slope aspect, and inclination
est covers a large area (over 45,000 km2) which is topo- (Holben and Justice, 1980; Justice et al., 1981). If the
graphically and climatically diverse. This region is effects of topography could be removed from the data,
characterized by temperate conifer forests mixed with the brightness values in the image would be changed
chaparral brush fields and deciduous and evergreen into what they would have been if the surface were flat.
hardwood forests. Dominant species of conifers include Several methods for correcting terrain effects have
Jeffrey pine (Pinus jeffreyi), white fir (Abies concolor), been used in remote sensing applications (Smith et al.,
red fir (Abies magnifica), Douglas fir (Pseudotsuga men- 1980; Holben and Justice, 1980; Justice et al., 1981; Lee
ziessi), ponderosa pine (Pinus ponderosa), and sugar pine and Kaufman, 1986; Civco, 1989; Proy et al., 1989;
(Pinus lambertiana). The dominant hardwood species are Naugle and Lashlee, 1992; Gu and Gillespie, 1998). One
the winter-deciduous black oak (Quercus kelloggii) and simple topographic correction method divides each ob-
the evergreen canyon live oak (Quercus chrysolepis). served brightness value by the cosine of the illumination
Willows (Salix spp.) and alders (Alnus spp.) also occur, angle (i), as if the surface were a lambertian reflector
frequently in dense thickets. For purposes of vegetation (Smith et al., 1980). That is,
mapping for forest management, the primary goal is

Lnormk5
Lobsk

cos i
,quantification of mixes of needle-leafed conifers and

broadleafed hardwoods within stands. Quantification of
the fraction of brush understory in forest stands would where Lnormk equals the normalized brightness value, Lobsk

equals the observed brightness value, and the incidencealso be useful.
For the Plumas study, field data were collected in angle i equals the angle between the Sun and the normal

to the surface. This topographic correction method doesAugust 1995 at 388 widely distributed stands. The stands
were delineated on 1:15,840 scale color aerial photo- not generally improve classifications, since many areas

are either overcorrected or undercorrected (Naugle etgraphs and visited in the field. Sites range in size from
11 pixels to 224 pixels, with an average of 52 pixels per al., 1992).

An alternative approach, applied here, takes into ac-site. The primary data set used for mixture analysis in-
cludes estimates of conifer and hardwood crown cover count nonlambertian reflectance properties, using an em-

pirically derived Minnaert coefficient k (Smith et al.,within each stand, which were derived from close visual
inspection of aerial photographs while traversing the 1980). That is,
stands (Woodcock et al., 1994). This data collection

Lnormk5
Lobsk cos e

(cos i cos e)k
,method allows large numbers of stands to be surveyed

in a relatively short time period, but also implies that the
field measurements contain a margin of error. Each where the exitance angle e equals the angle between the

satellite (viewer) and the normal to the surface. The co-ground truth vegetation fraction in the data set repre-
sents a consensus. By comparing typical measurements efficient k would equal 1 for a lambertian surface and

decrease toward 0 as surface anisotropy increases. Takingfirst reported independently by members of the field
crew, the error bound was estimated to be 10%. Results the log of both sides of this equation produces a linear

form which can be used to estimate k in a linear regres-of the analyses below should be viewed in light of this
expected measurement error. sion model. That is,
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Table 1. Minnaert Coefficients, for Topographic Correction

Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

k 0.207 0.288 0.227 0.763 0.604 0.445
R2 0.280 0.264 0.068 0.337 0.205 0.060

y5b1kx, tral values from the Landsat TM image data and the top-
ographically corrected versions of the input data.where y5log(Lobsk cos e), b5log(Lnormk), and x5log(cos i

cos e). The coefficient k equals the slope of the regres-
PERFORMANCE EVALUATIONsion line.

