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Jean-Paul Banquet and Stephen Grossberg

Data reporting correlated changes, due to learning, in the amplitudes and chronometry of several event-
related potentials (ERPs) are compared to neural explanations and predictions of the adaptive resonance
theory. The ERP components processing negativity (PN), early positive wave (P120), N200, and P300 covary
with model processes of attentional priming and top-down expectancy learning, matching of bottom-up input
patterns with learned top-down expectations, mismatch-mediated activation of the orienting subsystem,
reset by the orienting subsystem of recognition codes in short-term memory, and direct activation of
recognition codes via a bottom-up adaptive filter. These model mechanisms enable a recognition code to be
learned in a self-stabilizing fashion in response to an input environment of arbitrary complexity. Thus
spatiotemporal correlations among several ERPs during learning provide important evidence in support of
postulated neural mechanisms for self-stabilizing self-organization of cognitive recognition codes.

I. Introduction

This paper describes a convergence between theo-
retical predictions and recent data concerning event-
related potentials (ERP). The theory in question is
adaptive resonance theory (ART), which was intro-
duced by Grossbergl.2 and has since undergone exten-
sive empirical and formal development. This theory
arose through an analysis of neural mechanisms that
are capable of self-organizing and self-stabilizing the
learning of cognitive recognition codes in response to
arbitrarily complex input environments. Such mech-
anisms can buffer their learning against inappropriate
recoding by the blooming buzzing confusion of a con-
tinuous stream of irrelevant ~xperiences, yet can also
learn quickly from novel environments which are im-
portant to behavioral survival.

This dynamic balance between memory stability
and adaptive plasticity is controlled by the action of
learned top-down expectations and pattern matching
processes. An ideal experimental paradigm for test-
~g such a theory is thus one in which expectations are

learned, matching processes are parametrically ma-
nipulated, and the experimental measures are sensi-
tive to state-dependent patterning of neuronal activi-
ties across large ensembles of cells. Banquet et al.,3-7
Johnson and Donchin,8 and Squires et al.,9 have col-
lected such data from event-related potential (ERP)
experiments designed to determine the influence of
probabilistic contextual information on processing
strategies in a choice reaction time (RT) task.

The goal herein is to compare theoretical predictions
of the adaptive resonance theory to data concerning
the transformations which occur among four ERP
components-processing negativity (PN), early posi-
tive wave (P120), N200, and P300-as learning pro-
ceeds (Table I). The theory anticipated the discovery
of two of these components-processing negativityl0
or Ndll and early positive wave. 12,13 The data of Ban-
quet et al.3,4,G,7 provide detailed information which
supports the theoretically postulated correlations be-
tween these waves. These data were selected herein
for particular comparison with ART mechanis~s be-
cause they analyze how the waveforms of several ERP
components covary across experimental trials during
which recognition learning occurs. Such spatiotem-
poral correlations provide a much stronger test of theo-
retical predictions than do ERP data which describe
only the existence of an individual ERP component or
the behavior of an individual component during per-
formance trials which do not include a learning ma-
nipulation. Relevant ERP data from a number of
other laboratories will also be discussed.
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Table I. Interpretation of ERPs In Terms of ART Mechanisms

ERP ART mechanism

P120
N200

P300

Read-out learned top-down expectation from processing
level F 2 to processing level F 1 and amplification of total
activity at F 1 in a match situation.

Reduction of total activity at F 1 in a mismatch situation.
Disinhibition of the orienting subsystem A in a mismatch

situation.
Reset of short-term memory at F2.

proximate match can deform, amplify, and sustain in
short-term memory (STM) the activity pattern that
was initially activated by the input within the atten-
tional subsystem. Amplified, or resonant, STM activ-
ities throughout the attentional subsystem constitute
the fully elaborated recognition event. They inhibit
the orienting subsystem and engage the learning, or
long-term memory (LTM), process. A familiar event
can maintain or modify its prior learning as its recogni-
tion takes place.

An unfamiliar event also starts to be processed by
the attentional subsystem. Such an event may also
activate a recognition code which thereupon reads-out
a top-down template. If the unfamiliar event can
approximately match this template, it can be recog-
nized as an exemplar of the recognition code on its first
presentation. If the unfamiliar event is too different
from familiar exemplars of the sampled code, it cannot
approximately match this template. A sufficiently
large mismatch within the attentional subsystem acti-
vates the orienting subsystem. Activation of the ori-
enting subsystem functionally expresses the novelty,
or unexpectedness, of the unfamiliar event. The ori-
enting subsystem, in turn, rapidly resets the active
representation within the attentional subsystem as it
simultaneously energizes an orienting response.

The reset of the attentional subsystem by the orient-
ing subsystem leads to the selection of a new represen-
tation within the attentional subsystem. This new
representation may cause yet another mismatch,

INPUT
PATTERN

Fig. 1. Anatomy of the attentional-orienting system: Two succes-
sive stages, F 1 and F 2, of the attentional subsystem encode patterns
of activation in short-term memory (STM). Bottom-up and top-
down pathways betweenFl andF2contain adaptive long-term mem-
ory (L TM) traces which multiply the signals in these pathways.
The remainder of the circuit modulates these STM and L TM pro.
cesses. Modulation by gain control enables F 1 to distinguish be-
tween bottom-up input patterns and top-down priming, or template,
patterns, as well as to match these bottom-up and top-down pat-
terns. Gain control signals also enable F 2 to react supraliminally to
signals from F 1 while an input pattern is on. The orienting subsys-
tem generates a reset wave to F 2 when sufficiently large mismatches
between bottom-up and top-down patterns occur at Fl, This reset
wave selectively and enduringly inhibits active F2 cells until the
input is shut off. (Reprinted with permission from Carpenter and

Grossberg}S)

A brief review is first given of the main operations
postulated by the adaptive resonance theory. More
detailed recent expositions are given by Grossberg14.15
and by Carpenter and Grossberg.16-19 The Carpenter
and Grossberg articles describe, moreover, mathemat-
ical analyses and computer simulations which charac-
terize the trial-by-trial course of category learning and
recognition in a number of specific examples. The
theoretical introduction in Secs.lI- VII is followed by a
summary of the meaning of the different ERPs in Sec.
VIII and a presentation of the experimental data in
Sec. IX. The remainder of the paper compares theory
with data and calls attention to theoretical predictions
which have not yet been supported or disconfirmed by
ERP experiments.

II. Attentlonal Subsystem and Orienting Subsystem

Within the adaptive resonance theory, interactions
between two functionally complementary subsystems
are often used to process familiar and unfamiliar
events. An attentional subsystem learns evermore
precise internal representations of familiar events. It
also builds up the learned top-down expectations that
help to stabilize the learned bottom-up recognition
codes of familiar events. By itself, however, the atten-
tionalsubsystem is unable simultaneously to maintain
stable representations of familiar recognition codes
and to create new recognition codes for unfamiliar
patterns in response to certain input environments.
An isolated attentional subsystem may be either too
rigid to create new categories for unfamiliar patterns,
or so unstable that it can ceaselessly recode the catego-
ries for familiar patterns as it learns about unfamiliar
patterns}.16.18 The latter difficulty is typical of many
learning systems whose plasticity is not switched off
through time.

