
ARTICLE IN PRESS

Neurocomputing 72 (2009) 2079–2092
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

E-m

URL

(G.C. An
journal homepage: www.elsevier.com/locate/neucom
AG-ART: An adaptive approach to evolving ART architectures
A. Kaylani a, M. Georgiopoulos a,�, M. Mollaghasemi a, G.C. Anagnostopoulos b

a School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
b Florida Institute of Technology, Melbourne, FL 32901, USA
a r t i c l e i n f o

Available online 16 December 2008

Keywords:

Machine learning

Classification

ARTMAP

Genetic algorithms

Genetic operators

Category proliferation
12/$ - see front matter & 2008 Elsevier B.V. A

016/j.neucom.2008.09.016

esponding author. Tel.: +1407 823 5338; fax:

ail address: michaelg@mail.ucf.edu (M. Georg

S: http://www.ucf.edu (M. Georgiopoulos), ht

agnostopoulos).
a b s t r a c t

This paper focuses on classification problems, and in particular on the evolution of ARTMAP

architectures using genetic algorithms, with the objective of improving generalization performance

and alleviating the adaptive resonance theory (ART) category proliferation problem. In a previous effort,

we introduced evolutionary fuzzy ARTMAP (FAM), referred to as genetic Fuzzy ARTMAP (GFAM). In this

paper we apply an improved genetic algorithm to FAM and extend these ideas to two other ART

architectures; ellipsoidal ARTMAP (EAM) and Gaussian ARTMAP (GAM). One of the major advantages of

the proposed improved genetic algorithm is that it adapts the GA parameters automatically, and in a

way that takes into consideration the intricacies of the classification problem under consideration. The

resulting genetically engineered ART architectures are justifiably referred to as AG-FAM, AG-EAM and

AG-GAM or collectively as AG-ART (adaptive genetically engineered ART). We compare the performance

(in terms of accuracy, size, and computational cost) of the AG-ART architectures with GFAM, and other

ART architectures that have appeared in the literature and attempted to solve the category proliferation

problem. Our results demonstrate that AG-ART architectures exhibit better performance than their

other ART counterparts (semi-supervised ART) and better performance than GFAM. We also compare

AG-ART’s performance to other related results published in the classification literature, and

demonstrate that AG-ART architectures exhibit competitive generalization performance and, quite

often, produce smaller size classifiers in solving the same classification problems. We also show that

AG-ART’s performance gains are achieved within a reasonable computational budget.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The adaptive resonance theory (ART) was developed by
Grossberg [19]. Some of the ART architectures that have appeared
in the literature include fuzzy ARTMAP (FAM) [7], ellipsoidal
ARTMAP (EAM) [2], and Gaussian ARTMAP (GAM) [36]. All of
these ART architectures possess a number of desirable properties,
such as they can solve arbitrarily complex classification problems,
they converge quickly to a solution (within a few presentations of
the list of input/output patterns belonging to the training set),
they have the ability to recognize novelty in the input patterns
presented to them, they can operate in an on-line fashion (new
input patterns can be learned by the ART system without
retraining with the old input/output patterns), and they produce
answers that can be explained with relative ease.

One of the limitations of these ART architectures that has been
repeatedly reported in the literature is the category proliferation
problem. This refers to the problem where ART, in the process of
solving a classification problem, creates unnecessarily large
ll rights reserved.

+1407 823 5835.

iopoulos).

tp://www.fit.edu
architectures. This problem is more amplified when the data in
the classification problem are noisy, and/or significantly over-
lapping. Another limitation of these ART architectures is the
dependence of their performance on the parameters chosen in the
training phase (e.g., vigilance parameter, choice parameter, order
of training pattern presentation). Good choices for these para-
meters is problem-dependent, thus requiring experimentation
with various parameter choices (an expensive proposition) in
order to obtain the best possibly performing ART networks.

To alleviate these problems, genetic fuzzy ARTMAP (GFAM)
was introduced in [1]. GFAM uses a genetic algorithm (GA) (see
[16]) to evolve simultaneously the weights, as well as the topology
of FAM neural networks. It starts with a population of trained
FAMs, whose number of nodes in the hidden layer and the values
of the interconnection weights converging to these nodes are fully
determined (at the beginning of the evolution) by ARTs training
rules. To this initial population of FAM networks, GA operators are
applied to modify these trained FAM architectures (i.e., number of
nodes in the hidden layer, and values of the interconnection
weights) in a way that encourages better generalization and
smaller size architectures.

In this paper we propose the use of an improved GA for the
evolution of ART architectures. The proposed GA relies on adaptive
GA parameter control mechanisms. While GFAM required the user

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.09.016
mailto:michaelg@mail.ucf.edu
http://www.ucf.edu
http://www.fit.edu
http://www.fit.edu

ARTICLE IN PRESS

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–20922080
to choose values for the probability of an ART category deletion,
and for the probability of a category mutation, AG-ART finds good
values for these parameters through an adaptation mechanism
that takes into consideration the specificities of the problem
under consideration. Hence, not only AG-ART is more elegant
(requires minimal user intervention) than GFAM, but as our
experiments illustrate it is faster than GFAM, because the GA
parameters are more wisely chosen through appropriate adapta-
tion mechanisms.

In this paper, we also extend the use of GAs to solve the ART
category proliferation problem, and simultaneously improve ARTs
generalization performance to two other architectures: EAM and
GAM. The evolution of these trained ART networks produces
a network, referred to as AG-EAM or AG-GAM, which have
better generalization performance and smaller size than the ART
networks that we started with in the initial population. AG-FAM,
AG-EAM or AG-GAM is the FAM, EAM or GAM network,
respectively, that at the last generation of the evolutionary
process attained the highest fitness function value. In the
evolution of ART trained networks, in addition to the common
GA operators, such as crossover and mutation, we use a unique
(and needed) genetic operator, referred to as Prune operator. This
operator, allows us to destroy ART categories, thus leading us to
ART networks of smaller size.

The ultimate measure of the justification for the existence
of the AG-ART collection of architectures is how well they fare
in comparison with other ART architectures (including GFAM), as
well as other than ART classifiers. Consequently, in this paper we
compare AG-ART with GFAM, ssFAM, ssEAM, ssGAM (see [3]) and
a few other non-ART-based classifiers. This comparison is based
on the accuracy, size and computational complexity of the
classifiers. In particular, our results show that AG-FAM, AG-EAM
and AG-GAM perform well on a number of classification problems,
and optimally on some of these problems. For instance, AG-ART
gave a better generalization performance and a smaller than, or
equal, size network (in almost all problems tested), compared to
ssFAM, ssEAM and ssGAM networks, requiring reduced (some-
times significantly reduced) computational effort to achieve these
advantages. Furthermore, the AG-FAM accuracy and size results
are similar with the GFAM results, but AG-FAM attains these good
results at a reduced computational cost, compared to GFAM.
Finally, AG-ART architectures compared very favorably with a
number of other classifiers, whose results have been published in
the literature. In a nutshell, this comparison demonstrates that
AG-ART compares very favorably with a number of other
classification approaches, proposed in the literature.

The organization of this paper is as follows: in Section 2 we
present a detailed overview of the relevant literature. In this section
we discuss in detail the issue of GA parameter adaptation, which is a
central issue in the development of the AG-ART architectures. In this
section we also present a brief overview (only the absolutely
necessary information) of the ART architectures under consideration
(FAM, EAM, GAM). In Section 3 we describe all the important
elements pertinent to the evolution of the ARTMAP architectures,
according to the suggested AG-ART specifications. In Section 4, we
describe the experiments, the datasets used in the experimentation,
and we provide the performance comparisons between the AG-ART
and other classifiers (GFAM, other ART-based classifiers and non-
ART-based classifiers). In Section 5, we summarize our contributions
and findings.
2. Literature review

As mentioned above, one of the objectives of AG-ART
introduced in this paper is to solve a major limitation of ART,
that has been repeatedly reported in the literature, and known
as category proliferation problem. This refers to the creation
of unnecessarily large number of ART categories to solve a
classification problem under consideration, a phenomenon that
is mostly observed when the data are noisy and/or of overlapping
nature. Quite often the category proliferation problem, observed
in ART, is connected with the issue of over-training. Over-training
happens when ART is trying to learn the training data perfectly at
the expense of degraded generalization performance (i.e., classi-
fication accuracy on unseen data) and also at the expense of
creating many categories to represent the training data (leading to
the category proliferation problem). Also, it has been connected to
other related ART limitations, such as the representative ineffi-
ciency of the categories or the excessive triggering of the match
tracking mechanism due to existence of noise.

Since the early 1990s a number of ART-related papers were
published in the literature with the intent of addressing these ART
inefficiencies. In [27], PROBART eliminates the match tracking
mechanism and instead stores probability information in the map
field, thus eliminating one of the causes of ART over-training.
Micro-ARTMAP [17] introduces the idea of an entropy of a
category and allows the creation of ART categories that encode
patterns, whose labels can be mixed, provided that the category
entropy is less than a designated threshold. Safe Micro-ARTMAP
[18], introduced later, adds a mechanism to limit the growth of a
category in response to a single pattern. Semi-supervised learning
of ART was introduced [3] in 2003, where it allows, with a certain
tolerance, categories to encode patterns that are not mapped to
the same label. Three semi-supervised architectures were intro-
duced in [3]: ssFAM, ssGAM and ssEAM. In [23] the authors
suggest the use of crossvalidation to prevent over-training and
therefore avoid the creation of unnecessary categories. In addition,
in the work by Carpenter et al. [8], Williamson [37] and Parrado-
Hernadez et al. [31] the ART structure is changed from a winner-
take-all to a distributed version, and simultaneously slow learning
is employed, with the intent of creating fewer ART categories and
reducing the effects of noisy patterns.

In our work here, we propose (yet another!) method (AG-ART)
to solve the ART category proliferation problem, while simulta-
neously improving the generalization performance in ART. This
method uses GAs [16] to optimize the size of ART structures
created, as well as their generalization, and it does this more
elegantly and more efficiently than the recently introduced GFAM
architecture [1].