Values for k vary as a function of wavelength and Data Set Organization: With and Without Brush
surface properties, so that this method is most effective

Recall that image endmembers for the linear mixturewhen different k values are applied for different land
analysis were selected from the set of “pure” stands. Fig-cover types (Justice et al., 1981; Smith et al., 1980).
ure 1 shows, for each pure stand, values of TM Band 3However, the present application seeks to develop and
(red) and TM Band 4 (near-infrared), and values of Bandtest efficient, automated mapping methods which do not
4 and Band 5 (mid-IR). These band combinations were

rely on a priori knowledge of land cover types and thus selected for the graphs as best illustrating the spectral
one k value for each spectral band is used for corrections separability of the vegetation types. Figure 1 shows that
across the entire image. Values of k derived for all sur- the patterns in reflectance of the hardwood, conifer, and
face types resulted in low R2 regression values, ranging barren classes show promise for spectral mixture analysis
between 0.04 and 0.10. These low R2 values indicate that since they form a “well-conditioned simplex” (Nalepka
the k values would be ineffective for removing the topo- and Hyde, 1972). This means that no vegetation type lies
graphic effect (Justice et al., 1981). To address this prob- between any other two vegetation types. However, this
lem, only pixels from conifer sites were used to calculate separation does not hold for brush stands, which exhibit
the k values, which results in higher R2 values. These reflectance patterns that could have arisen from mixes of
constants k (Table 1) were derived for each of the six the other three vegetation types. Thus, finding the brush
TM Bands 1–5 and 7, using the topographic slope and component of stands promises to be a difficult problem.
aspect calculated from registered digital terrain data. As a result of these observations, mixture analysis

All methods used to estimate mixtures within vegeta- was carried out in two phases. The first phase considers
tion stands (maximum likelihood classification, ARTMAP only a smaller data set, which includes the 263 sites with
classification, linear mixture analysis, and the ARTMAP hardwood, conifer, and barren ground alone, with no

brush present. The second phase considers a larger datamixture system) were tested using both the original spec-

Figure 1. Cospectral plots for TM Bands 3, 4 and TM Bands 4, 5 of 40 pure sites show coni-
fer (C), hardwood (H), and barren (B) to be fairly well clustered. However, the 10 brush sites
(•) are mixed in among the others. The plots also show exterior and interior endmembers,
which are connected by lines. Pure sites labeled barren and brush are defined as having no
tree cover; conifer sites have no hardwood cover; hardwood sites have less than 10% conifer
cover; and hardwood and conifer sites have no brush.
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Table 2. Predictive Accuracy of Classification (ML and ARTMAP) and Mixture (Exterior, Interior, and ARTMAP) Systems
for the Small Data Seta

a) Original Input Data b) With Topographic Correction

RMS Error RMS Error
% Total % Total % Total % Total

Predictions Predictions Predictions Predictions
C H Barren within 10% within 20% C H Barren within 10% within 20%

ML
classification 0.25 0.14 0.24 41% 74% 0.25 0.15 0.23 37% 76%

ARTMAP
classification 0.17 0.11 0.15 55% 89% 0.17 0.12 0.14 59% 89%

Exterior
mixture 0.20 0.15 0.24 27% 76% 0.27 0.15 0.23 32% 73%

Interior
mixture 0.21 0.09 0.21 46% 83% 0.23 0.21 0.19 27% 76%

ARTMAP
mixture 0.15 0.10 0.12 65% 96% 0.15 0.10 0.12 66% 95%

a Optimal estimates are indicated in boldface type.

set, which includes the first set of 263 stands plus 125 standard statistical procedure ensures a strict separation
between training and testing sets, and all reported resultsstands with brush. In the field data, sites were identified

as with brush or without brush, but a separate estimate cite system performance on data not seen during train-
ing. Following the cross-validation protocol, the data setof the brush fraction was not made. Instead, the fraction

of barren1brush was estimated as a unit. In tests, there- is partitioned into five disjoint subsets, each containing
fore, systems predict a conifer/hardwood/other mixture, approximately 20% of all the sites. Each run uses one
where other represents barren in the small data set and subset as the test set and the remaining four as the train-
barren1brush in the large data set. Including the brush ing set. Since ARTMAP employs fast learning, results
sites makes the mapping task more difficult and more re- can vary somewhat with the ordering of the training in-
alistic. put. To average away this variation, the evaluation proce-

dure was repeated 25 times for each training/testing sub-
Performance Measures set partition, using a different randomly chosen input

ordering each time.Comparative performance of all systems was evaluated in
The fact that cross-validation uses each of the fiveterms of the root mean squared (RMS) error. For a

subsets, in turn, as a test set compensates for possiblegiven life-form class (conifer/hardwood/other), the RMS
variations in the training/testing set partition. Thus re-error with respect to that class is
ported ARTMAP mixture results reflect values averaged
across 125 separate system training runs. With no selec-