The second subsystem is an orienting subsystem
that overcomes the rigidity of the attentional subsys-
tem when unfamiliar events occur and enables the
attentional subsystem to learn from these novel expe-
riences without destabilizing its established learning.
Interactions between the attentional subsystem and
the orienting subsystem are essential for expressing
whether a pattern is familiar and well represented by
an existing recognition code, or unfamiliar and in need
of a new recognition code.
.All input events start to be processed by the atten-
tionalsubsystem. A familiar event can activate a rec-
ognition code which reads out a top-down template, or
expectation, which is matched against the input within
the attentional subsystem (Fig. 1). A successful ap-
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Fig. 2. Stages of bottom-up activation: The input pattern! gener-
ates a pattern ofSTM activation X = (Xl,x2,.. .,xm) across the nodes
/Ii of Fl, Sufficiently active Fl nodes emit bottom-up signals h(x;) to
F2. This signal pattern, which is denoted by S in Fig. 3, is multi-
plied, or gated, by long-term memory (L TM) traces Zij within the F 1
-.F 2 pathways. The L TM gated signals are summed before activat-
ing their target nodes in F2. This LTM gated and summed signal
pattern, which is denoted by T in Fig. 3, generates a pattern of
activation Y = (XM+hXM+2," .,XN) across the nodes IIj of F2. (Re-

printed with permission from Carpenter and Grossberg.1S)

hence another STM reset event and the selection of yet
another representation. In this way, the orienting
subsystem mediates a rapid search which continues
until a representation is found that does not cause a
large mismatch. Then the search ends, an STM reso-
nance develops, and the L TM learning process can
encode the active representation to which the search
led. The system's recognition codes are hereby al-
tered in either of two ways. If the search leads to an
established code, learning may refine the criteria,
namely, the LTM bottom-up code and top-down ex-
pectation, for accessing that code. If the search leads
to uncommitted cells, learning can add a new learned
representation to the total recognition code.

III. Bottom-Up Adaptive Finering and Contrast-
Enhancement in Short-Term Memory

The main mechanisms of the theory are now intro-
duced in a qualitative way by considering the typical
network reactions to a single input pattern I within a
temporal stream of input patterns. Each input pat-
tern may be the output pattern of a preprocessing
stage. The input pattern I is received at the stage F lof
the attentional subsystem. Pattern I is transformed
into a pattern X of activation across the nodes of F 1
(Fig. 2). The transformed pattern X represents a
pattern in short-term memory (STM). In Fl each
node whose activity is sufficiently large generates ex-
citatory signals along pathways to target nodes at the
next processing stage F2. A pattern X of STM acti-
vates across F 1 hereby elicits a pattern S of output
signals from F 10 When a signal from a node in F 1 is
carried along a pathway to F 2, the signal is multiplied,
or gated, by the pathway's long-term memory (LTM)
trace. The L TM gated signal (i.e., signal times L TM
trace), not the signal alone, reaches the target node.

Each target node sums up all its L TM gated signals.
In this way, pattern S generates a pattern T of LTM
gated and summed input signals toF2 [Fig. 3(a)]. The
transformation from S to T is called an adaptive filter.

The input pattern T to F 2 is quickly transformed by
interactions among the nodes of F 2. These interac-
tions contrast-enhance the input pattern T. The re-
sulting pattern of activation across F2 is a new pattern
Y. The contrast-enhanced pattern Y, rather than the
input pattern T, begins to be stored in STM by F2.

Only those nodes of F 2 which maintain stored activi-
ty in STM can elicit new learning at contiguous L TM
traces. Whereas all the L TM traces in the adaptive
filter, and thus all learned past experiences of the
network, are used to determine recognition via the
transformation I -X -S -T -Y, only those L TM
traces in the pathways S -T whose STM activities Y
in F2 survive the contrast-enhancement process can
learn in response to the activity pattern X.

IV. Top-Down Template Matching and Stabilization of
Code Learning

We now summarize how top-down template match-
ing can stabilize code learning. In order to do so, top-
down template matching atFl must be able to prevent
learning at bottom-up LTM traces whose contiguous
F 2 nodes are only momentarily activated in STM.
This ability depends on the different rates at which
STM activities and LTM traces can change. The
STM transformation I -X -S -T -Y takes place
very quickly; that is, much more quickly than the rate
at which the L TM traces in the adaptive filter S -T
can.change. As soon as the bottom-up STM transfor-
mation X -Y takes place, the STM activities Y in F2
elicit a top-down excitatory signal pattern U back to
Fl, Only sufficiently large STM activities in Yelicit
signals in U along the feedback pathways F2 -Fl,

As in the bottom-up adaptive filter, the top-down
signals U are also gated by L TM traces before the
LTM gated signals are summed at Fl nodes. The
pattern U of output signals from F 2 hereby generates a
pattern V of L TM gated and summed input signals to
Fl, The transformation from U to V is thus also an
adaptive filter. The pattern V is called a top-down
template or learned expectation.

Two sources of input now perturb Fl: the bottom-
up input pattern I which gave rise to the original activi-
ty pattern X, and the top-down template pattern V
that resulted from activating X. The activity pattern
X* across F 1 that is induced by I and V taken together
is typically different from the activity pattern X that
was previously induced by I alone. In particular, Fl
acts to match V against I. The result of this matching
process determines the future course of learning and
recognition by the network.

The entire activation sequence

I-X-S-T- Y- U--- V-X' (1)
takes place very quickly relative to the rate with which
the LTM traces in either the bottom-up adaptive filter
S -T or the top-down adaptive filter U -V can
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Fig. 3. Search for a correct F2 code: (a) The input pattern I
generates the specific STM activity pattern X at F 1 as it nonspecifi-
cally activates A. Pattern X both inhibits A and gener~tes the
output signal pattern S. Signal pattern S is transformed into the
input pattern T, which activates the STM pattern Yacross F2. (b)
Pattern Y generates the top-down signal pattern U which is trans-
formed into the template pattern V. If V mismatches I at FI, a new
STM activity pattern X. is generated at Fl, The reduction in total
STM activity which occurs when X is transformed into X. causes a
decrease in the total inhibition from FI to A. (c) Then the input-
driven activation of A can release a nonspecific arousal wave to F2,
which resets the STM pattern Yat F2' (d) Mter Y is inhibited, its
top-down template is eliminated, and X can be reinstated at Fl,
Now X once again generates input pattern T to F2, but since Y
remains inhibited, T can activate a different STM pattern Y. at F 2.
If the top-down template due to Y. also mismatches I atFl, the rapid
search for an appropriate F2 code continues. (Reprinted with per-

mission from Carpenter and Grossberg.1S)

change. Even though none of the L TM traces changes
during such a short time, their prior learning strongly
influences the STM patterns Y and X* that evolve
within the network. We now review how a match or
mismatch of I and V at F 1 regulates the course of
learning in response to the pattern I.

V. STM Reset and Search

Level F 1 can compute a match or mismatch between
a bottom-up input pattern I and a top-down template
pattern V, but it cannot compute which STM pattern
Yacross F2 generated the template pattern V. Thus
the outcome of matching at F 1 must have a nonspecific
effect on F2 that can potentially influence all the F2
nodes, anyone of which may have read-out V. The
internal organization of F2 must be the agent whereby
this nonspecific event, which is called an arousal burst
or a reset wave, selectively alters the stored STM activ-
ity pattern Y. A mismatch of I and V within F 1 gener-
ates a nonspecific arousal burst that inhibits the active
populations in F2 which read-out V. In this way, an
erroneous STM representation Y atF2 is quickly elimi-
nated before any L TM traces can encode this error.

The attentional subsystem and the orienting subsys-
tem work together to carry out these interactions. All
learning takes place within the attentional subsystem.

All matches and mismatches are computed within the
attentional subsystem. The orienting subsystem is
the source of the nonspecific arousal bursts that reset
STM within level F2 of the attentional subsystem.
The outcome of matching withinFI determines wheth-
er such an arousal burst will be generated by the ori-
enting subsystem. Thus the orienting system medi-
ates reset of F 2 due to mismatches within F 1-

Figure 3 depicts a typical interaction between the
attentional subsystem and the orienting subsystem.
In Figure 3(a), an input pattern I instates an STM
activity pattern X across F 1- The input pattern I also
excites the orienting population A, but pattern X at F 1
inhibits A before it can generate an output signal.

Activity pattern X also generates an output pattern
S which, via the bottom-up adaptive filter, instates an
STM activity pattern Yacross F2. In Fig. 3(b), pat-
tern Y reads a top-down template pattern V into F1-
Template V mismatches input I, thereby significantly
inhibiting STM activity across F 1- The amount by
which activity in X is attenuated to generate X* de-
pends on how much of the input pattern I is encoded
within the template pattern V.

