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Abstract 
How do visual form and motion processes cooperate to compute object motion when each 
process separately is insufficient? Consider, for example, a deer moving behind a bush.  Here the 
partially occluded fragments of motion signals available to an observer must be coherently 
grouped into the motion of a single object. A 3D FORMOTION model comprises five important 
functional interactions involving the brain’s form and motion systems that address such 
situations. Because the model’s stages are analogous to areas of the primate visual system, we 
refer to the stages by corresponding anatomical names. In one of these functional interactions, 
3D boundary representations, in which figures are separated from their backgrounds, are formed 
in cortical area V2. These depth-selective V2 boundaries select motion signals at the appropriate 
depths in MT via V2-to-MT signals. In another, motion signals in MT disambiguate locally 
incomplete or ambiguous boundary signals in V2 via MT-to-V1-to-V2 feedback. The third 
functional property concerns resolution of the aperture problem along straight moving contours 
by propagating the influence of unambiguous motion signals generated at contour terminators or 
corners. Here, sparse “feature tracking signals” from, e.g., line ends, are amplified to overwhelm 
numerically superior ambiguous motion signals along line segment interiors. In the fourth, a 
spatially anisotropic motion grouping process takes place across perceptual space via MT-MST 
feedback to integrate veridical feature-tracking and ambiguous motion signals to determine a 
global object motion percept. The fifth property uses the MT-MST feedback loop to convey an 
attentional priming signal from higher brain areas back to V1 and V2. The model's use of 
mechanisms such as divisive normalization, endstopping, cross-orientation inhibition, and long-
range cooperation is described. Simulated data include: the degree of motion coherence of 
rotating shapes observed through apertures, the coherent vs. element motion percepts separated 
in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses. 

 
Keywords: motion perception, depth perception, perceptual grouping, prestriate cortex, V1, V2, 
MT, MST 
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Introduction. Visual motion perception requires the solution of two complementary problems of 
motion integration and motion segmentation (Braddick, 1993). Motion integration joins nearby 
signals into a single percept of object motion, while segmentation keeps motion signals separate 
as belonging to different objects. These problems become particularly acute when an object 
moves behind multiple occluders. Then the various object parts are segmented by the occluders, 
but the visual system can often integrate these parts into a percept of coherent object motion. 
Studying conditions under which the visual system can and cannot accomplish correct 
segmentation and integration provides important cues to the processes that are used by the visual 
system to create object motion percepts during normal viewing conditions.  

The present article further develops a 3D FORMOTION model, components of which 
were introduced by Baloch and Grossberg (1997), Chey, Grossberg, and Mingolla (1997, 1998), 
Francis and Grossberg (1996), and Grossberg, Mingolla, and Viswanathan (2001). The model 
explains some challenging percepts during which small changes in object or contextual cues can 
dramatically change motion percepts from integration to segmentation. As the model’s name 
suggests, it proposes how form and motion processes interact to form coherent percepts of object 
motion in depth. The present work focuses on the following form-motion (or formotion) binding 
issues: How do form-based 3D figure-ground separation mechanisms in cortical area V2 interact 
with directionally selective motion grouping mechanisms in cortical areas MT and MST to 
preferentially bind together some motion signals more easily than others? In cases where form-
based figure-ground mechanisms are insufficient, how do motion and attentional cues from 
cortical area MT facilitate figure-ground separation within cortical area V2 via MT-to-VI-to-V2 
feedback? Finally, how does the global organization of the motion direction field in areas MT 
and MST influence whether the percept of an object’s form looks rigid or deformable through 
time?  

The model goes beyond earlier motion models both by introducing novel formotion 
binding mechanisms and by proposing how laminar cortical circuits realize these mechanisms. 
These circuits embody explicit predictions about the functional roles that are played by the 
corresponding cells in the brain. The model extends to the motion system a program of 
developing laminar models of cortical circuits that has already explained many perceptual and 
brain data about 3D form perception in cortical areas V1, V2, and V4 (Grossberg, 1999; Cao and 
Grossberg, 2005; Grossberg and Howe, 2003; Grossberg, Mingolla, and Ross, 1997; Grossberg 
and Raizada, 2000; Grossberg and Seitz, 2003; Grossberg and Swaminathan, 2004; Grossberg 
and Williamson, 2001; Grossberg and Yazdanbakhsh, 2005; Raizada and Grossberg, 2003), as 
well as about cognitive working memory, sequence learning, and variable-rate sequential 
performance (Grossberg and Pearson, 2006).  