RMS error;!o
n

i51
(yi2xi)2

n
, tion made of an optimal test set, this procedure produces

robust performance measures while ensuring that no test
site is ever used in training.

where n is the number of test sites, yi is the predicted
cover proportion of the life-form for site i, and xi is the RESULTS: MIXTURE ESTIMATION FOR THE
actual cover proportion of the life-form, based on field SMALL DATA SET
measurements. A correlation coefficient error measure

Classification Method Performancegave nearly identical patterns of results.
Training and testing protocols varied with the types Table 2 summarizes results of vegetation mixture esti-

mates on the small data set, which excludes sites withof methods used. The maximum likelihood system was
trained on a randomly selected sample of 10 pure sites brush. Each system attempts to predict conifer (C),

hardwood (H), and barren fractions in test set sites. Forfor each vegetation class and tested on the remaining
sites. For linear mixture methods, endmembers were the classification methods, a system predicts a single veg-

etation class for each pixel. Table 2a shows that, usingchosen representing one pure site for each vegetation
type (conifer, hardwood, barren), after inspection of all uncorrected input data, the root mean squared (RMS)

errors for maximum likelihood (ML) are substantiallythe pure sites. Mixture predictions were then enumer-
ated for all sites. higher than those for the ARTMAP classification system.

Similarly, the numbers of predictions that fall withinARTMAP training and testing was carried out using
a fivefold cross-validation procedure (Mosier, 1951). This 10% and 20% of the field measurements are lower for
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dictions fall within 10% of the field measurements, and
almost all predictions fall within 20%. Since the bound
on the data set measurement error is approximately 10%,
Table 2 shows that a majority of the ARTMAP mixture
estimates on the small data set are close to optimal.

Figure 2 illustrates qualitative differences in the life-
form estimates of linear mixture models and an ART-
MAP mixture system. The results displayed in this figure
are for a simplified data set based on only two spectral
bands (TM 3 and TM 4), to facilitate graphical represen-
tation. The columns show estimated fractions of conifer,
hardwood, and barren, respectively, where bright values
represent high fractions and dark values represent low
fractions. The top two rows of Figure 2 show the exterior
and interior endmember predictions from the linear mix-
ture model, with endmember locations marked (1). The
bottom row illustrates ARTMAP mixture prediction,
which has a much higher degree of complexity than the
other two approaches. Spectral mixture models allow
only a straightforward linear decrease in the estimates of
one endmember along a line perpendicular to the line

Figure 2. Mixture predictions of two linear mixture models connecting the other two. In contrast, the neural net-
(exterior and interior endmembers) and a neural network work patterns may be as intricate as the training set re-(ARTMAP mixture), plotted for TM Bands 3 (x-axis) and 4

quires.(y-axis) without topographic correction. Columns show
Figure 3 shows the distribution of conifer, hard-white areas estimating 100% conifer (C), hardwood (H), and

barren (B). As the gray scale moves from white to black, wood, and barren mixture percents predicted by the
the estimated percent of the designated life-form decreases three mixture methods at sites in the small data set. The
from 100% to 0%. ARTMAP is seen to capture more x-axis marks the actual percent of the vegetation type,complex features of the data than do the linear mixture

from field measurements; and the y-axis marks the esti-models. Scale: 17–121 digital numbers (DN) (x-axis); and
mated percent of each vegetation type. Perfect predic-26–130 DN (y-axis).
tions lie on the diagonal. Lines in each graph also show
which points lie within 20% of the correct values. A large

maximum likelihood than for ARTMAP. Table 2b shows fraction of the exterior endmember estimates are seen to
that topographic correction does not significantly affect lie far from the diagonal: the system often predicts a
performance of the two classification methods. high life-form fraction where the actual number is low,

and vice versa. The interior endmember mixture model
Mixture Method Performance results show an improved pattern, with predicted frac-