When a mismatch causes a sufficient attenuation of
STM activity across F 1, this activity no longer prevents
the arousal source A from firing. Typically, if the total
activity in X* is less than a fIXed fraction of the total
activity in X, then A is activated. This fraction is
called the vigilance parameter of the network.18,19
The vigilance parameter can be altered by environ-
mental feedback, notably punishment. Higher vigi-
lance enables the network to make fmer discrimina-
tions between pattern exemplars and to learn more
selective recognition codes. Lower vigilance has the
opposite effect. .,

Net activation of the orienting subsystem A is due to
reduction in the total inhibition fromFI to A when the
total activity X* decreases due to a pattern mismatch.
Thus A is activated due to a disinhibitory process.
Figure 3(c) depicts how disinhibition of A releases a
nonspecific arousal burst to F 2. This arousal burst, in
turn, selectively inhibits the most active populations in
F 2. This inhibition is long-lasting. One physiological
design for F 2 processing which has these reset proper-
ties is a gated dipole field.15,20,21 A gated dipole field
consists of opponent processing channels whose sig-
nals are multiplied, or gated, by habituating chemical
transmitters. A nonspecific arousal burst induces se-
lective and enduring inhibition within a gated dipole
field.

In Fig. 3(c), inhibition of Yleads to inhibition of the
top-down template V, and thereby terminates the mis-
match between I and V. Input pattern I can thus
reinstate the activity pattern X across F 1, which again
generates the output pattern S from F1 and the input
pattern T to F2. Due to the enduring, arousal-initiat-
ed, selective inhibition at F2' the input pattern T can
no longer activate the same pattern Yat F2. A new
.pattern y* is thus generated at F2 by I [Fig. 3(d)].
Despite the fact that some F2 nodes may remain inhib-
ited by the STM reset property, the new pattern y*
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does F 1 know that it should generate a suprathreshold
reaction to a bottom-up input pattern but not to a top-
down input pattern? In both cases, an input pattern
stimulates F 1 cells. Some auxiliary mechanism must
exist to distinguish between bottom-up and top-down
inputs. Such considerations led Grossberg15.22 to dis-
tinguish this auxiliary mechanism, called attentional
gain control, from attentional priming by the top-
down template itself. Carpenter and Grossberg16.l8
have developed this qualitative distinction into a
quantitative computational mechanism, and Gross-
berg and StoneZ3 have used the distinction to help
explain data from word recognition experiments.

In particular, the attentional priming mechanism
delivers specific template patterns to Fl, The atten-
tional gain control mechanism has a nonspecific effect
on the sensitivity with which Fl responds to the tem-
plate pattern, as well as to other patterns received by
Fl, With the addition of attentional gain control, a
qualitative explanation can be given of how F 1 can tell
the difference between bottom-up and top-down sig-
nal patterns.

The need to dissociate attentional priming from at-
tentional gain control can also be seen from the fact
that top-down priming events do not lead necessarily
to subliminal reactions at Fl, Under certain circum-
stances; top-down expectancies can lead to supra-
threshold consequences. Internal conversations or
images can, for example, be experienced at will. Thus
a difference exists between the read-out of a top-down
template, which is a mechanism of attentional prim-
ing, and the translation of this operation into supra-
threshold signals due to attentional gain control. An
act of will can amplify attentional gain control signals
to elicit a suprathreshold reaction at F 1 in response to
an attentional priming pattern from Fz.

Figures 4(a)-( c) depict a scheme whereby subliminal
reactions to top-down signals, supraliminal reactions
to bottom-up si~, and supraliminal reactions to
matched bottom-up and top-down signals can be
achieved. Figure 4(d) shows how competitive interac-
tions between the attentional gain control mechanisms
of different modalities can prevent F 1 from automati-
cally generating a supraliminal reaction to bottom-up
signals when attention shifts from that modality to
another.

may encode large STM activities. This is because
level F2 is designed so that its total suprathreshold
activity remains approximately constant, or normal-
ized, despite the fact that some of its nodes may remain
inhibited by the STM reset mechanism. This proper-
ty is related to the limited capacity of STM. A physio-
logical process capable of achieving the STM normal-
ization property, based on recurrent on-center off-
surround interactions among cells obeying membrane
equations, is described by Grossberg.15,2o,21

The new activity pattern Y* reads-out a new top-
down template pattern V*. If a mismatch again oc-
curs at F 1, the orienting subsystem is again engaged,
thereby leading to another arousal-mediated reset of
STM atF2. In this way, a rapid series of STM match-
ing and reset events may occur. Such an STM match-
ing and reset series controls a search of L TM that
sequentially engages the novelty-sensitive orienting
subsystem. The mismatch-mediated search of L TM
ends when an STM pattern across F 2 reads-out a top-
down template which either matches I, to the degree of
accuracy tolerated by the orienting subsystem due to
the setting of the vigilance parameter, or which has not
yet undergone any prior learning. In the former case,
the bottom-up code and top-down template of the
selected representation may be refmed by learning any
new information that is in the input exemplar I. In the
latter case, a new recognition code is established as a
bottom-up code and top-down template are learned
for the fmt time by the selected representation in
response to I.

The mismatch-mediated search of STM at F2 may
profitably be thought of as a sequential test ofhypoth-
eses. Each reset wave from A to F2 inhibits an incor-
rect hypothesis. The next input wave from F 1 to F 2 is
evaluated conditional on the hypothesis that the previ-
ous interpretations by F2 of the input atF1 were incor-
rect. Thus an adaptive resonance theory architecture
is a cognitive system capable of discovering, testing,
and learning hypotheses in a stable fashion in response
to input environments whose statistical properties
may change unpredictably or may be arbitrarily com-
plex.

VI. Attentional Gain Control and Attentional Priming
The same top-down template matching process

which stabilizes learning is also a mechanism of atten-
tional priming. Consider, for example, a situation in
which F 2 is activated by a level other than F 1 before F 1
is itself activated. In such a situation, F2 can generate
a top-down template V to F 1- The level F 1 is then
primed, or ready, to receive a bottom-up input that'
may or may not match the active expectancy. LevelF1
can be primed to receive a bottom-up input without
necessarily eliciting suprathreshold output signals in
response to the priming expectancy. If this were not
possible, every priming event would lead to supra-
threshold consequences. Such a property would pre-
vent subliminal anticipation of a future event.

On the other hand, an input pattern I must be able to
generate a suprathreshold activity pattern X even if no
top-down expectancy is active across F1 (Fig. 3). How

VII. Matching via the 2/3 Rule

A rule for matching bottom-up input patterns with
top-down templates, called the 2/3 Rule,16,lS follows
naturally from the distinction between attentional
gain control and attentional priming. It says that two
out of three signal sources must activate an F 1 node for
that node to generate suprathreshold output signals.
In Fig. 4(b), for example, during bottom -up processing,
a suprathreshold node in Fl is one which receives a
specific input from the input pattern! and a nonspecif-
ic attentional gain control signal. All other nodes in F 1
receive only the nonspecific gain control signal. Since
these cells receive inputs from only one pathway, they
do not fIre.
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Fig. 4. Matching by 2/3 Rule: (a) A top-down template from F2
inhibite the attentional gain cQntrol source as it subliminally primes
targetF1 cells. (b) A bottom-up input activates both the (nonspecif-
ic) attentional gain control channel and certain Fl cells. Only Fl
cells that receive bottom-up inputs and gain control signals can
become supraliminally active. (c) When a bottom-up input pattern
and a top-down template are simultaneously active, only those Fl
cells that receive inputs from both sources can become supraliminal-
ly active, since the gain control source is inhibited. (d) Intermodal
competition can shut off the attentional gain control source and
thereby prevent a bottom-up input from supraliminally activating

F 1 when attention is directed to a different modality.