The model proposes solutions to several basic problems of motion perception, including 
the aperture problem. Wallach (1935/1996) first showed that the motion of a featureless line 
seen behind a circular aperture is perceptually ambiguous: no matter what may be the real 
direction of motion, the perceived direction is perpendicular to the orientation of the line; i.e., the 
normal component of motion. The aperture problem is faced by any localized neural motion 
sensor, such as a neuron in the early visual pathway, which responds to a local contour moving 
through an aperture-like receptive field. In contrast, a moving dot, line end or corner provides 
unambiguous information about an object’s true motion direction (Shimojo, Silverman and 
Nakayama, 1989). The model proposes how such moving visual features activate cells in the 
brain that compute feature-tracking signals which can disambiguate an object’s true direction of 
motion.  
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A key issue concerns the assignment of motion to an object boundary when motion 
integration interpolates two contiguous parts of a scene, since not all line ends signal motion of 
an object correctly. In the example in Figure 1, motion of the left line end corresponds to the real 
motion of the line. The right line end is formed by the boundary between the line and a stationary 
occluder, and its motion provides little information about the motion of the line. This issue has 
been in the vision literature for a long time; e.g., see Bregman (1981) and Kanizsa (1979). 
Nakayama, Shimojo and Silverman (1989) have suggested classification of terminators as 
intrinsic and extrinsic: an intrinsic terminator belongs to the moving object; an extrinsic one 
belongs to the occluder. Motion of intrinsic terminators is taken into account in computing the 
motion direction of an object, while motion of extrinsic terminators is generally ignored 
(Shimojo et al., 1989; Duncan, Albright and Stoner, 2000). Lidén and Mingolla (1998), however, 
showed that the influence of extrinsic terminators on direction of perceived motion in a 
barberpole display that contains occluding surfaces was reduced, rather than abolished, as 
compared to comparable intrinsic terminators.   

 The FACADE model (Grossberg, 
1994, 1997; Kelly and Grossberg, 
2000) of 3D form vision and 
figure-ground separation 
proposed how boundaries in 2D 
images are assigned to different 
objects in different depth planes, 
and thereby offered a mechanistic 
explanation of the properties of 
extrinsic and intrinsic terminators. 
A precursor of the present 3D 
FORMOTION model (Grossberg, 
Mingolla, and Viswanathan, 
2001) proposed how FACADE 
figure-ground separation in 
cortical area V2, combined with 
formotion interactions from area 
V2 to MT, enable intrinsic 
terminators to create strong 
motion signals on a moving 
object, while extrinsic terminators 
create weak ones.  

Simulations by Grossberg 
et al. (2001) assumed that figure-

ground separation had already occurred within the form system and used depth-separated 
boundaries from V2 as inputs to the motion system. The present model starts with motion signals 
in V1, where the separation in depth has not yet occurred, and predicts how V2-to-MT boundary 
signals can selectively support V1-to-MT motion signals at the correct depths, while suppressing 
motion signals at the same visual location but at different depths.  

The prediction that V2-to-MT signals can capture motion signals at a given depth reflects 
the hypothesis that the form and motion streams compute complementary properties (Grossberg, 
1991, 2000): the V1-V2 cortical stream, acting alone, is predicted to compute precise oriented  

Intrinsic

Extrinsic

Figure 1. Extrinsic and intrinsic terminator motions are 
different. The local motion of the intrinsic terminator on 
the left reflects the true object motion, while the local 
motion of extrinsic terminator traces the vertical outline 
of the occluder. 
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depth estimates (indeed, 3D boundary representations), but coarse directional motion signals, 
whereas the V1-MT cortical stream computes coarse oriented depth estimates, but precise 
directional motion estimates. The 3D boundary representations that are computed in V2 are 
predicted to overcome these complementary deficiencies within the form and motion streams. 
This is predicted to occur via V2-to-MT inter-stream interactions, called formotion interactions, 
which use signals from V2 to capture motion signals in MT to lie at the correct depths. In this 
way, precise form-and-motion-in-depth estimates are achieved in MT, which can be used to 
generate good target tracking estimates. Ponce, Lomber, and Born (2006) have recently reported 
neurophysiological data that are consistent with the prediction that V2 imparts finer disparity 
sensitivity onto MT. 