tions tending to correlate better with the actual fractions.Performance of the exterior endmember mixture model
on the small data set is similar to that of the maximum However, this model still consistently overestimates coni-

fer and underestimates barren. In contrast, nearly all thelikelihood classification methods, both without topo-
graphic correction (Table 2a) and with topographic cor- ARTMAP mixture predictions fall within 20% of the ac-

tual value.rection (Table 2b). The RMS error rate of the exterior
endmember mixture model is slightly better than that of Figure 4a summarizes these same results in a differ-

ent format. For each of the three mixture methods, thethe maximum likelihood system, but the number of pre-
dictions that fall within 10% of the field measurements graph indicates how many predictions fall within a given

percent of the field measurements. The vertical line atis low. With topographic correction, interior endmember
performance is also similar to these two. Without topo- the 10% error bound depicts the 27%, 46%, and 65% of

total predictions that fall within this criterion level forgraphic correction, performance of the interior endmem-
ber mixture model is better, improving upon maximum exterior, interior, and ARTMAP mixture methods, re-

spectively, as shown in Table 2a. Similarly, the verticallikelihood classification performance in every measure.
However, it is still worse than ARTMAP classification in line at the 20% error bound depicts the 76%, 83%, and

96% levels for the three methods. Figure 4a confirmsall respects, except for a small improvement in the RMS
error for hardwood. Performance of the ARTMAP mix- that ARTMAP gives the most accurate mixture estimates,

and further shows that maximal accuracy holds at everyture model is superior to that of all the others, as indi-
cated by the boldface entries, which highlight the best error criterion level. Exterior endmember prediction is

least accurate at every error level. Figure 4b confirmsitem in each column. Two-thirds of the ARTMAP pre-
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Figure 3. For the same nine combinations as in Figure 2, each plot compares the actual percent, based
on field measurements (x-axis) with the predicted percent (y-axis) of a given life-form. Diagonal lines
represent exactly correct estimates, and flanking lines enclose points that are within 620% correct. Each
point on a plot represents a site in the small data set, which excludes sites with brush, without topographic
correction.

the observation that topographic correction causes inte- each method deteriorates on the large data set, as ex-
rior endmember performance to drop to the level of ex- pected from the spectral properties of the pure brush
terior endmember performance, while ARTMAP predic- sites (Fig. 1). In addition, for this more challenging and
tions remain at their prior accuracy levels. realistic task, performance of the linear mixture models

drops more steeply than that of the other methods.
While the interior endmember model without topo-

RESULTS: MIXTURE ESTIMATION FOR THE graphic correction still performs better than the exterior
LARGE DATA SET model (Table 3a), the number of estimates that fall

within 10% and 20% of the field measurements is nowThe large data set adds 125 sites that contain brush to
less than the number for either classification method. Asthe 263 sites of the small data set. A comparison be-

tween Table 2 and Table 3 shows that performance of on the small data set, topographic correction does not
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Figure 4. For three mixture pre-
diction methods and for the small
(no brush) data set, graphs show
the percent of vegetation regions
(conifer/hardwood/other) that lie
within a given percent of the actual
vegetation distribution: a) original
input data; b) with topographic cor-
rection.

improve performance of any system (Table 3b). By every reasoning. The first set of endmembers tested were the
“exterior” endmembers, which were the means in spec-measure, predictive accuracy is best for the ARTMAP
tral measurement space of the pure stands at the ex-mixture method.
tremes of the distributions for the three vegetation typesComparing Figure 5 (large data set) with Figure 4
(Fig. 1). However, the results indicate several effects that(small data set) indicates the widening gap between AR-
undermine the notion that all other stands are accuratelyTMAP and the endmember mixture methods, as quanti-
characterized as convex combinations of these three.fied in Table 2 and Table 3. Despite the difficulty of the
First, the hardwood column of Figure 3 shows that, forproblem of estimating mixture fractions with brush, 78%
the small data set, the exterior linear mixture model in-of the ARTMAP classification predictions fall within 20%
correctly predicts a significant hardwood fraction forof the field measurements and 84%(a)/83%(b) of the AR-
many conifer or barren sites, which have little or noTMAP mixture predictions meet this criterion. For the
hardwood cover. The first column of Figure 3 showsother three methods, only 56–68% of the sites reach this
that, to a lesser extent, the models also predict significantlevel of accuracy.
conifer fractions for pure sites that have little or no coni-
fer cover. Figure 2 helps explain this effect. As spectralDISCUSSION: SATELLITE REMOTE SENSING
values move along the line connecting the conifer andAND MIXTURE ESTIMATION
hardwood exterior endmembers, for example, the model