In Fig. 4(a), during top-down processing, or priming,
some nodes in FI receive a template signal from F2,
whereas other nodes receive no signal whatsoever. All
the nodes of F I receive inputs from at most one of their
three possible input sourCes. Hence no cells in Flare
supraliminally activated by a top-down template.

During simultaneous bottom-up and top-down sig-
naling, the attentional gain control signal is inhibited
by the top-down channel [Fig. 4(c)]. Despite this fact,
some nodes of FI may receive sufficiently large inputs
from both the bottom-up and the top-down signal
patterns to generate suprathreshold outputs. Other
nodes may receive inputs from the top-down template
pattern or the bottom-up input pattern, but not both.
These nodes receive signals from only one of their
possible sources, hence do not fire. Cells which receive
no inputs do not fIre either. Thus only cells that are
conjointly activated by the bottom-up input and the
top-down template can fire when a top-down template
is active. The 2/3 Rule clarifies the apparent paradox
that the addition of top-down excitatory inputs to F I
can lead to an overall decrease, or collapse, in the F I
STM activity [Figs. 3(a) and (b)]. Carpenter and
GrossbergI8 have shown that learning may become
unstable if the 2/3 Rule is violated, but is absolutely
stable when the 2/3 Rule is reinstated.

ERP. The term component is attributed to an inde-
pendent source of variability or a generator of the ERP
waveform.

An early component (100 ms) labeled Nd (negative
displacement) was first demonstrated by Hillyard et
al.24 in a dichotic listening experiment with short (100-
800-ms) random interstimulus intervals (ISI). The
attended stimuli elicited an enhanced negativity at
"'100 ms from stimulus onset (N1), compared to the
N1 elicited by an identical but unattended stimulus to
the other ear. The authors interpreted this effect as a
selective increase of the activity in the N1 generators
and related it to the stimulus set mechanism of early
stimulus filtering on the basis of physical features,
which was proposed by Broadbent.25

With a longer and constant ISI (800 ms), Naatanen
et aVo observed a selective attention effect going be-
yond the time window of the N1 component and ex-
tending for several hundred milliseconds. These au-
thors proposed that this negative shift expresses a
different ERP component of endogenous origin (the
N1 being exogenous) which they labeled the processing
negativity (PN). PN can be taken as an early sign of
selective attention in a dichotic listening program.
Our paradigm, however, is not a situation of dichotic
listening; two identical stimuli in the two ears have to
be attended. Nevertheless, a selection has to be made
between what is a stimulus and what is not, and also
between target and nontarget. Since the experimen-
tal situation and the method of subtraction by which
our negativity has been revealed differs from the previ-
ous ones, the first endogenous negative component will
be called early negativity (EN).

An early centroparietal positivity was first described
as a P165 by Goodin et aU3 and as a P100 by Desmedt
et aV2 in response to auditory and somesthesic stimu-
li, respectively. In both cases, the early positivity
(EP) was elicited by attending rare relevant target
stimuli. A P165-N200-P300 complex was observed in
attended sequences of deviant tones compared with
standard tones.26 The early positivity was interpreted
either as an early manifestation of decision processes
related to the later N200-P300 potentials13 or as an
expression of the process of sorting out and identifying
input signals against target templates.12

The N200 wave of the ERPs has been one of the less
easy to interpret, largely because it reflects the exis-
tence of multiple components. We will mention here
only the two most widely accepted components of the
N200 deflection. The N2a was named ~ismatch neg-
ativity (MMN) by Naatanen et aVo because of its
occurrence in response to stimuli physically deviant
from those in the immediate past, be they attended or
unattended. This is in contrast to the PN which can
be elicited only by attended stimuli. MMN is sensi-
tive to dynamic changes in the stimuli presented, such
as pitch or intensity, and to the magnitude of the
change. In an attention condition, it precedes or over-
laps the P165-N200-P300 complex, which is more cen-
trally located. MMN seems therefore to represent an
automatic process which is not influenced by selective
attention. It could reflect short-duration memory

VIII. ERP Components
The understanding of the experimental results and

of the discussion requires a brief presentation of the
main ERP components. The term wave or deflection
refers to the different possible morphologies of an
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On the contrary, P3b is a later component elicited by
attended task-relevant target stimuli. Subjective
probability, stimulus meaning, and information trans-
mission are the three dimensions used in the model of
Johnson40 to explain variations in P3b amplitude.
Since P3b covaries with so many different variables, it
has also been suggested that it represents a general
subroutine invoked in different cognitive operations,
such as updating of the context or of models of the
environment.31,41 Grossberg14,42,43 postulated the ex-
istence of two parallel output pathways from the ori-
enting subsystem A whose effects on their target net-
works may be compared with data about the P3a and
P3b, as in Sec. XI. One branch, from A to the atten-
tional subsystem (Sec. II), causes reset of STM. The
other branch of A activates processes associated with
the orienting response, including processes which gate
the release of orienting movements. Recent relation
of P3b amplitude to the quality of subsequent recall
seems to confirm the association of P3b to short-term
memory processes.40,44

IX. Experimental Paradigm

processes such as sensory registers or preattentive
storage taking place in the sensory cortex.26

N2b (Refs. 27 and 28) is a negative component which
precedes P300. The topography of N2b is distributed
across modalities. It is elicited by temporally unex-
pected or rare stimuli. Its occurrence depends not
only on the degree of stimulus change, but also on the
orientation of focal attention to the stimulus source.
N2b could also reflect transient activation of the sub-
cortical centers releasing the orienting reflex.29

P300 has been one of the most explored ERP deflec-
tions since its discovery by Sutton et al.30 First ex-
plained in terms of different psychological constructs
(task relevance, expectancy, equivocation) or theories
(information theory, signal detection theory), it was
later explored for its specific functional role, as a scalp
manifestation of information transactions in the
brain.31 P300 soon also appeared to be a non unitary
phenomenon. Squires et al.,32 examining P300s in
response to occasional shifts in ongoing trains of tones
in conditions of attention and nonattention, found
components of different latency and topography dur-
ing the nonattended (P3a) and the attended (P3b)
conditions. Courchesne et al.33,34 further investigated
various ERP components in situations of novelty.

The P3a wave, ever since its discovery ,32 appeared to
reflect events distinct from the ~b complex. In some
experiments, a P3a was elicited by an unpredictable
shift in an ongoing repetitive series of auditory stimuli
even though the sounds were task irrelevant or not
attended.35-37 Conversely, in dichotic listening
taskslO or in distraction situations with slightly deviant
auditory stimuli,28,29 no P3a was elicited. Only an
N200 mismatch negativity could be recorded. These
apparently contradictory results may be explained by
the fact that at present there is no reliable measure of
the degree of subjects' awareness of the sti~ulus shift
in the ignore condition. It could well turn out that the
dichotic listening paradigm is a better guarantee of a
true unattended situation than a simple ignore in-
struction. In any case, the N200-P3a complex has
been interpreted by most authors as a reflection of a
mismatch detector.32,38 Courchesne34 has shown that
the P300 amplitude response to novel events shifts
from a frontal to a parietal maximum with repeated
presentations. More recently, It has been shown that
this component is less sensitive to the prior probability
of events than P3b.3,4 Munson et al.39 have also de-
scribed a similar component, P300E, which does not
react to prior probability. Therefore, the individual-
ity of P3a from P3b seems clear.

The frontocentral P3a thus occurs, not only for at-
tended task-relevant events, but also for unattended,
task-irrelevant intermittent stimuli, its amplitude be-
ing related to the degree of physical contrast with the
background and to immediately preceding probability
rather than prior probability per se.4 The similarity of
these eliciting conditions with those of N200 led sever-
al authors to regard N2b and P3a as aspects of the same
process and, in particular, to relate it to the orienting
reaction.