GAs are a class of population-based stochastic search algo-
rithms that are developed from ideas and principles of natural
evolution. An important feature of these algorithms is their
population-based search strategy. Individuals in a population
compete and exchange information with each other in order to
perform certain tasks. GAs are capable of finding the global
optima rather than the local optima as is the case with gradient
descent procedures. Also, GAs are not as sensitive to the
initialization of weights and they do not require a continuous or
differentiable fitness function to operate. GAs [16] have been
extensively used to evolve (optimize) artificial neural networks.
2.1. Evolutionary neural network architectures

The literature is rich with articles applying evolutionary
optimization algorithms to train neural networks [10,15,30,35].
The majority of this work is focused on MLP neural networks [38].
However, a number of authors proposed using evolutionary
optimization algorithms with other neural network models such
as RBF neural networks [15,35]. In [38] a comprehensive literature
review was conducted to summarize the prior efforts that aimed

ARTICLE IN PRESS

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–2092 2081
at combining evolutionary optimization algorithms with neural
networks. The author divides these efforts into three main classes;
evolution of connection weights, evolution of architectures and
evolution of learning rules.

Evolution of weights of neural networks often uses Gaussian
perturbation in the mutation operator to bring about changes in
the weights [14]. When relying on mutation to change the
network structure and/or weights, some researchers incorporated
an adaptive mechanism to control the severity of mutations
[4,39]. This was done by adopting a simulated annealing-based
strategy, in which mutations are allowed to be aggressive
at the beginning of the evolutionary process, while only mild
mutations are permitted as the process progresses towards the
optimum. Evolution of architectures often uses mutation of the
architectural structure that includes addition and deletion of
connections and nodes. In this work, structural additions are
avoided as the probability of adding a viable component is very
low.

Many authors [4,30,38] point out to the problems associated
with using crossover when evolving the neural network structure.
The crossover has a destructive effect as it may combine parents
that result in non-viable offspring solutions. The probability of
producing offspring solutions with worse fitness than the parents
is relatively high when crossover is used. This significantly
reduces the effectiveness of the EA. To combat this problem,
some authors [4,30] eliminate the use of crossover and rely only
on mutation.

As it will be explained later, in evolving ART architectures a 2-
level encoding scheme is adopted. The 2-level encoding scheme
has the advantage of being able to apply viable crossover
operations at level 1 of the representation. On the other hand,
adaptive mutations are applied at both levels, as will be shown
later. Mutations at level 1 cause structural modifications (referred
to as Pruning), while mutations applied at level 2 cause weight
modifications.

To the best of our knowledge, work that utilizes GAs and ART
neural network architectures is rather limited. For instance, in
[26], a GA was employed to appropriately weigh attributes of
input patterns before they were fed into the input layer of FAM.
The results reported reveal that this attribute weighting was
beneficial because it produced a trained ART architecture of
improved generalization. In our work, we do not use the GAs to
optimize the weight with which each attribute of the input
patterns is affecting the input layer of the ART architecture.
Instead, as mentioned above, we use GAs to optimize the topology
and the weights of trained ART architectures.
2.2. Adaptation in GAs

When applying a GA to solve an optimization problem, we not
only need to choose the algorithm, representation, and operators
for the problem, but we also need to choose parameter values and
operator probabilities for the GA so that it will not only find the
solution, but also find the solution efficiently. In many cases,
researchers choose these parameter values and operator prob-
abilities based on experience or experimentation on a specific
problem. The choice of the parameters and operator probabilities
has attracted a significant amount of research. A number of
researchers suggested good parameter values as a result of
extensive experimentation on a range of optimization problems.
For examples, Jong [21] proposed to set pm ¼ 0:001 and pc ¼ 0:6,
where pm and pc stand for the probability of mutation and
crossover, respectively. In [28] the authors propose pm ¼ 1=b and
in [5] pm ¼ 1:75=n � b1=2, where n represents the population size
and b represents the bit-length of a chromosome.
Finding good GA parameter values for a certain optimization
problem is a time consuming process. It is prone to human error
which may lead to suboptimal results. Moreover, what might
be initially considered as a good parameter setting could, in the
progress of evolution, prove not to be as good, since the search
may move to different regions of the solution space. As a result, an
emphasis was placed on designing GAs where the parameters
automatically adapt to the problem at hand.

The GA parameters that affect its performance include
environmental parameters such as population size and the
objective (fitness) function. The adaptation can be applied to
global parameters such as mutation rate, mutation strength or
crossover rate that are affecting all individuals in the population,
or applied to local parameters where the parameter value is
customized for each individual. Also, some research proposes the
customization of the parameter setting at the component level
(part of the individual).

The majority of the research though focuses on adapting the
mutation rate or mutation strength. For real-valued representa-
tions, the term mutation strength, sometimes called mutation
step size, refers to the magnitude of change in each mutated
variable. This is different in binary representation schemes, where
the term mutation rate is used to express how probable it is for a
certain binary variable to be changed (inverted).

The adaptation approaches can be distinguished in three
groups, in order of increasing complexity: deterministic, adaptive,
and self-adaptive [20]. Each of these approaches is described
below.
�
 Deterministic: Deterministic adaptation refers to the dynamic
adjustment of a GA parameter using a deterministic rule, and
without feedback from the quality of the solution achieved by
the evolutionary process. This rule can be based on a schedule
(similar to simulated annealing) or number of generations (see
[13]). In general, the objective in this approach is to alter the
GA parameters in such a way that result in a wide-spread
search at the beginning of the optimization, and increasingly
localized search at later stages. An example of this approach
can be found in [24], where the mutation step sizes are
discounted by a constant factor each time an offspring is
produced.

�
 Adaptive: This approach uses some form of feedback from the

GA that is used to determine the direction and/or magnitude of
the change to the GA parameter. In [4], the standard deviation
of the Gaussian mutation was varied based on a temperature
parameter. The temperature parameter was defined as
TðZÞ ¼ 1� f ðZÞ=f max, where f max is the maximum fitness for a
given task. Thus, the temperature of a solution is determined
by how close the solution is to being an optimal solution for
the task under consideration. Solutions with a high tempera-
ture are mutated severely, and those with a low temperature
are mutated only slightly. This allows a coarse-grained search
initially, and a progressively finer-grained search as the GA
approaches a solution for the assigned task.
In [32] the authors suggest the use of a feedback signal that is
defined by the difference fitmaxðP; tÞ � mðP; tÞ, where fitmaxðP; tÞ

is the maximum fitness and mðP; tÞ is the average fitness
of solutions in population PðtÞ at generation t. This difference
is used as an indication of closeness to convergence. This
difference is likely to be less for a population that has
converged to an optimal solution than that for a random
population, scattered in the solution space. The authors define
the adaptive rates of crossover and mutation for all chromo-
somes to be inversely proportional to this difference. To make
this mechanism less disruptive for good solutions, the

ARTICLE IN PRESS

Fig
pat

cate

Fig
the

bou

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–20922082
mechanism is adjusted to have low values of parameters
for high fitness values and high values of parameters for low
fitness values, as follows: pmðxÞ ¼ k1ðfitmaxðP; tÞ � fitðx; tÞÞ=

ðfitmaxðP; tÞ � mðP; tÞÞ, and pc ¼ k2ðfitmaxðP; tÞ � fitðx; tÞÞ=

ðfitmaxðP; tÞ� mðP; tÞÞ. Therefore, in this case, the parameters
are controlled at the individual level.

�
 Self-adaptive: In this approach, the GA parameters undergo

evolution. The GA parameters are encoded in the chromosomes
and evolved as part of the solution. The encoded parameters
will lead to better fitness for individuals with better para-
meters values, and since these individuals are more likely to
survive and reproduce, this mechanism will propagate these
better parameter values.

In our implementation genetic optimization of ARTMAPs, referred
to as AG-ART, we chose to use an adaptive approach, where a
feedback signal is used to determine the operator probability at
the component level.
2.3. The ARTMAP architectures

The FAM neural network architecture was introduced by
Carpenter and Grossberg in their seminal paper [7]. Since its
introduction, other ART architectures have been introduced into
the literature. The focus in this paper is on FAM and two other ART
architectures: EAM [2] and GAM [36]. We assume that the reader
is familiar with the FAM, EAM and GAM architectures. In this
section we only provide the necessary information that is needed
to understand the evolution of these ART structures, explained in
detail in Section 3.

An ART architecture consists of an input layer, where the inputs
are applied, a category representation layer, where categories
(compressed representations of the input patterns are formed),
and an output layer where the correct mapping between the input
patterns and their associated labels are established. Training in
ART is achieved by presenting a training set to the ART network.
Given a set of inputs and associated label pairs, I1; labelðI1Þ; I2;

labelðI2Þ; . . . ; IPT ; labelðIPT Þ (called the training set), we want to train
ART to map every input pattern of the training set to its
corresponding label. To achieve the aforementioned goal we
present the training set to the ART architecture repeatedly, as
a1

a1

a2

a1

a2

. 1. FAM learning (2-D example). (a) A category with 0 size; (b) introducing a new p

tern I3, represented by a3 is inside the category, it does not change its size; (e) new

gory is expanded to include a4, within its boundaries.

mj

dj

mj = I1

I3

I1

I2

I1 mj

dj

I

I1

. 2. EAM learning (2-D example). (a) A category with 0 size; (b) introducing a new pa

category includes I3, it does not change its size; (d) pattern I4 is presented; since th

ndaries.
many times as it is necessary for ART to correctly classify these
input patterns. The task is considered accomplished (i.e., learning
is complete) when the weights in ART do not change during a
training set presentation, or after a specific number of list
presentations is reached.

The weights in ART correspond to compressed representations
of the input patterns presented to the ART network during its
training phase. These compressed representations have a geome-
trical interpretation. In particular, every node (category) in the
category representation layer of FAM has weights that completely
define the lower and upper endpoints of a hyperbox. At the
beginning of training, every category of FAM starts as a trivial
hyperbox (equal to a point) and subsequently it expands to
incorporate within its boundaries all the input patterns that in the
training phase choose this hyperbox as their representative
hyperbox, and are encoded by it (see Fig. 1, where the category
expansion of FAM is shown for an example dataset). The size of
hyperbox is measured as the sum of the lengths of its sides.