The use of two different sets of endmembers in the lin- estimates a linear change in the proportions of hardwood
and conifer. However, because of the considerable spec-ear mixture analysis was based on the following line of
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Table 3. Predictive Accuracy of Classification (ML and ARTMAP) and Mixture (Exterior, Interior, and ARTMAP) Systems
for the Large Data Set a

a) Original Input Data b) With Topographic Correction

RMS Error RMS Error% Total % Total % Total % Total
Barren1 Predictions Predictions Barren1 Predictions Predictions

C H Brush within 10% within 20% C H Brush within 10% within 20%

ML
classification 0.28 0.21 0.33 38% 67% 0.26 0.22 0.33 37% 68%

ARTMAP
classification 0.19 0.16 0.23 41% 78% 0.19 0.16 0.23 39% 78%

Exterior
mixture 0.27 0.20 0.37 20% 56% 0.27 0.21 0.36 24% 56%

Interior
mixture 0.28 0.17 0.34 34% 63% 0.23 0.29 0.32 21% 60%

ARTMAP
mixture 0.18 0.13 0.20 50% 84% 0.17 0.13 0.20 54% 83%

a Optimal estimates are indicated in boldface type.

tral variability among pure stands, many pure conifer shadowing. In all spectral bands, conifers appear dark,
and hence any effect that makes a stand appear dark maysites lie along this line joining conifer and hardwood end-

members. The farther these stands are from the conifer increase the estimate of conifer cover. A first-order ef-
fect in this regard is topography. Given that the Plumasendmember, the larger the hardwood fraction will be.

Spectral variability among pure sites, as well as other fac- National Forest features high topographic relief, stands
receiving differing amounts of solar illumination at thetors such as illumination, therefore undermine the prin-

ciple of an exterior endmember as a spectral representa- time of the satellite overpass would be expected to have
different brightnesses in the resulting image. More shad-tive on a single vegetation class.

The selection of interior endmembers was an at- owed slopes would appear darker than slopes that are
oriented toward the sun at the time of the satellite over-tempt to solve this problem. At least without topographic

correction, the interior endmembers improve perfor- pass. As a result, one would expect a higher estimate for
conifer for more shadowed stands, and vice versa, butmance, yielding lower RMS errors and higher fractions

of sites that fall within 10% and 20% of field estimates this effect is not observed. Figure 7 shows a plot of er-
rors in conifer estimates as a function of the local solarcompared to the exterior endmembers (Tables 2a and

3a). The model now more accurately predicts large coni- zenith angle. If shadowing were having a strong effect,
one would expect large positive errors for low values offer and hardwood fractions for sites that do, in fact, have

large fractions, as seen by the many points lying near the the cosine of the solar zenith angle and negative errors
for values approaching 1. However, Figure 7 shows andiagonal on the right side of the interior conifer and in-

terior hardwood graphs of Figure 3a. even distribution of errors with respect to illumination
effects. The fact that errors are uncorrelated with topog-However, the interior endmember method produces

new problems. For example, conifer fractions for mixed raphy helps explain why topographic correction does not
improve results.stands are now frequently estimated to have conifer cov-

ers that exceed field estimates, as seen by the over- The problem of correction of topographic effects in
images remains among the most difficult in optical re-whelming majority of points that lie above the diagonal

in the interior conifer graph of Figure 3. Figure 6 fur- mote sensing. The crux of the problem is that the magni-
tude of correction required is a function of surface prop-ther illustrates this problem. In Figure 6, histograms

show the distribution of conifer percents estimated by erties. In forested environments this includes both the
general vegetation type and the structure of the forestexterior and interior linear mixture models, by the ART-