A. Hypotheses
The original purpose of the experimental research

was to determine the influence of probabilistic contex-
tual information45.46 on processing strategies in a
choice RT task.3.4.6.7 This influence of contextual
probability processing on single trial processing, for
events delivered in Bernoulli sequences, was suggested
by previous results.47 These results showed how chro-
nometry and amplitude evolution of P300 during prac-
tice were correlated with performance. Subjects were
divided into high performance and low performance
groups.

In the high performance group, the P300 peak oc-
curred after the reaction time (RT) and increased in
amplitude with practice. Conversely, in the low per-
formance group, P300 peaked before RT, and its am-
plitude decreased with practice. Such variable timing
of RT and P300 was first demonstrated by Ritter et
al.48 A possible interpretation of these data was that
more thorough processing and/or use of the probabili-
ty information (indexed by P300 amplitude) was car-
ried out by the better performing group.

B. Experimental Procedure
One of the simplest ways to manipulate the degree of

contextual processing is a passive learning procedure
in an oddball paradigm with a choice RT task. In an
oddball paradigm, the subject receives Bernoulli series
of two types of stimuli of complementary probability.
One of the stimuli is frequent or standard; the other is
rare and usually serves as the target. The subject has
to perform a task such as counting target stimuli or
releasing a motor response in response to each target
stimulus.

In this experiment, Bernoulli series of high-pitched
(2000-Hz) and low-pitched (500-Hz) tones of equal
intensity and duration (10 ms) were delivered through
headphones at fixed ISI (1500 ms). Target probabili-
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overlapping of N100 and P200 exogenous evoked po-
tentials on the early endogenous ERPs. The results
were tested by a two way repeated measures analysis of
variance. Only results at p < 0.01 were considered
significant} Factorial analysis45.52.53 was also per-
formed on these ERP data.

In a Go/No Go paradigm, a motor response is made
only to the target stimulus. However, to selectively
perform this response, both target and nontarget stim-
uli are relevant and thus must be actively attended and
processed. This is confirmed by the approximately
equal amplitudes of the ERP components to targets
and nontargets of equal probability, thereby showing
an absence of task effect.3

The absence of task effect on the amplitude of the
ERPs in this experiment (Go and No Go ERP profiles
are similar) indicates: (1) the preeminence of proba-
bility over other factors in determining the amplitude
of N200 and P300; (2) the efficacy of the random
washout session (0.5/0.5) between the two learning
sequences of complementary probability (0.8/0.2 and
0.2/0.8), even if it cannot be excluded that the learning
in the second sequence of runs was faster than in the
first one. The absence of task effect enables the com-
parison of No Go ERPs with RTs in the same probabil-
ity condition, since Go and No Go ERP amplitudes are
similar. These nontarget data provide ERP measures
of cognitive processing that are relatively uncontami-
nated by motor components and are therefore the pri-
mary focus of the experimental analysis.

The analysis of the first experimental session was
broken up into four cases, two of which generate almost
identical ERP profiles: (1) frequent stimuli in the
early runs (Fe); (2) rare stimuli in the early runs (Re);
(3) frequent stimuli in the late runs (Fi); (4) rare stimu-
li in the late runs (Ri). According to the law of the
stimulus probability effect, faster reaction times were
expected to frequent target stimuli than to rare target
stimuli. In view of previous ERP results, larger ERP

ty was also manipulated: Five consecutive runs of
unequally probable (0.2/0.8 or 0.8/0.2) stimuli were
followed by two runs of equally probable (0.5/0.5)
stimuli and then by five runs of the unequal comple-
mentary probability (0.8/0.2 or 0.2/0.8). Each un-
equal probability run ended after a total of fifteen rare
stimuli had been delivered. One session consisted of
these three consecutive probability conditions.

Subjects performed a Go/No Go task with a lever-
press response to a single type of sound in both high
and low probability conditions. They were not asked
to monitor the probability changes. A second session
was a replication of the first session one week later.
Since perceptual discrimination and motor response
tasks were easy to perform and identical in the differ-
ent probability conditions, it was assumed that RT and
ERP differences over consecutive runs and sessions
would reflect probability learning.

Learning effects could be detected within the para-
digm in two different ways. A within-condition analy-
sis was performed of the unequal probability data for
each session. RTs and ERPs averaged separately dur-
ing the rIrst two runs and the last two runs of each
unequal probability condition (0.2/0.8 and 0.8/0.2)
were compared. A between-session analysis com-
pared the grand averages across the five runs of the
unequal probability conditions.

The shift from unequal to equal probabilities after a
block of five runs served two functions. It created a
mismatch condition in which prior probability learn-
ing in one condition became inappropriate due to the
unsignaled change in probability. In addition, the
block of equal probability runs was chosen sufficiently
long to damp previous learning effects due to unequal
probability, and thereby to prepare the subject for the
reversed unequal probability conditions.

In summary, three experimental factors were ex-
plored by the paradigm: (1) a prior probability factor
due to the different probability conditions; (2) a prac-
tice factor resulting from the five-run blocks and two
sessions for each condition; (3) a mismatch factor by
the unwarned shift in probability.

.../:
A

C. Data Recording and Analysis

EEG was recorded from six electrodes referred to
linked ears, spaced at intervals of 10% of the nasion-
inion distance, starting from F z and including Cz and
P z. Supraorbital and suborbital electrodes around the
right eye monitored ocular potentials. RTs and ERPs
were averaged separately for the different experimen-
tal situations. An analysis of these averaged wave-
forms was described by Banquet et al.3 In the present
article ERPs were measured both by subtracting ERPs
to the frequent stimuli from ERPs to the infrequent
stimuli49.50 and by subtracting the auditory evoked
potentials obtained in a passive situation with purely
random stimuli (no task) from ERPs to both rare and
frequent stimuli in a task situation.3 This last proce-
dure was proposed by Naatanen51 as a better way to
compute processing negativity (PN). The main pur-
pose of both subtraction techniques is to neutralize the
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Fig. 5. Grand average chronograms of the ERPs recorded at p.,
obtained after subtraction of the auditory evoked potentials for each
subject in a passive situation (no task) from the No Go condition of
the task situation. The ERP amplitudes (in microvolts) are dis-
played as a function of time (a unit scale, 100 ms),stimulus probabil-
ity (squares, high probability; circles, low probability), and runs
(dotted lines, first two runs; full lines, last two runs). Cases Fe and
Re (dotted lines with squares and circles, respectively) and casesFI
andRI (full lines with squares and circles, resp~ctively) are superim-

posed.
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analysis of the chronometry and amplitude of the ERP
profiles as a function of probability and learning. We
now summarize the main features of this analysis.

A comparison of the square and circle curves in Fig. 5
showed that the P3b was the first comparison to moni-
tor the prior probability of the stimuli according to the
classical law of the inverse relation between P3b ampli-
tude and stimulus probability. This result confirmed
a multitude of experiments on the P300 probability
effect (see Refs. 41 and 54-56 for a review). In particu-
lar, the inverse relation held both for cases Fe and Re,
which correspond to the first practice runs of the un-
equal probability condition (dotted curves of Fig. 5)
where little expectancy or random expectancy obtain.
These relationships become more obvious when re-
plotted as in Fig. 7(a). The inverse relation persisted
during the two runs of the equal probability condition
which create a condition of erroneous expectancy, as
illustrated in Fig. 7(b).

These results show that P3b monitors quite closely
the actual probability of the stimuli and is relatively
independent of prior expectancies. Independence is
supported by the observation that the relationship of
P3b amplitude to prior probabilitya5 or probability
shifts8 has been shown to adapt after only a few trials.
In the present experiment, the P3b relationship to
probability adapts during the fIrSt runs of practice and
continues even after an erroneous expectancy is gener-
ated by a shift from the unequal probability condition
to the equal probability condition. Yet, such indepen-
dence of P3b from expectancy is only relative because
the inverse relationship between P3b amplitude and
probability is amplified by practice--that is, after the
build-up of an expectancy--as can be seen by the
comparison of the dotted and solid lines in Figs. 5 and
6.

components were expected to rare stimuli than to fre-
quent stimuli.