Also, every node (category) in the category representation
layer of EAM has template weights that completely define an
ellipsoid, through its center, direction of major axis, length of the
major axis, and ratio of lengths of minor axes to major axis in the
ellipsoid. At the beginning of training, every EAM category starts
as a trivial ellipsoid (equal to a point) and subsequently it expands
to incorporate within its boundaries all the input patterns that in
the training phase chose this ellipsoid as their representative
ellipsoid, and are encoded by it (see Fig. 2, where the category
expansion of EAM is shown for an example dataset). The size of
the ellipsoid is measured as the length of the major axis.

Finally, every node (category) in the category representation
layer of GAM has template weights that define the mean vector,
the standard deviation vector of a multi-dimensional Gaussian
distribution, and the number of points that are associated with
this Gaussian distribution. At the beginning of training, every
category of GAM starts as a collection of Gaussian distributions in
every dimension, with mean equal to the input pattern that was
first encoded by this category, and a small standard deviation
vector (part a of Fig. 3); as training progresses in GAM this GAM
category is modified to incorporate the information of the
additional input patterns that are encoded by it (see part b of
Fig. 3 for an illustration of how the GAM category is modified for
an example dataset). At any point in time the mean vector of this
a1

a2

a1

a2a3

a4

a1

a2a3

a4

a3

attern I2, represented by a2; (c) the category expands to include a2; (d) since new

pattern I4, represented by a4 is presented; (f) since a4 is outside the category, the

I4

2
I3

mj

dj

I2

I1

I4

I3mj

dj I2

I1

ttern I2; the category expands to include I2; (c) introducing a new pattern I3; since

is pattern is outside the category, the category is expanded to include I4 within its

ARTICLE IN PRESS

I1 I1 I2

mj
mj

�j �j

Fig. 3. GAM learning (1-D example). (a) A category with 0 size; (b) introducing a

new pattern I2; the category characteristics (mean, standard deviation, of the

Gaussian curve, as well as number of points encoded by the Gaussian curve)

change to include the new knowledge that the new input pattern brings.

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–2092 2083
Gaussian distribution, corresponding to a category, is equal to the
mean vector of all the input patterns encoded by the category, and
the variance vector of the Gaussian distribution is equal to the
variance vector corresponding to the input patterns that were
encoded by the category, while the number of the points
associated with this Gaussian distribution are the number of
points that chose this category as their representative category.

It is also worth mentioning that the categories in FAM, EAM
and GAM are allowed to expand up to a point allowed by a
threshold, controlled by a network parameter denoted as the
baseline vigilance parameter ðr̄aÞ. This parameter assumes values
in the interval ½0;1�. Small values of this parameter allow the
creation of large categories, while large values of this parameter
allow the creation of small categories. In the one extreme when r̄a

is equal to 0, an FAM or EAM category, equal to the whole input
space, could be created, while at the other extreme when r̄a is
equal to 1 only point categories are formed. In GAM, small values
of this parameter allow more and more patterns to be encoded by
a GAM category, while large values of this parameter allow only a
few patterns to be encoded by a GAM category. It turns out that
this parameter has a significant effect on the number and type of
categories formed, and consequently it affects the performance of
these networks.

The performance of ART networks is measured in terms of the
number of categories created in its training phase (small number
of categories is good), and how well it generalizes on unseen data
(high generalization accuracy is good). The performance of an ART
architecture depends on the choice of the vigilance parameter. It
has been a known fact that performance in ART is also affected by
the order according to which training data are presented to an ART
architecture.
(p)aw1 (p)aw2 (p)awj
awNa

(p)

Chromosome p

auj (p) avj (p) lj (p)

Level 1

Level 2

Fig. 4. AG-FAM chromosome structure. At level 2, the category’s weight wa
j

contains the information about the lower end-point, ua
j , and the upper end-point,

va
j , of the hyperbox corresponding to the category, as well as the label lj of the

category.
3. The evolution of ARTMAP neural networks

AG-FAM, AG-EAM, and AG-GAM are evolved FAM, EAM, GAM
networks, respectively, that are produced by applying, repeatedly,
genetic operators on an initial population of trained FAM, EAM, or
GAM networks. AG-FAM, AG-EAM, AG-GAM use binary tourna-
ment selection, as well as genetic operators, including crossover
and mutation. In addition, AG-FAM, AG-EAM and AG-GAM use a
special operator, Prune; this special operator is needed so that
categories could be destroyed in the ART architectures, thus
leading us, through evolution, to smaller ART structures.

It is assumed that for the classification problems under
consideration we have a training set, a validation set, and a test
set. The training set is used for the training of AG-FAM, AG-EAM,
and AG-GAM architectures under consideration. The validation set
is used to optimize the produced AG-FAM, AG-EAM, or AG-GAM
network in ways that will become apparent in the following text.
Finally, the test set is used to assess the performance of the
optimized AG-FAM, AG-EAM, or AG-GAM network created.

To better understand how ART (FAM or EAM or GAM) is
genetically designed, we resort to a step-by-step description of
this design. The genetic design of ART can be articulated through a
sequence of basic steps, defined succinctly below.

The pseudo-code in Algorithm 1 shows the basic steps of AG-
FAM, AG-EAM and AG-GAM:

Algorithm 1. Pseudo-code of AG-ART algorithm.
Pð0Þ Generate-Initial-Population()

For(t 1 To Genmax)

— Evaluation()

— If(stoppingcriteriamet) then exitfor

— P0ðtÞ Selection(PðtÞ)

— PðtÞ ReproductionðP0ðtÞÞ

End For

Return (Best Network in PðtÞ)
3.1. Generate initial population

The algorithm starts by training Popsize ARTMAP networks
(FAM, EAM or GAM), each one of them trained with a different
value of the baseline vigilance parameter r̄a, and order of training
pattern presentation. In particular, we first define r̄inc

a ¼

ðr̄max
a � r̄min

a Þ=ðPopsize � 1Þ, and then the baseline vigilance para-
meter of every network is determined by the equation r̄min

a þ ir̄inc
a ,

where i 2 f1;2; . . . ; Popsize � 1g. In our implementation we fixed
Popsize ¼ 20. The choice parameter in an FAM network was chosen
to be equal to 0.1. The choice parameter in an EAM network was
chosen to be equal to 0.01. The ratio of the length of the minor
axes to major axes in EAM was chosen equal to 1. The initial value
of the standard deviation g in a GAM network is chosen to be
equal to 0.6. In our experiments with AG-FAM and AG-EAM we
chose r̄min

a ¼ 0:1 and r̄max
a ¼ 0:95, while in our experiments with

AG-GAM we chose r̄min
a ¼ 0:1 and r̄max

a ¼ 0:75.
We assume that the reader is familiar with how training of

FAM, EAM and GAM networks is accomplished, and thus the
details here are omitted. Once the Popsize networks are trained,
they need to be converted to chromosomes so that they can be
manipulated by the genetic operators. AG-FAM, AG-EAM and
AG-GAM use a real number representation to encode the
networks. Each chromosome consists of two levels, level 1
containing all the categories of the network and level 2 containing
the template parameters needed to represent every category
in level 1, as well as the label of every category in level 1.
The chromosome encoding is explained in more detail in Fig. 4 for
AG-FAM, in Fig. 5 for AG-EAM and in Fig. 6 for AG-GAM.

3.2. Evaluation

A weighted sum approach is used to define a fitness function
that combines the two objectives of the optimization problem;
the error rate, perrðpÞ, and size of the network, sizeðpÞ. The error
rate, perrðpÞ, corresponds to the error rate, exhibited by the p-th
network, on the validation set, while sizeðpÞ is the number of
categories of the p-th network. The use of weighted sum approach
is one of the simplest ways of defining a fitness function that

ARTICLE IN PRESS

aw1 (p)
aw2 (p) awj (p) awNa

(p)

Chromosome p

lj (p)

Level 1

Level 2mj (p)a a
�j (p) nj (p)a

Fig. 6. AG-GAM chromosome structure. At level 2, the category’s weight wa
j

contains the information of the center of the Gaussian curve, ma
j , the standard

deviation vector of the Gaussian curve, sa
j , and the number of points represented

by the Gaussian curve, nj , as well as the label lj of the category.

a
w1 (p)

a
w2 (p) awj (p) awNa

 (p)

Chromosome p

Level 1

Level 2amj (p)
a

dj (p) rj (p)
a a

lj (p)�j (p)

Fig. 5. AG-EAM chromosome structure. At level 2, the category’s weight wa
j

contains the information of the center, ma
j , the direction vector of the major axis,

da
j , the radius (half length) of the major axis, rj , and the ratio of the lengths of the

minor axes over the length of the major axis, mj , of the ellipsoid corresponding to

this category, as well as the label lj of the category.

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–20922084
depends on two measures (generalization of the network and size
of the network) and has been extensively adopted in the
classification literature (e.g., see [6]).

The use of weighted sum to combine two objectives requires
the proper scaling of the objective values so that one objective
cannot dominate the other. Since perrðpÞ is appropriately scaled
between 0 and 1.0, it remains to scale sizeðpÞ. As it is not possible
to determine the range of sizeðpÞ for every classification problem,
we estimate the range from the initial population. We define the
size scale factor, sizemax, as the size of the network that minimizes
perrðpÞ in the initial population. Since we expect the GA to improve
the error rate and size in subsequent generations, this choice is
considered appropriate. The fitness function fitðpÞ of the p-th
network is defined as follows:

fitðpÞ ¼ perrðpÞ þ asizeðpÞ � Catminsizemax (1)

Obviously, this fitness function decreases as perrðpÞ decreases or as
sizeðpÞ decreases (hence the objective is to minimize the above
defined fitness function). The value of Catmin is chosen to be equal
to the number of classes of the classification problem at hand. It is
evident from the fitness equation that if the GA drops the size
from sizemax to Catmin, the fitness drops by approximately a.
Therefore, the maximum allowed sacrifice in classification
accuracy is equal to a.
3.3. Selection

Initialize a temporary generation P0, where the parent
chromosomes used to create the next generation are selected.
The parents are chosen using a deterministic binary tournament
selection, as follows: randomly select two groups of two
chromosomes each from the current generation, and use as a
parent, from each group, the chromosome with the best fitness
value in the group.