MAP mixture model, and by the field estimates. These canopy (Verstraete et al., 1990; Li and Strahler, 1992;
Strahler, 1997). Thus, to correct for the topographic ef-graphs illustrate how exterior endmembers tend to un-

derestimate conifer fractions while interior endmembers fects in images, it is necessary first to have both an accu-
rate representation of the topography and informationtend to overestimate conifer fractions. On the other

hand, the ARTMAP mixture model produces a distribu- regarding vegetation type and structure. When trying to
use remote sensing to recover this kind of information,tion that more closely resembles that of the field data,

one reason why ARTMAP produces the best results. a “chicken and egg” situation results.
Nonlinear effects have been mentioned frequently inA key question remains concerning the causes of

variability in pure stands. One possible effect concerns the literature as possible sources of error in the results
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Figure 5. For three mixture pre-
diction methods and for the large
data set (with brush), graphs show
the percent of vegetation regions
(conifer/hardwood/other) that lie
within a given percent of the actual
vegetation distribution: a) original
input data; b) with topographic
correction.

of linear mixture models. The fact that ARTMAP has no Training Set Input/Output Pairs
inherent limitations in this respect helps explain why this At ARTa, vector a5(a1, a2, a3, a4, a5, a6) represents the
system consistently produces the best results. six spectral band values TM 1–5 and TM7 measured at

a sample pixel, so that Ma56. Component ai represents
the ith spectral band value, scaled to [0,1]. Each inputARTMAP NEURAL NETWORK ALGORITHM
to ARTa is complement coded. That is, the system inputFOR MIXTURE ESTIMATION
equals the concatenated vector A5(a,ac), where ac

i
The following algorithm specifies a self-contained ART- ;12ai. Complement coding is a type of vector normal-
MAP implementation for both the classification and the ization, since
mixture estimation paradigms, first for training then for

|A|;o
2Ma

i51
Ai5o

Ma

i51
ai1o

Ma

i51
(12ai)5Ma.testing. Figure 8 depicts components of a real-time net-

work architecture that would implement the algorithm.
At ARTb, vector b5(b1, b2, b3)5(con,hwd,other) repre-Table 4 lists variables from the network modules ARTa

sents the vegetation class or the class mixture of the site,and ARTb. Table 5 lists system parameters, along with
or stand, in which the sample pixel is located, so thattheir domains and the values used in computer tests. A
Mb53. For the small data set, other5barren; for themore expository explanation of the classification version
large data set, other5barren1brush. During ARTMAPof the algorithm, for remote sensing applications, can be

found in Carpenter et al. (1997). classification training, one component of b is 1, repre-
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Figure 7. Conifer errors (mixture model2expert
estimates) as a function of the cosine of local solar
zenith angle. A strong effect from shadowing would
cause large positive errors for small values of the local
solar zenith angle and negative errors for values with the
cosine close to 1. The graph shows a more random
distribution of errors with respect to shadowing.

ARTMAP Training
During ARTMAP training, input/output pairs (a(1),b(1)),
(a(2),b(2)), . . ., (a(n),b(n)), . . . are presented for equal time
intervals. Initially, all LTM variables are set equal to 1.
That is, wa

ij51 for all i, j and wb
lk51 for all k, l.

Step 1—First input/output pair: Set n51.

Input vector2Ai55 a(1)
i if 1<i<Ma

12a(1)
i if Ma11<i<2Ma

Output vector2bl5b(1)
l (l51 ... Mb)

Set Ca51, Cb51, J51, K51, and j(1)51.

Go to Step 7.
Figure 6. Distribution of conifer percent estimates by

Step 2—Compute the Fb
1→Fb

2 signal: For k51...Cb,experts (field data) and by three mixture prediction
with a`b;min{a,b}:models: exterior endmember, interior endmember, and

ARTMAP mixture, on the small data set, without
topographic correction. Note that the exterior endmember
model predicts too many low-percent sites while the T b

k5
o
Mb

l51
bl`wb

lk

a1o
Mb

l51
wb

lk
interior endmember model predicts too many high-percent
sites. The ARTMAP distribution pattern is closest to that
of the field data.

