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Abstract

This application illustrates how the fuzzy ARTMAP neural network can be used to
monitor environmental changes. A benchmark problem seeks to classify regions of a Landsat
image into six soil and crop classes based on images from four spectral sensors. Simulations
show that fuzzy ARTMAP outperforms fourteen other neural network and machine learning
algorithms. Only the kNearest-Neighbor algorithm shows better performance (91% vs.
89%) but without any code compression, while fuzzy ARTMAP achieves a code compression
ratio of 6:1. Even with a code compression ratio of 50:1 fuzzy ARTMAP still maintains
good performance (83%). This example shows how fuzzy ARTMAP can combine accuracy

~and code compression in real-world applications.

Fuzzy ARTMAP

ARTMAP is a neural network architecture that performs incremental supervised learning
of recognition categories and multidimensional maps in response to input vectors presented
in arbitrary order. The first ARTMAP system (Carpenter, Grossberg, & Reynolds, 1991)
was used to classify inputs by the set of features they possess, that is, by a vector of bi-
nary values representing the presence or absence of each feature. The more general fuzzy
ARTMAP system (Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992) learns to.
classify analog or binary inputs, by replacing the ART 1 modules (Carpenter & Grossberg,
1987) of binary ARTMAP with fuzzy ART modules (Carpenter, Grossberg, & Rosen, 1991).
Fuzzy ARTMAP achieves accuracy, speed, and code compression in both on-line and off-line
settings. It has a small number of parameters, requires no problem-specific system crafting
or choice of initial weight values, and does not get trapped in local minima. In addition,
fuzzy ARTMAP has shown better performance than various other neural networks in a
rapidly expanding set of benchmark studies. Examples of successful ARTMAP applications
include automatic analysis of electrocardiograms (Ham & Han, 1993; Suzuki, Abe, & Ono,
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1993), diagnostic monitoring of nuclear plants (Keyvan, Durg, & Rabelo, 1993), prediction
of protein secondary structure (Metha, Vij, & Rabelo, 1993), and computer-aided airplane
design (Caudell, Smith, Escobedo, & Anderson, 1994). Variations of ART and ARTMAP
networks have also been applied for analysis of large medical databases (Carpenter & Tan,
1993; Harvey, 1993), 3-D object recognition using spatial and temporal evidence accumula-
tion (Seibert & Waxman, 1991, 1992; Carpenter & Ross, 1993; Bradski & Grossberg, 1994),
robot navigation (Dubrawski & Crowley, 1994; Bachelder, Waxman, & Seibert, 1993; Baloch
& Waxman, 1991), analysis of musical structure (Gjerdingen, 1990), air quality monitoring
(Wienke, Xie, & Hopke, 1994), military target recognition (Moya, Koch, & Hostetler, 1993),
multi-variable optimization of high performance concrete mixes (Kasperkiewicz, Racz, &
Dubrawski, 1994), and multi-sensor data fusion (Asfour, Carpenter, Grossberg, & Lesher,
1993). Fuzzy ARTMAP is here applied to the analysis of remote sensing images, learn-
ing to identify six soil and crop classes from portions of Landsat images. This benchmark
database was used by Feng, Sutherland, King, Muggleton, and Henery (1993) to compare
performance of fourteen other neural network and machine learning algorithms.

ARTMAP Dynamics

Each ARTMAP system includes a pair of Adaptive Resonance Theory modules (ART,
and ART,) that create stable recognition categories in response to arbitrary sequences of
input patterns (Figure 1). During supervised learning, the ART, module receives a stream
{al} of input patterns and ART} receives a stream {b{)} of input patterns, where b()
is the correct prediction given al). These modules are linked by an associative learning
network and an internal controller that ensures autonomous system operation in real time.
The controller is designed to create the minimal number of ART, recognition categories,
or “hidden units,” needed to meet accuracy criteria. It does this by realizing a minimaz
learning rule that enables an ARTMAP system to learn quickly, efficiently, and accurately as
it conjointly minimizes predictive error and mazimizes code compression. Predictive success
is automatically linked to category size on a trial-by-trial basis using only local operations,
through increasing the vigilance parameter (p,) of ART, by the minimal amount needed
to correct a predictive error at ART,. Vigilance p, calibrates the minimum confidence that
ART, must have in a recognition category, or hypothesis, activated by an input al”) in order
for ART, to accept that category, rather than search for a better one (and perhaps establish a
new category). Lower values of p, enable larger categories to form, leading to a higher degree
of code compression. A predictive failure at ART, increases p, by the minimum amount
needed to trigger alternative hypothesis testing at ART,, using a mechanism called match
tracking (Carpenter, Grossberg, & Reynolds, 1991). Match tracking sacrifices the minimum
amount of generalization necessary to correct a predictive error. The combination of match
tracking and fast learning allows an ARTMAP system to learn a correct prediction of a