The V2-to-MT motion selection mechanism clarifies why we tend to perceive motion of 
visible objects and background features, but not of the intervening empty spaces between them. 
This may not seem to be a serious problem if we just consider the motion signals of which we 
are consciously aware. However, when one considers how motion signals can have an influence 
on visible features across empty space, as during induced motion, without causing visible motion 
within the intervening space that is devoid of visible features, one readily sees that it is a 
phenomenon that requires explanation (Duncker, 1929/1937). Motion selection in MT using 
depth-separated form boundaries from V2 is, we believe, a part of the explanation, since only 
those motion signals in MT that are captured by a V2 form boundary can be used to form 
percepts when such boundaries are active  

These V2-to-MT formotion signals overcome one sort of uncertainty in cortical 
computation. Another sort of uncertainty is overcome via MT-to-V1 feedback signals which can 
help to separate boundaries in V1 and V2 where they cross in feature-absent regions (cf. the 
chopsticks illusion below) using motion signals from MT.  

Another factor that influences motion perception is adaptation. Motion signals at the 
positions of a static extrinsic terminator in can adapt, and therefore attenuate. Moving intrinsic 
terminators, on the other hand, generate strong motion signals. As local motion signal direction 

Figure 2. Plaids and transparent motion. Grayscale is added for illustration purposes only. 
(A) Overlapping gratings under certain conditions can cohere. Under other conditions, they 
can separate and be perceived as sliding over each other in the directions perpendicular to 
the gratings (arrows). (B) Similar effects can be observed with two sheets of randomly 
positioned dots moving in two different directions.

A B
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and strength are computed, a motion integration process in MT-MST decides the winning motion 
direction in the case of a single moving line, as in Figure 1. 

What happens if multiple moving objects overlap? Experiments on plaids and random dot 
motion have demonstrated at least two possible perceptual outcomes (Ferrera and Wilson, 1987, 
1990; Kim and Wilson, 1993; Snowden et al., 1991; Stoner and Albright, 1998; Stoner, Albright, 
and Ramachandran, 1990; Trueswell and Hayhoe, 1993). See Figure 2. First, a display can 
separate into two depth planes, forming a transparent motion percept, where two dot-filled planes 
or two gratings slide one over another. Second, if the directions of motions are compatible, then 
displays can produce a percept of coherent motion of a unified pattern, and no separation in 
depth occurs. Under prolonged viewing, the same display can perceptually alternate between 
coherent plaid motion and different motions separated in depth (Hupé and Rubin, 2003). Our 
present work focuses on the distinction between the two types of motion that are generally 
obtained, on a shorter time scale, with exposures of up to a few seconds. An earlier version of the 
present model (Grossberg, Mingolla, and Viswanathan, 2001, Section 3.10) discussed how 
adaptation can influence percepts of coherent and incoherent plaid motion. 

  
As noted above, while separation in depth can happen purely in the motion system, occluder 
information from the form system can modulate the calculation of motion signals (Stoner and 
Albright, 1996, 1998). For example, the present article models the motion percepts that are 

C D

A B

Figure 3. Chopsticks Illusion. Actual chopsticks motion (clear arrows, top) is equivalent 
in (A) and (B), with visible and invisible occluders, respectively. Visible occluders result 
in a coherent vertical motion percept (C, hatched arrow). Invisible occluders result in the 
percept of two chopsticks sliding in opposite directions (D). 
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generated by a chopsticks display (Anstis, 1990). See Figure 3.  The bars in this display undergo 
translational motion, and may be thought of as a simplified plaid motion display. When the 
chopsticks move horizontally, their intersection moves vertically. In the case of visible occluders 
(Figure 3A), the intersection motion prevails and vertical motion of a single X-shaped object is 
perceived. In the case where the chopstick ends are visible (Figure 3B) — that is, the occluder is 
invisible — the percept is of two chopsticks moving in opposite horizontal directions and 
separated in depth. This depth separation cannot happen based only on the boundaries of the X-
shaped form, since the boundaries near the middle of the X do not complete either bar explicitly. 
The 3D FORMOTION model proposes how signals from the motion to the form stream via MT-
to-V1 feedback can initiate the process whereby these ambiguous boundaries can be completed 
and separated in depth within the form stream. 