Step 3—Choose an ARTb category K [(i) or (ii)]:

(i) Committed node: If T b
k>T b,u for some Fb

2 node

k51...Cb, let K be the smallest index such thatsenting the most common vegetation class in the stand;
and the other components are 0. For example, b5(1,0,0) T b

K5max{T b
1...T b

Cb}.for a stand with 70% conifer, 30% hardwood, and no
Fb

1 activation: xb
l 5bl `wb

lK (l51...Mb)barren ground or brush. During ARTMAP mixture train-
ing, the component bl represents the fraction of the lth

If o
Mb

l51
xb

l ,qb, set T b
K50 and go to Step 3.

vegetation class in the stand, with o
3

l51
bl51. For example,

Else go to Step 4.b5(0.7,0.3,0.0) represents a stand with 70% conifer and
30% hardwood. (ii) Uncommitted node: If T b

k,T b,u for all Fb
2
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Figure 8. ARTMAP neural network architecture.

nodes k51...Cb, let K5Cb11. Node J is then newly committed: increase Ca by 1

K is then newly committed: increase Cb by 1. and let j(J)5K.

Go to Step 4. Step 6—Match tracking at ARTa in response to a
predictive error:Step 4—Compute the Fa

1→Fa
2 signal. For j51...Ca:

If j(J)5K, go to Step 7.
If j(J)?K:

Ta
j 5

o
2Ma

i51
Ai`wa

ij

a1o
2Ma

i51
wa

ij
(i) set qa5

1
Ma

3o
2Ma

i51
xa

i 42e

(raise ARTa vigilance);Step 5—Choose an ARTa category J [(i) or (ii)]:

(ii) set Ta
J50 (reset the Jth Fa

2 node); and(i) Committed node: If T a
j >Ta,u for some F a

2 node

(iii) go to Step 5.j51...Ca, let J be the lowest

Step 7—Resonance: For i51...2Ma and l51...Mb:index such that T a
J5max{T a

1...T a
Ca}.

Save old weight values: wa(old)
iJ 5wa

iJ and wb(old)
lK 5wb

lKFa
1 activation: xa

i `wa
iJ (i51...2Ma)

Decrease Fa
1↔Fa

2 weights: wa
iJ5Ai`wa(old)

iJIf o
2Ma

i51
xa

i ,qaMa, set T a
J50

Decrease Fb
1↔Fb

2 weights: wb
lK5bl`wb(old)

lK

and go to Step 5. Else go to Step 6.
ARTa vigilance recovery: qa5qa

(ii) Uncommitted node: If T a
j ,T a,u for all Fa

2 Step 8—Next input/output pair: Increase n by 1.
nodes j51...Ca, let J5Ca11. Node

New input2Ai55 a(n)
i if 1<i<Ma

12a(n)
i if Ma11<i<2Ma

New output2bl5b(n)
l (l51 ... Mb)Table 4. ARTMAP Variables

Go to Step 2.ARTa ARTb

i51 . . . 2Ma l51 . . . Mb

j51 . . . Ca k51 . . . Cb ARTMAP Testing
STM: matching xa

i Fa
1 xb

l Fb
1 During ARTMAP testing, ARTa inputs a(1),a(2), . . . are

STM: coding ya
j Fa

2 yb
k Fa

2 presented to the trained system. The goal is to produce
site-level mixture output predictions that estimate the co-LTM weights wa

ij Fa
1↔Fa

2 wb
lk Fb

1↔Fb
2

nifer/hardwood/other fractions for each stand. Initially,
Bottom-up signal Ta

j Fa
1→Fa

2 Tb
k Fb

1→Fb
2 n50.
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Table 5. ARTMAP Parameters

Simulation
Parameter Domain Value

Input components
Number of ARTa

input components Ma Ma56
Number of ARTb

input components Mb Mb53
User-defined constants

Choice parameter a (0,∞) a51026

ARTa baseline vigilance qa [0,1] qa50
ARTb vigilance qb [0,1] qb50.8
Match tracking e |e|small e50.01

System descriptors
Number of ARTa

committed nodes Ca Incremental
Number of ARTb

committed nodes Cb Incremental
Fa

1→Fa
2 signal to an

uncommitted node Ta,u Ta
j |wij51

Ma

a12Ma

>0.5
Fb

1→Fb
2 signal to an

uncommitted node Tb,u Tk
b|wlk51

1
a1Mb

>0.33
Index of the active Fa

2node J j51 . . . Ca Maximum Ta
j

Index of the active Fb
2node K k51 . . . Cb Maximum Tb

k

ARTa vigilance qa [qa,1] Match tracking
Association between

the coding node j and
the output class k j( j)5k k51 . . . Cb Learning

Test Step 1—New test set input: Increase n by 1. xb5(1,0,0)5(con, hwd, other), then in the
final site-level mixture estimate, the