The algorithm implements elitism as follows: it finds the best
NCbest chromosomes (i.e., the chromosomes having the NCbest

highest fitness values) from the current generation and copies
them to the next generation without change. In our implementa-
tion we choose a value of NCbest ¼ 3.
3.4. Reproduction—adaptation

Once the selection step determines the parents, reproduction
operators are used to create individuals for the next generation. As
expected, the reproduction operators are problem specific. In this
section the reproduction operators used in evolving ARTMAP
networks are described.

The two well-known operators for reproduction in GAs are
crossover and mutation. In this work, in addition to crossover, two
mutation-based operators are proposed. The first is referred to as
the Mutation operator, and it performs Gaussian mutations on
chromosomes. The second operator, referred to as the Prune

operator, prunes a network by deleting a number of categories
from that network. The mutation operator applies Gaussian
perturbations of the weights at level 2 of the chromosome string
(see Figs. 4–6). On the other hand, the Prune operator applies
structural mutation at level 1 of the chromosome string.

To avoid the need for finding proper values for the mutation
and pruning probabilities, or setting default values that might
result in suboptimal operation, an adaptation mechanism was
employed to automatically adjust, based on performance, the
invocation of reproduction operators. This performance-based
adaptation is implemented at the gene (category) level. More
specifically, adaptive, performance based, parameters are com-
puted for each component in the individual. The performance
feedback relies on a metric defined for each category, referred to
as the confidence factor, CF.

The confidence factor is a metric that measures the perfor-
mance at the category level. Since our objective is to find a
network with good generalization and small size, the performance
of a category is defined in terms of accuracy and frequency of
selection of the category. We favor accurate and frequently
selected (therefore larger) categories. The assumption here is that
if categories are frequently selected, the network size would likely
to be smaller. The confidence criteria is based on similar
confidence criteria designed by other researchers in the field
(see [9,33]), whose objective was to prune under-performing ART
categories. In [9] the authors proposed the use of a confidence
factor that is computed by utilizing a validation set of labeled
patterns. The confidence factor defined in [9] consists of two
components: the probability of selection and the classification
accuracy. The confidence factor is defined, for every category j of
the p-th ART network, that is mapped to label k, as follows:

CFk
j ðpÞ ¼ 0:5Ak

j ðpÞ þ 0:5Sk
j ðpÞ (2)

where Ak
j ðpÞ is a measure of accuracy of classification achieved

by category j, in the p-th network, that is mapped to label k.
Furthermore, Sk

j ðpÞ is a measure of probability of selection of
category j, in the p-th network, that is mapped to label k.

The accuracy measure, Ak
j ðpÞ, is defined as follows: the

probability of correct classification for category j divided by the
maximum probability of correct classification for any category in
the same network (p-th network) that predicts the same class
label, k. This measure assumes higher values for categories that
are performing relatively well. In particular, if the number of
validation samples that selected this category, and were correctly
classified by it, is denoted by Pk

j ðpÞ, and the number of validation
samples that selected this category is denoted by Ck

j ðpÞ, then

Ak
j ðpÞ ¼

Pk
j ðpÞ=Ck

j ðpÞ

maxjðP
k
j ðpÞ=Ck

j ðpÞÞ
(3)

We also define Sk
j ðpÞ as the probability of selection by the

validation patterns of a category j, of the p-th network, that is
mapped to label k. The probability of selection of category j, of the
p-th network, that is mapped to label k, is the number of

ARTICLE IN PRESS

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–2092 2085
validation patterns that selected this category, Ck
j ðpÞ, divided by

the maximum number of patterns Ck
jmax
ðpÞ that selected any

category j that predicts the same classification label, k, for the p-th
network:

Sk
j ðpÞ ¼ Ck

j ðpÞ=Ck
jmax
ðpÞ (4)

This measure achieves higher values for categories that were
selected more often using the validation patterns. The scaling
ensures that Ak

j ðpÞ 2 ½0;1�, Sk
j ðpÞ 2 ½0;1� and therefore CFjðpÞ 2 ½0;1�.

In addition, in every network, at least one category has AjðpÞ ¼ 1,
and at least one category (but not necessarily the same) has
SjðpÞ ¼ 1. Therefore, in every generation the confidence factor is
calculated for every category based on the performance on the
validation set.

3.4.1. Prune

To be able to create smaller networks using the evolutionary
search, we introduced a genetic operator, Prune, that deletes
categories from a network using some appropriate selection
criteria. Pruning is prohibited if it violates the class inclusion

criterion. The class inclusion criterion dictates that in every
network there is at least one category for each class label present
in the data. It is obvious that the criterion used for selection of
categories to be pruned affects the efficiency of the genetic search.
One selection criterion is to randomly prune a category using a
user-specified probability. However, this criterion does not exploit
the knowledge we have about the performance of a category on
the validation set after every generation. It might be beneficial to
take this information into consideration when deciding on which
categories to be deleted. However, complete reliance on this
knowledge would result in a hill-climbing search that would
probably end up at local optima. To avoid this situation we resort
to a probabilistic approach that increases the chance of deletion of
under-performing categories. This way, the search is directed
towards better solutions, but not limited from exploring other
regions of the solution space. Consequently, in AG-ART, with
probability of 1� CFk

j ðpÞ, we delete categories from every
chromosome in the temporary generation.

3.4.2. Mutation

Every chromosome gets mutated as follows:
In AG-FAM, for each category, either its u or v endpoint is

selected randomly (with 50% probability) and then every
component of this selected vector gets mutated by adding to it a
small number. This number is drawn from a Gaussian distribution.
If the component of the chosen vector becomes smaller than 0 or
greater than 1 (after mutation), it is set back to 0 or 1, respectively.

In AG-EAM, for each category, every component of the
ellipsoidal center m gets mutated by adding to it a small number.
This number is drawn from a Gaussian distribution. If the
component of the chosen vector becomes smaller than 0 or
greater than 1 (after mutation), it is set back to 0 or 1, respectively.
Furthermore, the mutated category’s axis ratio m or radius r is
a
w1 (p)

a
w2 (p) aw3 (p)

aw4 (p) aw5 (p)

a
w1 (p') aw2 (p') aw3 (p') aw4 (p') aw5 (p')p

p

n

n'

Fig. 7. AG-FAM, AG-EAM, AG-GAM crossover implementation. In crossover the weight ve

vectors of chromosome p0 with index larger than n0 , are combined (concatenated) to p
selected with 50% probability. We add a small number to the axis
ratio or the radius. The small number is drawn from a Gaussian
distribution. However, if m or r, due to mutation, becomes larger
than 1, they are set back to the value of 1, while if they become
smaller than zero we set their value to 0.0001.

In AG-GAM, for each category, either its mean vector m or
standard deviation vector s is selected randomly (50% prob-
ability). Then every component of this selected vector is mutated
by adding to it a small number. This number is drawn from a
Gaussian distribution. If the component of the chosen vector
becomes smaller than 0 or greater than 1 (after mutation), it is set
back to 0 or 1, respectively.

Notice that mutation is applied at level 2 of the chromosome
structure. The label of the chromosome is not mutated because
our initial GA population consists of trained networks, and
consequently we have a lot of confidence in the labels of the
categories that these trained networks have discovered through
the training process.

The use of Gaussian perturbation for mutation of weights of
evolved neural networks has been adopted by several researchers
before (e.g., see [4]). We use a Gaussian distribution that has a
mean of 0 and a standard deviation that is equal to a severity
factor that is calculated for each category based on its perfor-
mance. A performance-based severity of mutation should be used
to impose higher probability of mutation to those categories that
do not perform well. We use the following expression to control
the severity of mutation:

SFk
j ðpÞ ¼ 0:05ð1� CFk

j ðpÞÞ (5)

3.4.3. Crossover operation

The remaining Popsize � NCbest chromosomes are created by
crossing over pairs of parents. For each parent, p; p0, a random
crossover point is chosen, designated as n, n0, respectively. Then,
all the categories with index greater than n0 in the chromosome p0

and all the categories with index less than or equal to index n

in the chromosome with index p are moved into an empty
chromosome within the new generation. Notice that crossover is
done at level 1 of the chromosome. This operation is pictorially
illustrated in Fig. 7.

3.5. Stopping criteria

If a stopping criterion is not met, we go to the next iteration of
the genetic evolution. Otherwise, we terminate and we return the
best network. There is a need for an automated stopping criterion
so that the evolution does not proceed for unnecessarily many
generations. Ideally, the evolution should be allowed to proceed
for as long as it is necessary, and it should terminate when
network performance improvements are not attainable any
more. In practice though, there is a trade-off between network
performance improvements and computational effort expended
to achieve these improvements. It might be beneficial to use
multiple stopping criteria to terminate the evolution of ART
a
w1 (p)

a
w2(p)

a
w4 (p') w5 (p')

a

ctors of chromosome p, with index smaller than or equal to index n, and the weight

roduce a new chromosome.

ARTICLE IN PRESS

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–20922086
networks. One obvious stopping criterion is to set a threshold for
the maximum number of generations, Genmax, that the evolution is
allowed to continue. The advantage of having this stopping
criterion is that it ensures that the algorithms will always
terminate and would not get trapped in an infinite loop if the
other stopping criteria are never triggered. The user can always set
the maximum number of generations to a large number to allow
the algorithm to terminate using other, more appropriate,
stopping criteria. Another popular stopping criterion is to stop
when no more improvement in fitness is observed. To ensure the
lack of improvement is not due to the stochasticity of the search,
the evolution is terminated only when no significant network
performance improvements are observed for a number of
consecutive evolutions. This number of consecutive evolutions
can be chosen to be a percentage of the maximum number of
generations Genmax. In our experiments we chose Genmax ¼ 500,
and furthermore we stopped the evolution if 50 generations (10%
of Genmax) elapsed without an appreciable network fitness
improvement. Appreciable network fitness improvement is an
improvement larger than 0.01.
4. Experimental results

In this section we perform experiments to assess the
performance of the AG-ART architectures and to compare their
performance with other ART and non-ART-based classifiers. First
we describe the datasets used in the experimentation. Then,
we compare the AG-ART architectures with the GFAM architec-
ture, introduced by Daraiseh et al. [1]. Furthermore, we also
compare the AG-ART collection to other ART-based classifiers
that addressed the same ART category proliferation problem;
this comparison is thorough because we have coded and
experimented with these other ART-based classifiers on the same
datasets used to assess AG-ARTs performance. Finally, we
compare the AG-ART performance to the performance attained
by other non-ART-based classifiers.