 
Often the shape of a moving object is more complex than that of a line, and can affect the 
outcome of motion integration. The present article simulates data of Lorenceau and Alais (2001), 
who studied different shapes moving in a circular-parallel motion behind occluders (Figure 4). 
Observers had to determine the direction of motion, clockwise or counterclockwise. The percent 
of correct responses depended on the type of shape, and on the visibility of the occluders. In the 
case of a diamond (Figure 4A), a single, coherent, circular motion of a partially occluded 
rectangular frame was easy to perceive across the apertures. In the case of an arrow (Figure 4C), 
two objects with parallel sides were seen to generate out-of-phase vertical motion signals in 
adjacent apertures. Local motion signals were identical in both displays, and only their spatial 
arrangement differed. Alais and Lorenceau suggested that certain shapes (such as arrows) “veto” 
motion integration across the display, while others (such as diamond) allow it.  

The 3D FORMOTION model explains the data without using a veto process. The model 
proposes that the motion grouping process uses anisotropic direction-sensitive receptive fields 
that preferentially integrate motion signals within a given direction across gaps produced by the 
occluders. The explanation of Figures 4D-F follows in a similar way, with the additional factor 
that the ends of the bars possess intrinsic terminators that can strongly influence the perceived 
motion direction of the individual bars.  

Another example of where percepts of rotational motion involve motion grouping is the 
“gelatinous ellipses” display (Vallortigara et al., 1988, Weiss and Adelson, 2000). See Figure 5. 
When the “thin” (high aspect ratio) and the “thick” (low aspect ratio) ellipses rotate around their 
centers, the perception of their shapes is strikingly different. The thin ellipse is perceived as a 
rigid rotating form, whereas the thick one is perceived as deforming non-rigidly through time. 
Here, the differences in 2D geometry result in differences of the spatiotemporal distribution of 
motion direction signals that are grouped together through time. When these motion signals are 

Figure 4. Snapshots of the Lorenceau-Alais displays. Visible (A-C) and invisible (D-F) 
occluder cases. See text for details. 

difficulteasy

A B C ED F

difficult
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consistent with the coherent motion of a single object, then the motion grouping generates a 
percept of a rigid rotation. When the motion field decomposes after grouping into multiple parts, 
with motion trajectories incompatible with a rigid form, a non-rigid percept is obtained. Motion-
to-form projections from MT to V1 can once again help to explain these distinct outcomes. The 
ability of nearby “satellites” to convert the non-rigid percept into a rigid one can also be 
explained by motion grouping. Weiss and Adelson (2000) have proposed that such a percept can 
be explained via a global optimization process. Motion grouping provides a biologically 
plausible alternative proposal. 

In summary, all of the data considered here 
illustrate how the brain may use both form 
and motion information, and their 
interaction, to derive a global percept of 
object motion. Form and motion processes, 
such as those in V2/V4 and MT/MST, 
occur in the What ventral and Where dorsal 
cortical processing streams. As noted 
above, related modeling work has proposed 
that key mechanisms within the What and 
Where streams obey computationally 
complementary laws (Grossberg, 2000): 
The ability of each process to compute 
some properties prevents it from computing 
other, complementary, properties. Examples 
of such complementary properties include 
boundary completion vs. surface filling-
in—within the (V1 interblob)-(V2 
interstripe) and (V1 blob)-(V2 thin stripe) 
streams, respectively—and, more relevant 
to the results herein, boundary orientation 
vs. motion direction, and fine boundary 