rare event embedded in a cloud of featurally similar frequent events that make a different
prediction.
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Figure 1: Fuzzy ARTMAP consists of two fuzzy ART modules ART, and ART;,. The two
modules are connected via a map field F** where associations between input and target
categories are learned. )
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Figure 2: Fuzzy ARTMAP was used to classify Landsat image data by concatenating in-

formation from four spectral channels for each of nine pixels into a single 36-D feature
vector.




| Algorithm | Accuracy(%)| | Algorithm | Accuracy(%) |

k-N-N _ 91 NewlID 85
fuzzy ARTMAP 89 CN2 85
RBF , 88 Quadra 85
Alloc80 87 SMART 84
INDCART 86 LogReg 83
CART 86 Discrim 83
Backprop 86 CASTLE 81
C4.5 85

Table 1: In comparison to fourteen other algorithms, fuzzy ARTMAP achieves near op-
timal performance. The k-N-N algorithm is the only algorithm that outperforms fuzzy
ARTMAP. However, fuzzy ARTMAP achieves 6:1 code compression, whereas the k-N-N
does not compress information at all. (Adapted from Feng et al., 1993)

Algorithm Test Set | Categories Code
Performance Stored | Compression
E-N-N 91% 4435 1:1
fuzzy ARTMAP (p, = 0.9) 89% 704 6:1
.fuzzy ARTMAP (5, = 0.0) 83% 89 50:1

Table 2: Fuzzy ARTMAP performs almost as well as the k-N-N algorithm while achieving
a 6:1 code compression ratio. When the baseline vigilance parameter p, is reduced to 0,
fuzzy ARTMAP achieves even higher compression while retaining good performance.

Landsat Image Data

The data used in this application are derived from a small section of Landsat satellite
Multi-Spectral Scanner (MSS) frame (King, 1992). One frame of Landsat MSS imagery
consists of four digital images of the same scene in different spectral bands. Two of these
are in the visible region (corresponding approximately to green and red regions of the
visible spectrum) and two are in the (near) infra-red. The database was generated by
partitioning a small section (82 rows and 100 columns) of a Landsat MSS frame into several
non-overlapping 3-by-3 pixel grids. Each pixel in the Landsat frame, which represents an
80m x 80m area, was classified into one of six vegetation classes (red soil, cotton crop, gray
soil, damp gray soil, soil with vegetation stubble, and very damp gray soil) on the basis of
a site visit. Feng et al. (1993) compare the performance of fourteen statistical and neural
network classification algorithms on the database. Although performance might have been
improved by appropriate preprocessing of the satellite image, only the normalized version
of the raw pixel values was used for the fuzzy ARTMAP simulations in order to compare
the results directly with the other methods benchmarked by Feng et al.

Fuzzy ARTMAP Performance

The database input consisted of a 36-D vector that was formed by concatenating the
four spectral values of each pixel in the nine-pixel grid into a single feature vector. Fuzzy




ARTMAP was trained on the canonical 4,435 training set vectors until it achieved 100%
accuracy on this set. Once training was complete, performance was tested on a disjoint set
of 2,000 input vectors.

Simulations show that fuzzy ARTMAP can achieve near optimal performance when
compared to fourteen other algorithms (Table 1). By setting the baseline vigilance to 7, =
0.9, fuzzy ARTMAP achieves 89% predictive accuracy on the test set after ten epochs of
training, while compressing the input data into 704 Fj categories, a 6:1 compression ratio.
In contrast, the &-NN algorithm needs to store all inputs to achieve the best performance
of all algorithms (91%).

Fuzzy ARTMAP can also achieve larger compression ratios while still maintaining re-
spectable performance. By setting the baseline vigilance to p, = 0.0, fuzzy ARTMAP
achieves an accuracy of 83%, while compressing the input data into 89 F§ categories, a
50:1 compression ratio. By manipulating a single parameter (the value of the baseline vig-
ilance, p,) fuzzy ARTMAP can trade off between optimal performance, with some code
compression, or very high code compression, with reasonable performance (Table 2).
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