4.1. Datasets

In this work, experiments were conducted on 11 datasets,
of which four are simulated datasets and seven are real datasets.
These datasets were chosen to form a diverse group in terms
of number of classes, number of features, and also availability of
published results. Each dataset was randomly divided into three
subsets: training, validation and testing. The summarized speci-
fics of each one of the datasets are depicted in Table 1.
�

Tab
Dat

Dat

G4c

G6c

1Ci

MO

PAG

Pen

Sat

Seg

Wa

Gla

Pim
Gaussian datasets: G4c-25, G6c-15: These are artificially
generated, 2-D, and Gaussianly distributed datasets, belonging
le 1
asets used for experimentation, and their characteristics.

abase name Training instances Validation instances Te

-25 500 5000 50

-15 504 5004 50

/Sq 2000 5000 30

D-IRIS 500 4800 48

E 500 2486 24

digits 4494 3000 34

2000 2436 20

800 810 7

v 1000 2000 20

ss 75 75

a 150 150 2
to 4-class and 6-class problems, with 25% and 15% overlap
between the classes, respectively. Note that 15% overlap means
that the optimal Bayesian classifier would attain a 15%
misclassification rate on these data.

�
 1Ci=Sq: This is the circle in a square benchmark problem, a

2-class classification problem. The probability of finding a data-
point within a circle or inside the square and outside the circle
is equal to 1

2. The sizes of the areas in the circle, and outside the
circle but inside the square are the same. This problem has
been extensively used in the pattern classification literature.

�
 Modified iris (MOD-IRIS) dataset: This is a modified version of

the IRIS dataset from the UCI repository (see [29]). The original
IRIS dataset (another benchmark classification problem) has
150 data-points and three classes. The data corresponding to
the class that is linearly separable was eliminated. This left 100
data-points and two classes. From the four input attributes of
the original IRIS dataset only two attributes (attribute 3 and 4)
were used because they seem to have enough discriminatory
power to separate the 2-class data. Finally, in order to create a
reasonable size dataset from these 100 points, data were
generated by adding noise around each one of these 100 data-
points (the noise was Gaussian of zero mean and small
variance) to end up with approximately 10,000 points.

�
 Page blocks (PAGE) dataset: This database represents the

problem of classifying the blocks of the page layout in a
document (see [29]). It contains 5473 examples coming from
54 distinct documents. Each example has 10 numerical
attributes (e.g., height of the block, length of the block,
eccentricity of the block, etc.) and one target (output) attribute,
representing the type of the block (text, horizontal line,
graphic, vertical line, and picture). One of the noteworthy
points about this database is that its major class (text) has a
high probability of occurring (above 80%).

�
 Pendigits (PEN) dataset: This dataset has records representing

handwritten digits (see [29]). The dataset was created by
collecting 250 samples from 44 writers. The samples written
by 30 writers are used for training and crossvalidation and
writer-dependent testing, and the digits written by the
remaining 14 writers are used for writer-independent testing.
This dataset has 16 attributes and 10 classes. The training set
has 7494 records and the test set has 3498 records. In this
work, the original training set was divided into a training set of
4494 records and a validation set of 3000 records.

�
 Satellite image (SAT) dataset: This dataset gives the multi-

spectral values of pixels within 3� 3 neighborhoods in a
satellite image, and the classification associated with the
central pixel in each neighborhood (see [29]). The aim is to
predict the classification given the multi-spectral values. There
are six classes and 36 numerical attributes. The training set
consists of 4435 records while the test set consists of 2000
st instances Attributes Classes Major class (%)

00 2 4 25.00

04 2 6 16.67

00 2 2 50.00

00 2 2 50.00

87 10 5 89.80

98 16 10 10.00

00 36 6 24.19

00 19 7 14.29

00 21 3 33.33

64 9 6 35.51

32 7 2 66.70

ARTICLE IN PRESS

Table 2
Total run time for AG-FAM vs. GFAM, in seconds.

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–2092 2087
records. The original training set was divided into a training set
of 2000 records and a validation set of 2435 records.

�

Dataset 10 runs GFAM 10 runs AG-FAM Reduction (%)

G4c-25 131.08 100.69 23.18

G6c-15 179.00 171.14 4.39

1Ci/Sq 387.58 150.78 61.10

Glass 4.44 2.81 36.63

Iris 32.16 26.61 17.25

Page 134.17 92.23 31.26
Image segmentation (SEG) dataset: This dataset was used in the
StatLog Project (see [29]). The samples are from a dataset of
seven outdoor images. The images are hand-segmented to
create a classification for every pixel as one of brickface, sky,
foliage, cement, window, path, or grass. There are seven
classes, 19 numerical attributes and 2310 records in the
dataset.
Pendigits 2684.20 2039.75 24.01
�

Pima 3.81 1.58 58.59

Sat 1033.17 679.17 34.26

Seg 151.23 79.86 47.19

Wav 288.52 238.77 17.24
Waveform (WAV) dataset: This is an artificial 3-class problem
based on three wave-forms (see [29]). Each class consists of a
random convex combination of two waveforms sampled at
designated integer values, with noise added. There are 21
numerical attributes, and 3000 records in the training set.
Error rates are estimated from an independent test set of 2000
records. The original training set was divided into a training set
of 1000 records and a validation set of 2000 records.

�
 Glass (GLS) dataset: This dataset is used to classify types

of glass (see [29]). It was motivated by a criminological
investigation. At the scene of the crime, the glass left can be
used as evidence, if it is correctly identified. This dataset has
214 instances, 10 numerical attributes and six classes.

�
 Pima-Indian diabetes (PIMA) dataset: This dataset classifies the

patients that are females, at least 21 years old, of Pima-Indian
heritage and living near Phoenix, Arizona, USA (see [29]). The
problem is to predict whether a patient would test positive for
diabetes, given a number of physiological measurements and
medical test results. There are two classes, eight numerical
attributes and 768 records. However, many of the attributes,
such as serum insulin, contain zero values which are physically
impossible. By removing the serum insulin and records that
have impossible values in the other attributes, a dataset of
seven attributes and 532 records resulted (this approach was
followed by other researchers).

4.2. Comparison with GFAM

In this section we compare the performance of the AG-ART
collection to that of GFAM introduced in [1]. The purpose of this
comparison is to assess the value of the adaptive approach to
choose the GA parameters, proposed in this paper, to the static
approach to choose these parameters, utilized in GFAM.

In this work we introduced an adaptively defined confidence
factor, according to which ART categories are pruned, and an
adaptively defined severity factor, according to which ART
categories are mutated. In GFAM the probability of deleting an
ART category was chosen after expensive experimentation and
evaluation of the appropriateness of candidate probability values
on a limited collection of classification problems; then these
probability values were used for all other classification problems.
Hence, the GFAM approach was not only computationally costly,
but it was also not dataset-dependent, and it did not change
throughout the evolutionary process. All these issues have now
been addressed by the AG-ART approach, using the adaptively
defined confidence factor, that is dataset-dependent and perfor-
mance-based varying (relying on the performance of a category at
each generation). Furthermore, in GFAM the severity of mutation
was fixed, and the only user defined parameter was the
probability of mutation. This parameter was chosen in GFAM
after expensive experimentation and evaluation of candidate
probability values on a limited collection of classification
problems; then these probabilities were used for all other
classification problems. Hence, the GFAM approach for choosing
the mutation probability was also computationally costly, and not
dataset-dependent, and did not change throughout the evolu-
tionary process. All these issues have now been addressed by the
AG-ART approach, by using the adaptively defined severity of
mutation factor, that is dataset-dependent and performance-
based varying (relying on the performance of a category at each
generation).

In summary, AG-ARTs approach of choosing the category prune
probabilities and the severity of mutation is much more elegant,
sensible and cost-effective, compared to the approach used in
GFAM. The final solutions that GFAM and AG-FAM discover are
very similar. The important difference though is that AG-FAM, due
to the adaptively chosen GA parameters, converges to this solution
faster. Hence, the AG-ART approach is not only more elegant and
more cost-effective in defining good values for the GA parameters,
but even after the evolution starts AG-ART is more efficient than
GFAM (converges to the final solution faster).

To demonstrate our point (about the efficiency of the AG-ART
approach compared to the GFAM approach) we compare, in
Table 2, the average run time of GFAM, introduced in [1], and AG-
FAM discussed in this paper. The total run time of AG-FAM and
GFAM are defined as the total times, needed over a number of runs
(different initial seeds), by the evolutionary process in AG-FAM
and GFAM to converge to a solution, respectively; in our case (see
Table 2) AG-FAM and GFAM were run for 10 different initial seeds.
Both approaches were able to find solutions of similar quality.
However, the AG-FAM approach was able to reduce the evolu-
tionary computation time up to 60% in some cases. Fig. 8
illustrates how parameter adaptation allows the GA to find better
solutions more quickly. Therefore, with adaptation, the GA is able
to find same quality solutions using a smaller number of
generations. For example, the run time in AG-FAM is reduced
due to the use of the Prune operator, introduced in this paper. The
Prune operator is more efficient than the fixed probability of
pruning used in the GFAM paper [1]. The Prune operator in
AG-FAM contributes in finding smaller FAM networks faster in its
evolutionary process than the corresponding operator in GFAM;
since these smaller FAM networks are validated faster we end up
with a reduced run time with AG-FAM, compared to GFAM.
4.3. Comparison with other ART architectures

In this section we compare AG-ARTs performance to that of
other popular ART architectures, which have been proposed in the
literature with the intent of addressing the category proliferation
problem, such as ssFAM, ssEAM, and ssGAM. These approaches are
based on the principle of semi-supervision, introduced by
Anagnostopoulos et al. [3] and Verzi et al. [34]. Semi-supervision
is a term attributed to learning in an ART architecture (FAM, EAM
or GAM), where categories in ART are allowed to encode patterns
of different labels provided that the percentage of patterns that
belong to the plurality label exceed a certain threshold.

ARTICLE IN PRESS

0.15

0.2

0.25

0.3

0.35

0.4

0.45

151101511
Generation

Fi
tn

es
s

Static
Adaptive

Fig. 8. Fitness as a function of generation for the satellite dataset. The upper curve

was produced using a non-adaptive approach. The lower curve was produced using

adaptation. It is clear that adaptation allows faster progress of fitness towards

optimum.