disparity vs motion direction—within the V1-V2 and V1-MT streams, respectively. The present 
article clarifies some of the interactions between form and motion processes that enable them to 
overcome their complementary deficiencies and to thereby compute more informative 
representations of unambiguous object motion.   
 In our simulations, each model layer consists of a 60x60 matrix with multiple cells that 
code for different properties such as line orientation or motion direction at each position. A 
detailed model description is provided after simulations are presented in Appendix A. The 3D 
FORMOTION model comprises five important functional interactions involving the brain’s form 
and motion systems that allow it to perform appropriate grouping and segmentation of 
fragmentary motion signals caused by occlusion of objects intervening between the viewer and a 
moving object. Because the model’s stages are analogous to areas of the primate visual system, 
we refer to the stages by corresponding anatomical names. In one of these functional 
interactions, 3D boundary representations, in which figures are separated from their 
backgrounds, are formed in cortical area V2. These depth-selective V2 boundaries select motion 
signals at the appropriate depths in MT via V2-to-MT signals. In another, motion signals in MT 
disambiguate locally incomplete or ambiguous boundary signals in V2 via MT-to-V1-to-V2 

Figure 5. Rotating ellipses.  
Rigid (left) and nonrigid (right) percepts. 

Real motion

Perceived motion
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feedback. The third functional property concerns resolution of the aperture problem along 
straight moving contours through appeal to unambiguous motion signals generated at contour 
terminators or corners. Here, sparse “feature tracking signals” from, e.g., line ends, are amplified 
to overwhelm numerically superior ambiguous motion signals along line segment interiors. In 
the fourth, a spatially anisotropic motion grouping process propagates across perceptual space 
via MT-MST feedback to integrate veridical feature-tracking and ambiguous motion signals to 
determine a global object motion percept. The fifth property is the capacity of the MT-MST 
feedback loop to convey an attentional priming signal from higher brain areas back to V1 and 
V2. 
 
3D FORMOTION Model 
The main components of the 3D FORMOTION model are a form processing stream and a 
motion processing stream. These streams interact in specific ways, as indicated in Figures 6 and 
7.  

 
 
The Form Processing System 
The model’s form processing system comprises six stages, as shown on the left sides of Figures 
6 and 7. Input to the model is represented by distinct ON and OFF cells, whose properties derive 
from on-center off-surround and off-center on-surround network interactions, similar to those 
demonstrated by LGN cells. Because of our use of simple black and white images, retinal and 

Figure 6. Schematic view of the 3D FORMOTION model. See text for details. 
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LGN processes of both the form and motion streams can be treated as a simplified lumped 
processing stage. Subsequent processing in the form stream includes simple cells for initial 
registration of boundary orientations, followed by complex and hypercomplex stages that 
perform: (a) pooling across simple cells tuned to opposite contrast polarities; (b) divisive 
normalization that reduces the amplitude of multiple ambiguous orientations in a region, (3) end-
stopping that enhances activity at line-ends, and (4) spatial sharpening that prevents excessive 
blurring of boundary localization. Long-range bipole cells, indicated by the figure-8 shape in 
Figure 7, act like statistical “and” gates that group approximately collinear boundary signals. 
Grouping is followed by a stage of cross-orientation competition that reinforces boundary signals 
with superior support from neighboring boundaries at the expense of spatially overlapping 
signals of non-preferred orientations. Finally, an assignment of boundaries into one or both of 
two simulated depth representations is accomplished, as is next described.  

Perceptual Grouping and Figure-Ground Separation of 3D Form. The FACADE 
boundary completion process is called the Boundary Contour System, or BCS (Figures 6 and 7, 
left). The BCS predicts how boundaries of occluding surfaces are separated from occluded 
surfaces in depth, including the separation of extrinsic vs. intrinsic boundaries (Grossberg, 1994, 
1997; Grossberg and Yazdanbakhsh, 2005; Kelly and Grossberg, 2000), within the pale stripes of 
V2. One cue of occlusion in a 2D image is a T-junction. The black bar in Figure 8A forms a T-
junction with the gray bar (Figure 8B). The top of the T belongs to the occluding black bar, while 
the stem belongs to the occluded gray bar. Bipole long-range grouping (Figure 8C) strengthens 
the horizontal boundary, while short-range competition weakens the vertical boundary (Figure 
8D). This end gap in the vertical boundary initiates the process of separating occluding and 
occluded boundaries. In other words, basic properties of perceptual grouping are predicted to 
initiate the separation of figures from their backgrounds, without the use of explicit T-junction 
operators. Such figure-ground separation is a crucial competence of the 3D FORMOTION 
model. It enables the model to distinguish extrinsic from intrinsic terminators, and to thereby 
compute appropriate signals in the motion stream, as will be explained when that part of the 
model is described. 