X. Experimental Results: ERP Profiles

The results will be reported in greater detail else-
where.7 There was good agreement between behavior-
al (RT) and ERP data. At both levels, the four cases
combined to form three patterns or profiles of response
(Fig. 5).

(1) and (2) Cases Fe and Re: During the early runs
of the first session, whether with low or high probabili-
tynontargets (Fig. 5, dotted lines), there was practical-
ly no difference between the ERP profiles in response
to rare or frequent stimuli. The only significant am-
plitude difference occurred for the P300 component at
P z, which is called P3b. In addition, RTs to frequent
and rare stimuli were not significantly different.

(3) Case Fl: In contrast, during the late runs of the
first session, a high probability nontarget caused a
widespread flattening of both negative and positive
components with only one alteration between negativ-
ity and then positivity (full-line square in Fig. 5). Si-
multaneously, RTs decreased dramatically.

(4) Case Rl: Greater amplitude peaks appeared at
three points of the time axes: early positivity P120,
N200 mismatch, and P300. In parallel, RT increased
compared to cases Fe and Re. These trends were even
more striking when the data are replotted as in Fig. 6,
where the peaks of the ERP components are posi-
tioned at their mean latency.

A comparison ofERP amplitudes in cases (3) and (4)
with cases (1) and (2) in light of the functional signifi-
cance of the ERP components is consistent with the
following conclusions. A high-frequency event leads
to learning of an expectancy which tends to be
matched during condition Fl and tends to be mis-
matched during condition Rl. This possibility is sup-
ported by a component-by-component parametric

0'00
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Fig. 6. Mean amplitudes of the ERP components over all subjects
displayed with the same code as in Fig. 5. The peaks were measured
on interpolated maps at their maximum amplitude value, in differ-

.ent locations. Therefore the diagram does not represent a unique
electrode site. Cases He, Le, HI, and LI are superimposed as in the
previous figure. The main advantage of this representation is to
suppress the smoothing of the peaks due to intersubject latency

jitter for the different components.

By contrast with the P3b component, the N200 was
not an early index of stimulus probability. Indeed,
during the fust practice runs (cases Fe and Re), there
was no amplitude difference in the N200 responses to
rare and frequent stimuli at times where .P3b ampli-
tude was already well differentiated [Fig. 7 (a)]. None-
theless, the N200 amplitude difference for high proba-
bility and low probability nontargets became as large,
and in the same direction, as the .P3b difference by the
last runs of the unequal probability conditions (cases
Fl and Rl). Furthermore, N200 amplitude adapted
slowly to stimulus probabilities, whether during the
first runs of the unequal probability conditions or after
the shift from unequal probabilities to equal probabili-
ties. This lag of N200 suggests that this component
may reflect a learning process, which develops slowly
compared to the rate of P3b adaptation to stimulus
probabilities.

At an earlier stage of processing, a positivity (P120
ms) abrubtly interrupts the early negativity (EN), but
only in case Rl (Figs. 5 and 6). This result suggests
that the P120 component reflects the mismatch of a
learned expectancy with a rare (low probability) non-
target. A similar type of component has already been
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Fig. 7. Relative amplitudes of the N200 and P3b components are
plotted as a function of stimulus probability and practice. (a) First
runs, no practice; last runs, end of the session. (b) Relative ampli-
tude of the N200 and P3b components are plotted as a function of
stimulus probability and the relative ordering of the probability
condition blocks. The transition from unequal to equal probability
is accurately reflected by the P3b amplitude. The response of N200
to equal probability continues to reflect the previous unequal proba-

bility condition.

described by Desmedt et aU2 and Goodin et aU3 in
analogous conditions.

Finally, a negative potential arises ,...,100 ms prior to
stimulus delivery in cases Fl and Rl, but only 50 ms
after stimulus delivery in cases Fe and Re (Fig. 6). We
suggest that the learning of the expectancy which leads
to the P120 in a mismatch situation (case Rl) is reflect-
ed by the shift in onset of this negative component with
respect to the stimulus. Thus relationships among
changes in components across conditions Fe, Re, Fl,
and Rl provide additional constraints on the possible
interpretations of each component.

XI. Comparison of ERP Profiles with Adaptive
Resonance Theory Mechanisms

Adaptive resonance theory models how neural infor-
mation is processed in a cyclic fashion in both the
bottom-up and the top-down directions. Top-down
expectancy read-out and consequent priming of an
expected event cali be induced in at least two ways: by
instruction, as in a dichotic listening paradigm wherein
the subject is asked to selectively pay attention to only
one channel, and in this channel to a single target
stimulus; or if there is no preselected channel and all
stimuli must be attended, by practice of Bernoulli
series in unequal probability conditions wherein the
subject learns to expect the most frequent stimulus.
Both cases result in a priming of the expected stimulus.

In the latter condition, prior to any practice there is no
clearly defined expectancy about the forthcoming in-
puts. Thus top-down expectancy read-out can at first
be triggered only by the initiation of bottom-up filter-
ing and coding. As practice proceeds, however, top-
down expectancies become progressively better
learned, and hence stronger and more precise. In
addition, internal representations which control these
top-down expectancies may perseverate in short-term
memory if they are frequently reactivated by their
target stimuli. Thus, as learning proceeds, the bal-
ance between bottom-up and top-down processing
may shift, such that top-down processes may become
more dominant in the information processing chain.
Then specific expectancies about the nature of future
events may be read-'out without prior bottom-up pro-
cessing. Subliminal priming of F 1 by such a top-down
template generates a faster supraliminal activation to
a matched bottom-up input, but delays the response to
a mismatched event which attenuates F 1 activation
and drives the search for a better hypothesis unless the
gain of F 2 is set too high to prevent easy reset. A more
detailed correspondence between observed ERP com-
ponents and adaptive resonance theory mechanisms
will now be articulated.

We flrst consider the negativity which arises during
cases Fl and Rl. In these cases, the negativity arises
prior to the delivery of the stimulus (Fig. 6). Right
after the stimulus delivery, the electrical activity pro-
files diverge according to whether an expectancY is
either matched or mismatched. In the Fl case of ex-
pectancy match, the electrical proflle exhibits only one
alternation between negative and then positive activi-
ty. We suggest that the enduring poststimulus nega-
tivity includes processing negativity (PN)lO or Nd,24
which is typically recorded in a dichotic listening para-
digm. Indeed, the plateau of activity occurs just be-
fore 100 ms when there is no P120 to interrupt it, and
two peaks, prior to and after 100 ms, can be located
when a P120 is generated. This early negativity (EN)
therefore occurs in the time window of the PN. The
PN component has properties of the match process
between the subliminal template and the input code.
In particular, the negativity is greater in the Fl case.
According to the theory, this match process induces a
supraliminal reverberant STM activity between the F 1
and F2levels. The subliminal priming of Fl by a top-
down template before a stimulus occurs enables Fl to
respond more rapidly to input patterns that match the
primed template.23 This property of F 1 matching is
sufficient to explain the -50-ms difference in RT be-
tween case Fl and case Rl in the target condition. It
can also account for part of the smaller size of the early
negative components in the no expectancy (Fe andRe)
situation.

Although processing negativity of maximal ampli-
tude is elicited by relevant target stimuli, recent re-
sults57 also indicate that the more irrelevant stimuli
resemble the relevant ones, the larger the PN they
elicit, which is consistent with the 2/3 Rule (Sec. VII).
Also consistent with the 2/3 Rule is the striking rever-
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sal in the amplitude relations between the components
EN and N200 across the experimental conditions Fl
and Rl. After 150 ms, Rl shows a greater negativity
than Fl. Indeed, 150-250 ms is the time window of the
N200, which arises in a mismatch condition.