New input2Ai55 a(n)
i if 1<i<Ma

12a(n)
i if Ma11<i<2Ma

pixel casts one conifer vote.
(ii) ARTMAP mixture testing: The analog

Test Step 2—Compute the Fa
1→Fa

2 signal: For j5 output vector xb represents the pixel’s
1...Ca: predicted mixed contribution to the overall

composition of the site. For example, if
xb5(0.5,0.3,0.2)5(con, hwd, other)

Ta
j 5

o
2Ma

i51
Ai`wa

ij

a1o
2Ma

i51
wa

ij

is the Fb
1 output vector, then, in the site-

level mixture prediction, the pixel casts 50%
of its vote for conifer, 30% for hardwood,

Test Step 3—Choose an ARTa category J: and 20% for other. Recall that
other5barren in the small data set andLet J be smallest Fa

2 index such
other5barren1brush in the large data

that Ta
J5max{Ta

1...Ta
Ca}. set.

Go to Test Step 1, until all test-setIf Ta
J,Ta,u, go to Test Step 1 (no prediction).

pixel-level predictions are recorded.Test Step 4—Predict an ARTb category K:
Test Step 7—Site-level output prediction:Let K5j(J)

A site-level mixture prediction equals theTest Step 5—Flow activation top-down through
average prediction of all pixels in the site.ARTb, producing a normalized system output xb:
That is, the vector that represents theFor l51...Mb: estimated vegetation composition of a site
equals the sum of all the output vectors xb forxb

15
wb

lK

o
Mb

k51
wb

kK
that site divided by the number of pixels
that are making a prediction for that site.

Test Step 6—Pixel-level output prediction [(i)
Varying Mixture Granularityor (ii)]:
Table 6 illustrates the effect of varying the ARTMAP pa-(i) ARTMAP classification testing: The output

vector xb is binary. For example, if rameter qb. This parameter controls the degree of coarse-
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Table 6. ARTMAP Mixture RMS Errors as the Vigilance Adams, J. B., Smith, M. O., and Gillespie, A. H. (1993), Im-
Matching Threshold qb Increases from 0.0 to 0.9, for the Small aging spectroscopy: interpretation based on spectral mixture
(No Brush) Data Set without Topographic Correctiona

analysis. In Remote Geochemical Analysis: Elemental and
Mineralogical Composition 7 (C. M. Pieters and P. Englert,ARTMAP mixture
Eds.), Cambridge University Press, New York, pp. 145–166.RMS Error No. of No. of Adams, J. B., Smith, M. O., and Johnson, P. E. (1986), Spectral

qb C H Barren Fa
2 Nodes F b

2 Nodes
mixture modeling: a new analysis of rock and soil types at

0.0 0.24 0.12 0.21 48 3 the Viking Lander I site. J. Geophys. Res. 91(B8):
0.4 0.15 0.10 0.13 143 5 8098–8112.
0.7 0.15 0.10 0.13 356 11 Carpenter, G. A. (1997), Distributed learning, recognition, and
0.8 0.15 0.10 0.12 508 18 prediction by ART and ARTMAP neural networks. Neural
0.9 0.14 0.09 0.12 769 36

Networks 10:1473–1494.
a Also listed are the numbers of internal category nodes used in ARTa Carpenter, G. A., Gjaja, M. N., Gopal, S., and Woodcock, C. E.

and ARTb during training. (1997), ART neural networks for remote sensing: vegetation
classification from Landsat TM and terrain data. IEEE
Trans. Geosci. Remote Sens. 35:308–325.ness, or granularity, of the predicted vegetation fractions.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H.,When qb is small, the system learns rough estimated frac- and Rosen, D. B. (1992), Fuzzy ARTMAP: a neural network
tions, corresponding, approximately, to “low/medium/ architecture for incremental supervised learning of analog
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