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–20922088
Our comparison is based on three measures of performance:
generalization, size, and computational cost. The results obtained
from ssFAM, ssEAM, and ssGAM depend on the setting of the
parameters of these networks. The choice of good settings for
these parameters depends on the dataset at hand. Therefore to
obtain good results from these networks one should experiment
with a range of settings for the network parameters. Since the
results obtained from AG-FAM, AG-EAM, and AG-GAM is a result
of evolving (optimizing) a population of ART networks, it is
appropriate to compare their performance to that obtained from
the ssFAM, ssEAM, and ssGAM experimentation performed to find
their best parameter setting for any given database.

Since in this work we are not only focusing on generalization
performance, but also on the size of the network produced, it
becomes more complicated to compare and rank networks. To
provide a fair comparison, we resort to a comparison approach
that considers the two objectives simultaneously. Since the
existence of the two, sometimes competing, objectives result in
multiple good solutions rather than one ‘‘best’’ solution, in our
comparison, we assess multiple solutions (sets of solutions)
produced by the different classifiers, under consideration. In
other words, for each classification algorithm, we produce a
number of solutions that have attained the two objectives (good
generalization and small size) at different levels of success. Then
we choose the non-dominated solutions. A non-dominated solution
is defined to be a network, where no other network from the list of
found solutions dominates its performance, that is, achieves
better generalization utilizing equal or smaller number of
categories.

For each of the ssFAM, ssEAM, and ssGAM, and for each of the
11 databases, we performed a number of experiments with
different settings of their network parameter values. In particular,
the parameter settings that we experimented with ssFAM were:
baseline vigilance values ranging from 0.1 to 0.9 with step size of
0.1, choice parameter values of 0.01 and 0.1, maximum allowable
mixture threshold values ranging from 0 to 0.9 with step size
of 0.1, and 10 different orders of pattern presentations of the
training data (resulting in 1800 different parameter settings).
Furthermore, the settings for ssEAM were: baseline vigilance
values ranging from 0.1 to 0.9 with step size of 0.1, choice
parameter values of 0.001 and 0.01, maximum allowable mixture
threshold values ranging from 0 to 0.5 with step size of 0.1,
minimum axes to maximum axis ratio values ranging from 0.5 to
1 with step size of 0.1, and 10 different orders of pattern
presentations of the training data (resulting in 6480 different
parameter settings). Also, the settings for ssGAM were: baseline
vigilance values ranging from 0 to 0.9 with step size of 0.1, initial
standard deviation parameter ranging from 0.5 to 1 with step size
of 0.1, maximum allowable mixture threshold values ranging from
0 to 0.9 with step size of 0.1, and 10 different orders of pattern
presentations of the training data (resulting in 6000 different
parameter settings). It should be emphasized that these para-
meter ranges were determined by the authors of this paper and
they reflect their experience of what are good parameter settings
for these ART networks.

For the training of ssFAM, ssEAM, and ssGAM we used the same
training set, and validation set as the one used for the AG-FAM,
AG-EAM, and AG-GAM networks. We choose the solution net-
works proposed by each method based on the network size and
performance of the network on the validation set. Different
network solutions for the ssFAM, ssEAM, and ssGAM network
were produced by changing the parameter settings for these
networks, as delineated in the previous paragraph. The total
computation time required to obtain these network solutions for
each database and each method, which is the sum of training and
validation CPU times (in seconds) for all the tried settings, is
reported in Table 3, and referred to as the total run time.

Experiments were also conducted for AG-FAM, AG-EAM, and
AG-GAM for each of the 11 databases. To obtain different solution
networks, we varied the fitness parameter, a (see Eq. (1)). In
particular, the different solutions for AG-FAM, AG-EAM, and
AG-GAM were obtained by considering the following a values:
0.01, 0.05, 0.1, 0.2, and 0.5. The total computation time needed to
produce these solutions for AG-FAM, AG-EAM, and AG-GA is also
referred to as the total run time, and reported in Table 3, as well.

A one-to-one comparison of the results reported in Table 3
reveals that the total run time of the AG-FAM, AG-EAM, and
AG-GAM networks is smaller, sometimes an order of magnitude
smaller than the total run time of their corresponding counter-
parts, ssFAM, ssEAM, and ssGAM, respectively. The total run time

results are also shown in a condensed, pictorial, fashion in
Figs. 9–11.

To compare the generalization performance of AG-FAM and
ssFAM, AG-EAM and ssEAM, and finally AG-GAM and ssGAM we
use a metric that compares the network solutions obtained by the
ss-network (for all different parameter settings) and the network
solutions obtained by the AG-network (for the five different a
values). This metric has been used before in similar situations (see
[41,11,12]). This metric is defined as follows:

CðA;BÞ ¼
jb 2 B : 9a 2 A; b � aj

jBj
(6)

This metric measures the fraction of members in set B that are
dominated by at least one member in set A. Therefore, CðA;BÞ ¼ 1
means all members in B are dominated by members in A. In this
case the approach that produced set A is a clear winner. It is
obvious that we need to consider also CðB;AÞ in order to properly
compare the two sets. Since the calculated values of CðA;BÞ and
CðB;AÞ are dependent on the seed used to evolve the population of
FAMs, EAMs, and GAMs in the AG-ART approach, we produced
network solutions for the five different a parameter values, by
changing the seed 10 times. Consequently, 10 different values of
CðAG-FAM; ssFAMÞ, and CðssFAM;AG-FAMÞ, were produced. Simi-
larly, 10 different of CðAG-EAM; ssEAMÞ, and CðssEAM;AG-EAMÞ, as
well as of CðAG-GAM; ssGAMÞ, and CðssGAM;AG-GAMÞ were
produced. In Table 4 we compare the average values (over the
10 replications) of CðAG-FAM; ssFAMÞ vs. CðssFAM;AG-FAMÞ, and
CðAG-EAM; ssEAMÞ, vs. CðssEAM;AG-EAMÞ, and CðAG-GAM;

ARTICLE IN PRESS

Table 3
Total run time for AG-FAM, AG-EAM, and AG-GAM compared to total run time for ssFAM, ssEAM, ssGAM.

Database name AG-FAM ssFAM Reduction (%) AG-EAM ssEAM Reduction (%) AG-GAM ssGAM Reduction (%)

G4C-25 52.59 130.92 59.83 82.99 916.78 90.95 89.32 314.49 71.60

G6C-15 92.01 145.16 36.61 127.15 508.22 74.98 137.82 266.77 48.34

1Ci/Sq 68.51 216.42 68.34 152.13 1167.67 86.97 142.29 1431.35 90.06

Glass 1.71 2.82 39.37 2.26 5.72 60.45 2.64 3.52 24.99

Iris 13.48 21.30 36.73 21.56 123.56 82.55 22.02 109.25 79.84

Page 52.97 69.52 23.80 60.91 484.15 87.42 75.03 125.68 40.30

Pendigits 1142.43 7864.27 85.47 4304.84 58 865.05 92.69 537.62 20 050.39 97.32

Pima 0.95 3.68 74.21 2.41 75.88 96.82 1.91 32.75 94.15

Sat 508.21 2034.29 75.02 1234.62 17 162.45 92.81 329.07 4302.16 92.35

Seg 41.93 85.55 50.99 88.45 1331.47 93.36 64.13 509.99 87.43

Wav 147.23 763.99 80.73 369.38 8612.65 95.71 83.94 1199.58 93.00

1C
i/S

q

G
4C

-2
5

G
6C

-1
5

gl
as

s

Iri
s

pa
ge

pe
nd

ig
its

pi
m

a

sa
t

se
g

w
av

1.00

10.00

100.00

1000.00

10000.00

Lo
g

Tr
ai

ni
ng

 T
im

e

GFAM ssFAM

Fig. 9. Total run time of AG-FAM vs. ssFAM.

1C
i/S

q

G
4C

-2
5

G
6C

-1
5

gl
as

s

Iri
s

pa
ge

pe
nd

ig
its

pi
m

a

sa
t

se
g

w
av

1.00

10.00

100.00

1000.00

10000.00

Lo
g

Tr
ai

ni
ng

 T
im

e

GFAM ssFAM

Fig. 10. Total run time of AG-EAM vs. ssEAM.

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–2092 2089
ssGAMÞ vs. CðssGAM;AG-GAMÞ. It is obvious from the table
that the average values of CðAG-FAM; ssFAMÞ are larger than
CðssFAM;AG-FAMÞ values, which indicates that networks pro-
duced by AG-FAM are more likely to dominate networks produced
by ssFAM, and therefore, the networks produced by AG-FAM are
expected to be of higher quality. The p-value column reported in
the table corresponds to the t-test for the two sample means. The
p-values in the table indicate that the difference in the means
between CðAG-FAM; ssFAMÞ and CðssFAM;AG-FAMÞ is statistically
significant. Similar conclusions can be made by comparing the
means of CðAG-EAM; ssEAMÞ and CðssEAM;AG-EAMÞ, as well
as the means of CðAG-GAM; ssGAMÞ and CðssGAM;AG-GAMÞ.
The box plot shown below the CðAG-FAM; ssFAMÞ and CðssFAM;

AG-FAMÞ values of Table 4 compares visually the values of
CðAG-FAM; ssFAMÞ against the CðssFAM;AG-FAMÞ values for the
segmentation dataset (one of the tested datasets). Further-
more, the box plot shown below the CðAG-EAM; ssEAMÞ and
CðssEAM;AG-EAMÞ values of Table 4 compares visually the values

ARTICLE IN PRESS

1C
i/S

q

G
4C

-2
5

G
6C

-1
5

gl
as

s

Iri
s

pa
ge

pe
nd

ig
its

pi
m

a

sa
t

se
g

w
av

1.00

10.00

100.00

1000.00

10000.00

Lo
g

Tr
ai

ni
ng

 T
im

e

GFAM ssFAM

Fig. 11. Total run time of AG-GAM vs. ssGAM.

Table 4
C-metric values. The p-value is based on t-test for the 10 values of the metric.