The long duration early negativity is followed by a
minimal amplitudeN200-P300 (Figs. 5 and 6). This is
also expected from the theory. The rapid emergence
of vigorous supraliminal activation at F 1 during expec-
tancy match prevents activation of the orienting sub-
system A (Sec. V) and thereby prevents STM reset of
F 2. Because the N200 is interpreted to reflect the
arousal burst, there is only a small N200 in this match
situation. Since the P300 is interpreted to reflect the
reset of STM at F2, there is only a small P300 in the
match situation.

The alternative case Rl is initiated by occurrence of a
rare stimulus which leads to an expectancy mismatch.
Here the prestimulus negativity and its poststimulus
continuation are abruptly interrupted by an early
«50-ms onset) polarity reversal which peaks at ""'120
ms. A possible interpretation for this pattern of posi-
tive activity (the P120) is the collapse of activity at Fl
due to input-template mismatch (Sec. V). Such an
interpretation would provide strong support for the
theory, because it would confirm that a mismatch be-
tween two input patterns, each of which is generated
by excitatory signals, can cause less activation than the
bottom-up input pattern alone due to the 2/3 Rule.

This interpretation must, however, be tested further
before it is accepted without reservation. The positive
polarity of P120 does not necessarily imply an inhibi-
tory process. The scalp polarity of the evoked poten-
tials depends not only on the nature of the underlying
process (activation or inhibition), but also on the depth
of the concerned neuronal populations. An alterna-
tive explanation is consistent with factorial analysis
results which locate P120 and P300 on the same (unro-
tated) factor and therefore indicate a correlation be-
tween the two components: It may be that P120 con-
veys a similar function to that of P300. This issue is
complicated further by the theory's suggestion that a
causal link exists between P120, N200, and P300 in the
situation of expectancy mismatch, as the following
discussion indicates.

If the interpretation of Pl20 as a measure of mis-
match at F 1 is confirmed, the next property provides
even stronger support for the theory because it mirrors
the theory's postulated causal link between mismatch
within the attentional subsystem at F 1 and activation
of the orienting subsystem at A. In the theory, mis-
match causes a collapse of F 1 activation (interpret:
P120), which thereby disinhibits the activation of A
(interpret: N200). Thus within the situation of ex-
pectancy mismatch, one expects to find a maximal
N200. Moreover, one expects to find that the two
electrical indices P120 and N200 should covary in am-
plitude across experimental trials even though they are
of opposite polarity. This relation is verified in Fig. 5.
Therefore, the experimental results provide striking
support for the hypothesis of a mismatch-mediated

1

burst of arousal. Further experimental tests of this
correlation in other experimental paradigms which in-
clude a learning manipulation and a mismatch condi-
tion are much to be desired.

TheN200 has a major modality-specific component
N2a or MMNIO,28 whose location depends on the na-
ture of the stimulus.49 A nonspecific component, N2b,
peaking in the frontocentral region is added when at-
tention is directed to the stimulus.27,28 Both are large-
ly overlapping in time and space. Further experimen-
tation is needed to determine which of the two
represents the arousal burst. For the orienting sub-
system to work well, each F1-F2 processing channel
must be able to calibrate its own internal mismatches
by evaluating the collapse in STM activity at F 1
against the total excitatory input to its orienting sub-
system A [Fig. 3(b)]. Mter this comparison is carried
out at A to determine whether an arousal burst should
be released, A can, in principle, broadcast this arousal
burst to a single F2 level or to several F2 levels in
different modalities. This is possible because the
STM reset signal is nonspecific; it need not encode
detailed featural properties of any code or modality.
The actual distribution field of each orienting subsys-
tem A to its target modalities also requires further
experimental study.

It remains to consider how the data compare to the
theoretical concept that activation of A causes a reset
of STM at F 2. We compare activation of A with data
about N200 and reset of STM at F2 with data about
P300. In the model, such an STM reset can initiate a
rapid series of mismatch-mediated STM reset events,
which constitute a search for an appropriate F2 code
(Fig. 3). This hypothesis testing scheme of the theory
utilizes both the attentional and the orienting subsys-
tems disposed in parallel, even though the search
which they generate operates sequentially in time. It
is well known since Sternberg's seminal experiments
that each single hypothesis testing cycle is very fast,
not exceeding 40 ms.58 Each rapid reset of the F 2 level
causes an enduring inhibition of the previously most
active F 2 cells in order to allow for the sequential
testing of new hypotheses, as well as to avoid error
perservation. It is hereby suggested that, in a task
requiring iterative hypothesis testing, the search pro-
cess could be reflected by a rapid succession of N200
negative components which may merge with an incre-
mental build up of P300 positivity resulting from en-
during reset-contingent inhibition.

In support of this conception, it is found in many
complex tasks that the reaction time (RT) may occur
hundreds of milliseconds after the positivity onset.
Thus several search cycles may be needed before a code
capable of meeting a behavioral criterion is accessed.
The masking of individual search cycles by an endur-
ing and cumulative inhibition may partially explain
this delay. Kramer et ai.59 have reported further data
which are consistent with this analysis. They have
shown in a varied mapping paradigm that a larger
N200 merges with a late frontal negativity when the
memory set size is increased from one to four items. It
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was concluded that the prolonged negativity may re-
flect the need for additional controlled processing of
the stimuli in the mismatch situation. In the present
experiments, one expects a brief search since the mem-
ory set has only two elements.

The final event to occur, the maximal late positive
complex of P300, has two components: P3a and P3b.
Adaptive resonance theory links two functionally dif-
ferent types of process to the P300 complex: STM
reset and orienting processes. Because the theory ad-
mits multiple coding levels in addition to the simpli-
fied two-level scheme summarized herein,21.23.43.60 one
can envisage within the theory STM reset processes
going on at different levels of perceptual and cognitive
organization. In addition, the STM reset wave elicit-
ed by a nonspecific arousal burst from an orienting
generator A may be distributed either within a sensory
modality or across a wide range of intermodality pro-
cessing levels. Thus one cannot infer from differences
in P300 topography alone qualitative differences in
underlying mechanism or function. Finally, Gross-
bergI4.42.43 pointed out that an orienting generator A
may give rise to two parallel output branches. One
branch, such as the one posited from A to F2' causes
reset of STM. The other branch activates processes
associated with the orienting response, including gain
control signals which gate the release of orienting
movements. The coordinated parallel action of these
two branches can activate rapid movements oriented
toward an unexpected source of information as they
simultaneously prepare STM to efficiently process the
unexpected data. Because the interplay of these ori-
enting and STM reset factors across all relevant pro-
cessing levels may in vivo be complex, we content
ourselves herein with qualitative comparisons between
theory and data and summarize some hypotheses
which are in need of further experimental tests.

Donchin et al.61 have related P3a to a brain equiva-
lent of the somatic orienting response, which is also
related to attention shifts. Our primary attention will
be focused on the theoretical conception of how STM
reset at F2 (and possibly higher levels) is triggered by
an arousal burst from A that is contingent on a pattern
mismatch at F 1-

The major effect of the arousal burst is to inhibit the
most active F 2 cells. Limited capacity STM resources
are hereby freed for reallocation to less active F2 repre-
sentations. Due to this inhibition of the most active
sources of top-down template signals, the mismatch at
FI is eliminated [Fig. 3(c)]. The FI reaction to the
bottom-up input pattern is hereby unmasked and be-
gins once again to activate the FI -F2 adaptive fIlter
[Fig.3(d)].

As this is happening, a complementary effect of the
arousal burst begins to take effect. This effect is the
STM enhancement (dishabituation, unblocking) of F2
representations which previously were only weakly ac-
tivated. This unblocking effect may be intuitively
understood as follows. The previously attenuated
STM representations may have been encoding impor-
tant information which was erroneously unattended,

thereby leading to activation of the wrong hypothesis
and read-out of the wrong expectation. Unblocking
rectifies this error by endowing these STM representa-
tions with large activation levels. Unblocking begins
to occur as the unmasked inputs from F 1 begin to
influence F2. The combination of unblocking at F2
and inputs from F 1 generates a new pattern of activity
across F2; that is, a new code, or hypothesis, is instated
in STM at F 2. Thus reset of STM includes two types
of operation, those which are modulated by learned
top-down expectancies and those which are directly
induced by bottom-up processing of the input. These
functional properties are consistent with the ampli-
tude response of the P3a and P3b components [Fig.
7(a)], which shows a tendency to increase in response
to rare events across learning trials (top-down effect),
as well as base line differences between responses to
frequent and rare events before learning develops
(bottom-up effect).