In order to simplify our simulations, the 3D FORMOTION model does not include all the 
stages of boundary and surface interaction that complete figure-ground separation. That these 
mechanisms work has been demonstrated elsewhere (Fang and Grossberg, 2004; Grossberg and 
Yazdanbaksh, 2005; Kelly and Grossberg, 2000). Instead, as soon as T-junctions have been 
detected by the model dynamical equations, boundaries are algorithmically separated in depth. 
That is, the representation of boundaries is assigned by our simulation code to the depth where 
the boundary would be represented if a “full-blown” FACADE simulation were done. In 
particular, static occluders are assigned to the near depth and lines with extrinsic terminators are 
assigned to the far depth. At a T-junction, the horizontal boundary will be represented in Depth 1 
and the vertical boundary in Depth 2. Because of this computational shortcut, thin idealized 
boundaries, positioned at the same locations as input boundaries are used to select motion signals 
via V2-MT projections (see Appendix A). The effect of motion on boundary position shifts is not 
considered here, but was explored in simulations of flash-lag and flash-drag effects by 
Berzhanskaya, Grossberg and Mingolla (2004). V2 boundaries are used to provide both V2-to-
MT motion selection signals (Equation A14) and V2-to-V1 depth-biasing feedback (Equation 
A28) (Figure 7, top-left). While V2-to-V1 feedback is orientation-specific, the V2-to-MT 
projection sums boundary signals over all orientations, just as motion signals do at MT (Albright, 
1984). 
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Figure 7. Laminar structure of 3D FORMOTION. See text for details. 
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Motion Modulation of Figure-Ground Separation. Form cues are not always available to  
initiate figure-ground separation. Motion cues can initiate figure-ground separation even when 
form cues are not available. One such route in the model is via feedback projections from MT to 
V1 (Figures 6 and 7; Equation A28), which have been reported both anatomically and 
electrophysiologically (Bullier, 2001; Jones, Grieve, Wang and Sillito, 2001; Movshon and 
Newsome, 1996) that uses attentional biasing within MT/MST (Treue and Maunsell, 1999). How 
this happens is nicely illustrated by the chopsticks display in Figure 3B. Focusing spatial 
attention at one end of a chopstick can enhance that chopstick’s direction of motion within the 
MT/MST complex at a given depth. Enhanced MT-to-V1 feedback can selectively strengthen the 
boundary signals of one chopstick in Figure 3B enough to trigger its boundary completion and 
figure-ground separation via V1-to-V2 interactions, even when the enhanced motion signals 
from this chopstick may be the only cue for depth separation in the form system. In this way, the 
two overlapping bars of a chopsticks display can induce separate boundaries in depth that, by 
closing the V2-to-MT loop, can support depth-selective motions by the chopsticks in opposite 
directions (Bradley, Chang and Andersen, 1998; Grossberg et al., 2001). 

Figure 8. (A) In this 2D picture, a dark horizontal bar is perceived to be in front of a gray 
vertical bar. (B) The local geometry of edges in the indicated area forms a T-junction. (C) 
In the form stream, the “bipole” combination of long-range cooperation (indicated by the 
figure 8) and short-range inhibition among nearby oriented units tuned to a variety of 
orientations (indicated by the circle) acts at the T-junction. Only the horizontal unit is 
shown. (D) The result of the cooperative-competitive dynamics in (C) is that the favored 
collinear structure of the horizontal edge wins at the top of the T, and a small “end gap” is 
created at the top of the stem of the T. Due to the way in which this boundary interacts with 
the surface formation stream, the top of the T is assigned to the Near depth, while the 
vertical segment is assigned to the Far depth. 
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The Motion Processing System 
The motion processing part of the model consists of six stages that represent cell dynamics 
homologous to LGN, V1, MT, and MST (Figure 7, right). These stages are mathematically 
defined in Appendix A. 