C(AG-FAM, ssFAM) C(ssFAM, AG-FAM) C(AG-EAM, ssEAM) C(ssEAM, AG-EAM) C(AG-GAM, ssGAM) C(ssGAM, AG-GAM)

Average Average p-Value Average Average p-Value Average Average p-Value

G4c-25 0.900 0.050 0.000 1.000 0.000 NA 1.000 0.000 NA

G6c-15 1.000 0.000 NA 1.000 0.000 NA 0.863 0.000 0.000

1Ci/Sq 0.419 0.078 0.000 0.892 0.000 0.000 0.671 0.200 0.000

Glass 0.433 0.350 0.593 0.878 0.075 0.000 0.914 0.000 0.000

Iris 0.533 0.300 0.165 0.800 0.300 0.017 0.857 0.000 NA

Page 1.000 0.000 NA 0.900 0.000 0.000 1.000 0.000 NA

Pendigits 0.458 0.000 0.000 0.422 0.175 0.000 0.468 0.080 0.000

Pima 1.000 0.000 NA 0.860 0.100 0.000 0.983 0.100 0.000

Sat 0.847 0.000 0.000 0.722 0.000 0.000 0.606 0.058 0.000

Seg 0.592 0.175 0.000 0.572 0.243 0.000 0.829 0.025 0.000

Wav 1.000 0.000 NA 1.000 0.000 NA 0.957 0.000 0.000

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–20922090
of CðAG-EAM; ssEAMÞ against the CðssEAM;AG-EAMÞ values for the
pendigits dataset (one of the tested datasets). Finally, the box plot
shown below the CðAG-GAM; ssGAMÞ and CðssGAM;AG-GAMÞ
values of Table 4 compares visually the values of CðAG-GAM;

ssGAMÞ against the values of CðssGAM;AG-GAMÞ for the satellite
dataset (one of the tested datasets). The box plots convey the same
conclusions that the tabular entries in Table 4 convey.

Table 3 shows that the better performance of the AG-FAM, AG-
EAM, and AG-GAM networks is attained with reduced computa-
tions as compared with the computations needed by the alternate
architectures (ssFAM, ssEAM, ssGAM). The computational advan-
tage of genetically engineered ART networks compared to the
semi-supervised ART architectures can be explained by the fact
that the performance attained by ssFAM, ssEAM, and ssGAM
required training these networks for a large number of network
parameter settings (at least 1800 experiments) and then choosing
the best networks through crossvalidation. In the AG-FAM,
AG-EAM, and AG-GAM cases we trained only a small number of
these networks (Popsize ¼ 20 of them). Furthermore, in AG-FAM,
AG-EAM, and AG-GAM cases we evolved the trained networks for
at most Genmax ¼ 500 generations, each evolution requiring
crossvalidating only the Popsize ¼ 20 networks. Quite often, the
evolutionary process converged after only a few (50) generations,
because a satisfactory solution was found.

The accuracy and size advantage of AG-FAM, AG-EAM, AG-GAM
compared to ssFAM, ssEAM, and ssGAM can be attributed to the
genetic optimization that it employs. This optimization, involving
the Prune and Crossover operators, allows one to construct
networks that are not attainable using the original ART training
rules. Also, the operation of Prune and Mutation operators were
designed to guide the genetic search to optimal solution faster,
resulting in the significant, at times, computational advantages of
AG-FAM, AG-EAM, and AG-GAM compared to the semi-supervised
ART architectures.
4.4. Comparison with other published results

In this section we compare results obtained using the proposed
AG-ART architectures to literature results published by other

ARTICLE IN PRESS

Table 5
Performance of AG-FAM, AG-EAM, and AG-GAM for 11 datasets.

Dataset name AG-FAM AG-EAM AG-GAM

Accuracy Categories Accuracy Categories Accuracy Categories

G4C-25 74.94 4 75.14 4 75.24 4

G6C-15 84.75 6 85.01 6 84.97 6

1Ci/Sq 98.07 31 99.70 2 99.83 2

Glass 76.56 6 75.00 6 73.44 9

Iris 94.96 2 95.04 2 94.75 2

Page 96.59 5 95.09 5 96.34 6

Pendigits 98.20 282 98.31 331 97.83 108

Pima 79.31 2 78.88 3 77.16 2

Sat 88.90 310 87.85 203 88.35 118

Seg 95.86 22 93.71 128 92.71 17

Wav 85.90 4 87.15 4 87.50 3

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–2092 2091
authors using various classification algorithms. We base the
comparison on well-known datasets that many researchers chose
to test their algorithm against. Here we focus mainly on the
classification accuracy as it is the case with most published work.
We test our approach with a fitness function set to maintain high
level of accuracy in the classifier. In Table 5 we list the results
obtained.

In [22] the authors use the simple Bayes classifier to produce
classification accuracy of 85.20% on satellite, 93.12% on segmenta-
tion, 78.57% on waveform, 70.11% on glass and 75.9% on pima. In
[40], the authors use a decision tree variant to produce classifica-
tion accuracy of 92% (size: 37) on segmentation, 83% (size: 65)
on waveform, 60% (size 14) on glass, 75.2% (size: 3.4) on pima
and 95% (size: 37) on pendigits. As it is evident from Table 5 our
AG-ART results consistently outperform these results.

In [25], the authors compared the accuracy and size of a 33
classifiers belonging to the tree, statistical and neural types
classifiers. Three of the datasets that Lim, Loh and Shih have
experimented with are the satellite, the segmentation and the
waveform datasets that has been tested in Table 5. The AG-FAM
results on the satellite dataset are: 88.9 classification accuracy,
needing 310 categories (other AG-FAM solutions include: 83.6%
with six categories, 84.5% with 14 categories). The AG-GAM
results on the satellite dataset are 88.35 with 118 categories. The
accuracy results reported on the satellite dataset by Lim et al. [25]
are: minimum classification accuracy of 60% and maximum
classification accuracy of 90%. Furthermore the tree type classi-
fiers (22 of them) created a minimum tree size of 8, while the
median tree size was 63. Finally, two of the most celebrated
decision tree algorithms, such as CART and C4.5 created tree sizes
of 63 and 216. The AG-FAM results on the segmentation dataset
are: 95.86% classification accuracy, needing 22 categories. The
accuracy results reported on the segmentation dataset by Lim
et al. [25] are: minimum classification accuracy of 48% and
maximum classification accuracy of 98% (achieved by the nearest
neighbor classifier, which performs no data compression).
Furthermore the tree type classifiers (22 of them) created a
minimum tree size of 6, while the median tree size was 39. Finally,
two of the most celebrated decision tree algorithms, such as CART
and C4.5 created tree sizes of 69 and 42. The AG-FAM results on
the waveform dataset are: 85.9% classification accuracy, needing
four categories for AG-FAM and 87.5% and three categories for
AG-GAM. The accuracy results reported on the waveform dataset
by Lim et al. [25] are: minimum classification accuracy of 52% and
maximum classification accuracy of 85%. Furthermore the tree
type classifiers (22 of them) created a minimum tree size of 3,
while the median tree size was 16. Finally, two of the most
celebrated decision tree algorithms, such as CART and C4.5
created tree sizes of 14 and 54.
5. Summary and conclusion

In this paper, we have introduced an improved, compared to its
predecessor GFAM, genetically engineered FAM neural network
referred to as AG-FAM. We also extended the use of this improved
GA to two other ART architectures; EAM and GAM. The resulting
architectures are referred to as AG-EAM and AG-GAM, or
collectively as AG-ART.

Experimental results have shown that AG-FAM is as accurate
and creates as small of an architecture as GFAM, introduced in [1],
and it does so at reduced computational cost. While in GFAM
the probability of deleting an ART category and the probability
of mutating a category were chosen after experimentation on
a limited collection of classification problems, in AG-FAM an
adaptive mechanism was implemented to choose these para-
meters based on the database at hand and the quality of the
solution found. The AG-ART approach is not only more elegant and
more cost-effective in defining good values for the GA parameters,
but after the evolution starts AG-ART was found to be more
efficient than GFAM.

In this paper, we have also presented an extensive comparison
between the AG-ART architectures and semi-supervised ART
architecture (ss-FAM, ss-EAM, ss-GAM); these semi-supervised
ART architectures are architectures that perform very favorably
compared to other ART architectures, and quite often compared to
other classification approaches. This comparison took into con-
sideration the classification accuracy and size of the classifier at
the same time, and it was fair because these semi-supervised ART
architectures were coded and tested on the same datasets as the
AG-ART architectures were tested. Our experiments reveal clearly
that the AG-ART architectures are able to produce ‘‘better quality’’
classifiers than the ssART architectures, at a reduced computa-
tional cost. The computational cost reduction was found, in a
number of instances, to be significant (more than an order
of magnitude). Furthermore, we compared the performance of
AG-ART classifiers with the performance of other classifiers (non-
ART-based classifiers) that have appeared in the literature; this
comparison showed that AG-ART classifiers are very competitive
in terms of accuracy and size of a classifier that they produce.

In summary, we introduced a new family of ART-based
architectures, called AG-ART, using an elegant evolutionary
approach. The introduced architectures are able to produce
classifiers of good accuracy and small size, using a reasonable
computational budget. They also have the advantage of requiring
little user intervention because the algorithm parameters are
automatically adapted.
Acknowledgments

This work was supported in part by the NSF Grants: 0341601,
0647018, 0717674, 0717680, 0647120, 0525429, 0203446.

References

[1] A. Al-Daraiseh, A. Kaylani, M. Georgiopoulos, A.S. Wu, M. Mollaghasemi,
G.C. Anagnostopoulos, GFAM: evolving fuzzy ARTMAP neural networks,
Neural Networks 20 (8) (2007) 873–891.

[2] G. Anagnostopoulos, Novel approaches in adaptive resonance theory for
machine learning, Ph.D. Thesis, University of Central Florida, Orlando, May
2001.

[3] G.C. Anagnostopoulos, M. Bharadwaj, M. Georgiopoulos, S.J. Verzi, G.L.
Heileman, Exemplar-based pattern recognition via semi-supervised learning,
in: Proceedings of the 2003 International Joint Conference on Neural
Networks (IJCNN ’03), vol. 4, Portland, Oregon, USA, 2003.

[4] P.J. Angeline, G.M. Saunders, J.P. Pollack, An evolutionary algorithm that
constructs recurrent neural networks, IEEE Transactions on Neural Networks
5 (1) (1994) 54–65.