As noted above, the inhibitory effect of the arousal
burst at F2 is enduring, so that when FI input again
activates F2' perseveration of the old erroneous hy-
pothesis is prevented. This enduring inhibition per-
sists and accumulates when a series of mismatch -medi-
ated arousal bursts develops in a task that triggers
several hypothesis testing cycles. Such hypothesis
testing cycles may generate a sustained F2 inhibition,
or positivity, superimposed on more momentary acti-
vations, or negativities, thereby generating longer late
positive complexes. A different but possibly related
situation is created by increasing the difficulty of a
discrimination task. In this case Ruchkin et al.62-65
have shown an increased amplitude of the slow wave
component. This last component is made of simulta-
neous positive and negative activity, each predomi-
nant at different locations. In summary, the STM
reset properties within a cortical F 2 field, including its
activity-dependent sustained inhibition mechanism,
suggest a physiological model of how properties of P3b
may reflect contextual updating.

According to recent ERP results relating P300 and
memory, during certain strategies of memorization the
amplitude of the P300 component at the moment of
the stimulus delivery is related to the strength of the
consecutive L TM trace.44 Such a result does not, how-
ever, imply that P300 is a direct reflection of the long-
term memorization process. Grossberg14.66 has, for
example, noted that an unexpected event can be stored
in STM with amplified activity by inheriting limited
capacity STM resources from the F2 representations
which it has just reset. These larger STM values can
generate larger learning signals. Larger learning sig-
nals support faster encoding into L TM. Thus the
relationship between P300 amplitude and subsequent
L TM strength may be mediated by properties of the
STM reset process which is hypothesized to be a major
cause of the P300 components.

Adaptive resonance theory has suggested several de-
tailed neural network models which contain candi-
dates for P3a and/or P3b generators. The theory ad-
mits several processes that are candidates for P3a
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generators. Further experiments are needed to decide
between them. One possibility is that aP300 (possibly
a P3a) occurs when the orienting subsystem activates
orienting responses, as it inhibits the midbrain rein-
forcement circuits which motivate consummatory mo-
tor commands.42,43 A second possibility is that a P300
is generated when STM reset atF2 indirectly causes an
STM reset at midbrain reinforcement circuits.14,66
Such a secondary reset can disconfIrm the motivation-
al bias that had been set by the erroneous cognitive
representation. This type of STM reset was predicted
to involve circuits which include the hippocampus.20,42
In partial support of this prediction, P300 activity has
been recorded in the hippocampus67-69 or indirectly
located in this structure. 7° To further clarify this

situation, learning experiments capable of dissociating
cortical and hippocampal generators have been sug-
gested.15,66

It is also worth emphasizing why, even in the absence
of an experimentally trained expectancy, P300 ampli-
tude reflects in real time the difference in stimulus
probability and N200 does not. One explanation of
this derives from the nature of the direct activation of
higher processing levels by lower processing levels in
the theory. Bottom-up STM encoding in the theory is
sensitive to the frequency and temporal ordering of
individual events.21,23,60,71,72 Therefore, even if a top-
down template does not yet differentiate individual
events, STM reset due to direct bottom-up activation
can reflect the prior probability of events. In particu-
lar, less reset of a frequent event may be expected due
to the stronger STM perseveration of that event as a
result of its many previous occurrences.

Although bottom-up activation of certain process-
ing levels is sensitive to event frequency and even to
temporal order, both bottom-up code learning and
top-down template learning can influence the form of
ERPs through time as events become more familiar.
In particular, results reported elsewhere4 demonstrate
the influence of long-term memorization on the P3b
amplitude response. The amplitude of this compo-
nent increases after long-term (I-week interval) learn-
ing, reflecting the learning of new top-down templates.
Simultaneously, the N200 amplitudes to rare and fre-
quent stimuli become less different.7 These results
illustrate that a classification of ERPs in terms of their
different topographies alone provides an insufficient
measure of their functional independence, since direct
bottom-up activation of STM and top-down read-out
from L TM into STM can converge on the same cell
targets and can vary in different ways through time as
a function of the experimental task.

The learning-dependent N200 changes discovered
by Banquet et aU and Banquet and Guenther73 can be
explained using the following concepts. The top-
down template of the frequent stimulus may be
learned relatively rapidly, whereas the template corre-
sponding to the rare stimulus may be learned at a
slower rate. When the frequent stimulus template
alone is active, sharp matches or mismatches would be
expected with the frequent and rare events, respective-

ly. As the template of the rare stimulus is progressive-
ly but more slowly learned, the total top-down tem-
plate becomes a composite of frequent and rare event
templates. In this later phase of learning, pure match-
es or mismatches are replaced by partial matches or
mismatches, due to the presence of both template com-
ponents. This analysis is consistent with the existence
of two learning phases, and with the fact that after
long-term learning, the N200 to rare and frequent
stimuli becomes less different in amplitude. In addi-
tion, the hypothesized difference in the rate of tem-
plate learning in response to frequent and rare stimuli
is supported by the behavioral results which show no
significant difference in RT at the beginning of the
first session, while a large difference occurs by the end
of the first session. This difference results from a
decreased RT to frequent events and an increased RT
to rare events which is consistent with theoretical
properties of matching both frequent and rare events
against a learned template for the frequent event.
Thus, at least during the first session, most of the
learning occurs in response to the frequent event.

XII. Conclusion: the Relationship of Learning to ERPs

The concepts and mechanisms of adaptive reso-
nance theory which are most important for the analysis
of ERPs-Iearning of top-down templates, matching
of bottom-up input patterns with learned top-down
templates, frequency-sensitive bottom-up encoding of
events in STM, activation of the orienting subsystem,
and reset of event codes in STM-were all derived
from an analysis of how a cognitive system can learn
recognition codes in a self-stabilizing and globally self-
consistent fashion. This theoretical framework has,
by now, been useful for analyzing and predicting data
in a number of fields, such as visual perception,2.71.74.75
classical and instrumental conditioning,15.21.66.76-78
speech processing,21.22.60.71,72.79 word recognition and
recall,21-23.71 decision making under risk,60 and self-
organization of cognitive recognition codes,15-19.21 and
has suggested neural principles and mechanisms for
interpreting and sharpening many concepts within the
ERP literature. In particular, the relationship of
adaptive resonance theory concepts to the concepts of
Donchin about P300 are reviewed in Ref. 14 and re-
printed in Ref. 15 and to those of Naatanen about PN
and N200 are reviewed in Ref. 17.

Despite the critical role of learning constraints on
the design of cognitive mechanisms, much of the ERP
literature has utilized performance paradigms to ana-
lyze individual ERPs. It seems to us that an informa-
tive way to understand the role of learning constraints
on the cognitive designs probed by ERPs is to investi-
gate paradigms in which correlated changes in ampli-
tudes and chrometric relationships among several
ERP components as a function of learning are the units
of the experimental and theoretical analysis. The
present article contributes to this enterprise.

Due to the fact that only a small number of ERP
experiments have explicitly tested how multiple ERPs
covary as a function of learning manipulations, many
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more experimental studies of such correlations will be
needed before ART mechanisms are unequivocably
supported in many behavioral situations. It is also to
be expected that such data will provide useful guide-
lines for further theoretical development and refine-
ment. On the other hand, the facts that known ART
mechanisms have predicted both the existence of key
ERPs and their main correlations in available data
provide a hopeful beginning for such a systematic anal-
ysis, as well as a serious challenge to alternative cogni-
tive theories in which these ERP data have no natural
interpretation.
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