Level 1: Input from LGN. A precursor of the present model (Grossberg et al., 2001) used 
FACADE output from V2 as the input to the Motion system. In the 3D FORMOTION model, the 
boundary input is not depth-specific. Rather, the 2-cell wide boundary input models the signals 
that come from Retina and LGN, which are lumped into a single processing stage for simplicity,  
into V1 (Xu, Bonds and Casagrande, 2002). This boundary is represented in both ON and OFF 
channels. After V1 motion processing, described below, the motion signal then goes on to MT 
and MST. The 3D figure-ground separated boundary inputs in the current model come from V2 
to MT and select bottom-up motion inputs from V1 in a depth-selective way. This biologically 
more realistic input scheme proposes how the visual system separates the occluder boundaries 
from the moving boundaries into different depth planes, even though the inputs themselves occur 
within the same depth plane. The present model proposes how a combination of habituative 
(Equations A4—A6) and depth selection (Equation A14) mechanisms accomplishes the required 
depth segregation of motion signals.  

These mechanisms are proposed to also play several other roles in motion processing. In 
particular, habituative mechanisms are part of the preprocessing whereby motion cues trigger the 
activation of transient cells; see below. Because the occluder boundaries are static, at least 
relative to the continuously moving chopsticks, their signals become much weaker over time. As 
a result, when the chopsticks move along the fixed locations of static occluders (Figure 3A), they 
generate much weaker motion signals than the same chopsticks moving without occluders 
(Figure 3B). This habituative property helps to explain why visible occluders generate weaker 
motion signals at all depth planes. It does not, however, separate intrinsic from extrinsic 
boundaries, and do so in depth. The motion selection mechanism does this by using depth-
separated occluder and occluding boundary signals from V2 to MT. As noted above, after the 
BCS completes contours in corresponding depths (Equations A38 and A43), these signals are 
approximated by 1-pixel wide, depth-separated boundaries. The model shows how these 
boundaries can capture only the appropriate motion signals onto their respective depth planes in 
MT (see Figure 12 below).  

3D FORMOTION uses both ON and OFF input cells. For example, when a bright 
chopstick moves to the right on a dark background (Figure 3, polarities are reversed for 
illustration purposes), ON cells respond to its leading edge, but OFF cells respond to its trailing 
edge. Likewise, when the chopstick reverses direction and starts to move to the left, its leading 
edge now activates ON cells and its trailing edge OFF cells. By differentially activating ON and 
OFF cells in different parts of this motion cycle, these cells have more time to recover from 
habituation, so that the system remains more sensitive to repetitive motion signals. Model ON 
and OFF responses are thus relevant to the role played by habituative mechanisms in generating 
transient cell responses and in weakening the boundaries of occluders. 

Level 2: Transient cells. The second stage of the motion processing system (Figures 6 
and 7) consists of non-directional transient cells, inhibitory directional interneurons, and 
directional transient cells. The non-directional transient cells respond briefly to a change in the 
image luminance, irrespective of the direction of movement (Equations A4—A6). Such cells 
respond well to moving boundaries and poorly to the static occluder because of the habituation, 
or adaptation that creates the transient response. The type of adaptation that leads to these 
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transient cell responses is known to occur at several stages in the visual system, ranging from 
retinal Y cells (Enroth-Cuggell and Robson, 1966; Hochstein and Shapley, 1976a, 1976b) to 
cells in V1 (Abbott, Sen, Varela and Nelson, 1997; Carandini and Ferster, 1997; Chance, Nelson 
and Abbott, 1998; Varela, Sen, Gibson, Fost, Abbott and Nelson, 1997) and beyond.  

The non-directional transient cells send signals to inhibitory directional interneurons and 
directional transient cells, and the inhibitory interneurons interact with each other and with the 
directional transient cells (Equations A7 and A8). The directional inhibitory interneuronal 
interaction enables the directional transient cells to realize directional selectivity at a wide range 
of speeds (Grossberg, Mingolla, and Viswanathan, 2001). This predicted interaction is consistent 
with retinal data concerning how bipolar cells interact with inhibitory starburst amacrine cells 
and direction-selective ganglion cells, and how starburst cells interact with each other and with 
ganglion cells (Fried, Münch, and Werblin, 2002). The possible role of starburst cell inhibitory 
interneurons in ensuring directional selectivity at a wide range of speeds has not yet been tested. 