ARTICLE IN PRESS

A. Kaylani et al. / Neurocomputing 72 (2009) 2079–20922092
[5] T. Back, Self-adaptation in genetic algorithms, in: Proceedings of the First
European Conference on Artificial Life, MIT Press, Washington, DC, 1992.

[6] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, Wadsworth, Belmont, CA, 1984.

[7] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, D.B. Rosen, Fuzzy
ARTMAP: a neural network architecture for incremental supervised learning
of analog multidimensional maps, IEEE Transactions on Neural Networks 3
(1992) 698–713.

[8] G.A. Carpenter, B.L. Milenova, B.W. Noeske, Distributed ARTMAP: a neural
network for fast distributed supervised learning, Neural Networks 11 (5)
(1998) 793–813.

[9] G.A. Carpenter, H.A. Tan, Rule extraction: from neural architecture to symbolic
representation, Connection Science 7 (1995) 3–27.

[10] K.P. Ferentinos, Biological engineering applications of feedforward neural
networks designed and parameterized by genetic algorithms, Neural Net-
works 18 (7) (2005) 934–950.

[11] J.E. Fieldsend, R.M. Everson, S. Singh, Using unconstrained elite archives for
multiobjective optimization, IEEE Transactions on Evolutionary Computation
7 (3) (2003) 305–323.

[12] J.E. Fieldsend, S. Singh, Pareto evolutionary neural networks, IEEE Transac-
tions on Neural Networks 16 (2) (2005) 338–354.

[13] T.C. Fogarty, Varying the probability of mutation in the genetic algorithm, in:
Proceedings of the Third International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989.

[14] D.B. Fogel, Using evolutionary programming to create neural networks that
are capable of playing tic-tac-toe, in: Proceedings of the American Power
Conference, 1993.

[15] X. Fu, L. Wang, A GA-based RBF classifier with class-dependent features, in:
CEC ’02: Proceedings of the Evolutionary Computation on 2002. Proceedings
of the 2002 Congress, IEEE Computer Society, Washington, DC, USA, 2002.

[16] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Reading, MA, 1989.

[17] E. Gomez-Sanchez, Y. Dimitriadis, J. Cano-Izquierdo, J. Lopez-Coronado,
MicroARTMAP: use of mutual information for category reduction in fuzzy
ARTMAP, IEEE Transactions on Neural Networks 13 (1) (2002) 58–69.

[18] E. Gomez-Sanchez, Y. Dimitriadis, J. Cano-Izquierdo, J. Lopez-Coronado, Safe-
mARTMAP: a new solution for reducing category proliferation in fuzzy
ARTMAP, in: Proceedings of the 2001 International Joint Conference on Neural
Networks (IJCNN ’01), vol. 2, Washington, DC, USA, 2001.

[19] S. Grossberg, Adaptive pattern classification and universal recoding, ii:
feedback, expectation, olfaction, and illusions, Biological Cybernetics (1976)
187–202.

[20] R. Hinterding, Z. Michalewicz, A.E. Eiben, Adaptation in evolutionary
computation: a survey, in: I. Aleksander, E.J. Taylor (Eds.), Proceedings of
the IEEE International Conference on Evolutionary Computation, IEEE World
Congress on Computational Intelligence, Amsterdam, Netherlands, 1997.

[21] K.A.D. Jong, An analysis of the behavior of a class of genetic adaptive systems,
Ph.D. Thesis, 1975.

[22] R. Kohavi, B. Becker, D. Sommerfield, Improving simple Bayes, in: Proceedings
of the European Conference on Machine Learning, 1997.

[23] A. Koufakou, M. Georgiopoulos, G. Anagnostopoulos, T. Kasparis, Cross-
validation in fuzzy ARTMAP for large databases, Neural Networks 14 (2001)
1279–1291.

[24] M. Laumanns, L. Thiele, K. Deb, E. Zitzler, Combining convergence and
diversity in evolutionary multiobjective optimization, Evolutionary Compu-
tation 10 (3) (2002) 263–282.

[25] T.-S. Lim, W.-Y. Loh, Y.-S. Shih, A comparison of prediction accuracy,
complexity, and training time of thirty-three old and new classification
algorithms, Machine Learning 40 (3) (2000) 203–228.

[26] H. Liu, Y. Liu, J. Liu, B. Zhang, G. Wu, Impulse force based ART network with
GA optimization, in: Proceedings of the 2003 International Conference on
Neural Networks and Signal Processing, vol. 1, 2003.

[27] S. Marriott, R.F. Harrison, A modified fuzzy ARTMAP architecture for the
approximation of noisy mappings, Neural Networks 8 (1995) 619–641.

[28] H. Muhlenbein, D. Schlierkamp-Voosen, Predictive models for the breeder
genetic algorithm I: continuous parameter optimization, Evolutionary
Computation 1 (1) (1993) 25–49.

[29] D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine
learning databases, 1998, URL hhttp://www.ics.uci.edu/�mlearn/
MLRepository.htmli.

[30] P.P. Palmes, T. Hayasaka, S. Usui, Mutation-based genetic neural network, IEEE
Transactions on Neural Networks 16 (3) (2005) 587–600.

[31] E. Parrado-Hernadez, E. Gomez-Sanchez, Y. Dimitriadis, Study of distributed
learning as a solution to category proliferation in fuzzy ARTMAP based neural
systems, Neural Networks 16 (2003) 1039–1057.

[32] N. Srinivas, L.M. Patnaik, Adaptive probabilities of crossover and mutation in
genetic algorithms, IEEE Transactions on Systems, Man and Cybernetics 24
(4) (1994) 656–667.

[33] S.C. Tan, M.V.C. Rao, C.P.L. Lim, On the reduction of complexity in the
architecture of fuzzy ARTMAP with dynamic decay adjustment, Neurocom-
puting 69 (2006) 2456–2460.

[34] S.J. Verzi, G.L. Heileman, M. Georgiopoulos, M. Healy, Rademacher penaliza-
tion applied to fuzzy ARTMAP and boosted ARTMAP, in: Proceedings of the
IEEE-INNS International Joint Conference on Neural Network, vol. 2,
Washington, DC, 2001.

[35] B.A. Whitehead, T.D. Choate, Cooperative-competitive genetic evolution of
radial basis function centers and widths for time series prediction, IEEE
Transactions on Neural Networks 7 (4) (1996) 869–880.

[36] J.R. Williamson, Gaussian ARTMAP: a neural network for fast incremental
learning of noisy multidimensional maps, Neural Networks 9 (5) (1996)
881–897.

[37] J.R. Williamson, A constructive, incremental-learning network for
mixture modeling and classification, Neural Computation 9 (7) (1997)
1517–1543.

[38] X. Yao, Evolving artificial neural networks, PIEEE: Proceedings of the IEEE 87
(1999) 1423–1447.

[39] X. Yao, Y. Liu, Making use of population information in evolutionary artificial
neural networks, IEEE Transactions on Systems, Man, Cybernetics Part B 28
(1998) 417–425.

[40] O.T. Yildiz, E. Alpaydin, Omnivariate decision trees, IEEE Transactions on
Neural Networks 12 (6) (2001) 1539–1546.

[41] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach, IEEE Transactions on Evolu-
tionary Computation 3 (4) (1999) 257–271.

Assem Kaylani is a Ph.D. candidate in Computer
Engineering at the University of Central Florida. He is
also a Senior Software Engineer at Productivity Apex, Inc.
in Orlando, FL, USA. He has received a B.S. in Electrical
Engineering in 1998 from the University of Jordan, an MS
in Computer Engineering in 2001 and Certificate Degree
in Systems Simulation for Engineers in 2005, from the
University of Central Florida. His research focus is on
Evolutionary Neural networks. During his professional
career, Mr. Kaylani led the development of several
engineering software and research projects, funded by
NASA and other organizations, focusing on data mining

and simulation modeling.

Michael Georgiopoulos has received a Diploma in EE
from the National Technical University of Athens,
Greece, in 1981, an MS in EE and a Ph.D. in EE from
the University of Connecticut, Storrs, CT, in 1983 and
1986, respectively. He joined the University of Central
Florida in 1986, where he is currently a Professor in the
School of EECS. His research interests lie in the areas of
Machine Learning and applications with special em-
phasis on ART neural networks. He has published his
work in over 230 journal and conference venues. He
has been an Associate Editor of the IEEE Transactions
on Neural Networks from 2002 to 2006 and he is

currently serving as an Associate Editor of the Neural

Networks journal. He is the general chair of the upcoming Sþ SSPR 2008
Workshops.

Mansooreh Mollaghasemi received her Bachelor of
Science in Chemical Engineering, in 1982, Masters of
Science in Chemical Engineering, in 1983, and Ph.D. in
Industrial Engineering, in 1991 from the University of
Louisville, Louisville, Ky. She has been with the
University of Central Florida since 1991. Her research
interest are in the areas of multi-criteria decision
making, optimization, simulation modeling and analy-
sis, and artificial intelligence. She has an extensive
publication record in a number of prestigious journals,
such as IIE Transactions, Interfaces, Annals of Opera-
tion Research, Transactions of the Society for Computer

Simulation, Computers and OR, International Journal of

Production Economics, and IEEE Transactions on Engineering Management.

Georgios C. Anagnostopoulos received the M.Sc. and
Ph.D. degrees from the School of Electrical Engineering
and Computer Science at the University of Central
Florida, Orlando, in 1997 and 2001, respectively.
Currently, he is an assistant professor in the Depart-
ment of Electrical and Computer Engineering at the
Florida Institute of Technology in Melbourne, Florida.
His main research area is machine learning with
emphasis on pattern recognition and detection as they
apply to data modeling and mining, machine vision,
remote sensing, and bioinformatics, among other
fields.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

	AG-ART: An adaptive approach to evolving ART architectures
	Introduction
	Literature review
	Evolutionary neural network architectures
	Adaptation in GAs
	The ARTMAP architectures

	The evolution of ARTMAP neural networks
	Generate initial population
	Evaluation
	Selection
	Reproduction--adaptation
	Prune
	Mutation
	Crossover operation

	Stopping criteria

	Experimental results
	Datasets
	Comparison with GFAM
	Comparison with other ART architectures
	Comparison with other published results

	Summary and conclusion
	Acknowledgments
	References