A directionally selective neuron fires vigorously when a stimulus is moved through its 
receptive field in one direction (called the preferred direction), while motion in the reverse 
direction (called the null direction) evokes little response (Barlow and Levick, 1965). 
Mechanisms of direction selectivity include asymmetric inhibition along the preferred cell 
direction, notably an inhibitory veto of null-direction signals (Equations A7 and A8), as in 
Grossberg et al. (2001).  

As noted above, after the transient cells adapt in response to a static boundary, then 
boundary segments that belong to a static occluder (extrinsic terminators, Figure 3A) produce 
weaker signals than those that belong to a continuously moving object. In the invisible occluder 
display (Figure 3B), the horizontal motion signals at the chopstick ends will be strong, and thus 
influence the final outcome.  

Level 3: Short-range filter. A key step in solving the aperture problem is to strengthen 
unambiguous feature tracking signals relative to ambiguous motion signals. Feature tracking 
signals are often generated by a relatively small number of moving features in a scene, yet can 
have a very large effect on motion perception. One process that strengthens feature tracking 
signals relative to ambiguous aperture signals is the short-range spatial filter (Figure 7). Cells in 
this filter accumulate evidence from directional transient cells of similar directional preference 
within a spatially anisotropic region that is oriented along the preferred direction of the cell. This 
computation selectively strengthens the responses of short-range filter cells to feature-tracking 
signals at unoccluded line endings, object corners, and other scenic features (Equation A9). The 
use of a short-range spatial filter followed by competition at Level 4 eliminates the need for an 
explicit solution of the feature correspondence problem that various other models posit and 
attempt to solve (Reichardt, 1961; van Santen and Sperling, 1985). 

Level 4: Spatial competition and opponent direction competition. Two kinds of 
competition further enhance the relative advantage of feature tracking signals (Figures 6 and 7, 
Equation A11). These competing cells are proposed to occur in layer 4B of V1 (Figure 7; bottom 
-right). Spatial competition among cells of the same spatial scale that prefer the same motion 
direction boosts the amplitude of feature-tracking signals relative to those of ambiguous signals. 
Feature tracking signals are contrast-enhanced by such competition because they are often found 
at motion discontinuities, and thus get less inhibition than ambiguous motion signals that lie 
within an object’s interior. Opponent-direction competition also occurs at this processing stage, 
with properties similar to the V1 cells described by Rust, Majaj, Simoncelli and Movshon (2002) 
both in exhibiting an opponent direction mechanism, and in having the correct spatial scale for 
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such interactions.  
The activity pattern at this model stage is consistent with data of Pack, Gartland, and 

Born (2004). First, in their experiments, V1 cells demonstrate an apparent suppression of 
responses to motion along visible occluders. A similar suppression occurs in the model due to the 
adaptation of transient inputs to static boundaries. Second, cells in the middle of a grating 
(influenced only by ambiguous signals) respond more weakly than cells at the edge of the grating 
(influenced by intrinsic terminators). This effect is explained in the model by spatial competition 
between motion signals. This process performs divisive normalization and endstopping, which 
together serve to amplify the strength of directionally unambiguous feature tracking signals at 
line ends relative to the strength of aperture-ambiguous signals along line interiors. 

Level 5: Long-range filter and formotion selection. Motion signals from model layer 4B 
of V1 input to model area MT. Area MT also receives a projection from V2 (Anderson and 
Martin, 2002; Rockland, 1995) that carries depth-specific figure-ground-separated boundary 
signals. These V2 form boundaries select the motion signals (formotion selection) by selectively 
assigning to different depths the motion signals coming into MT from layer 4B of V1 (Equation 
A14). When the dynamically formed V2 boundary signals satisfy an appropriate criterion 
(Equations A38 and A43), they are projected to MT as idealized depth-separated boundaries. 
This approximation eliminates the need to do a complete FACADE model simulation. 

Formotion selection, or selection of motion signals in depth by corresponding 
boundaries, is proposed to occur via a narrow excitatory center, broad inhibitory surround 
projection from V2 to layer 4 of MT. For example, in response to the chopsticks display with 
visible occluders (Figure 3A), the formotion selection mechanism for depth D1 selects motion 
signals at its positions in D1, which lie along the visible occluder boundaries, and suppresses 
motion signals at other locations in depth D1. The resulting activation in D1 will be weak, due to 
the habituated bottom-up input from V1 along the selected occluder boundary positions (see 
Figure 14A in the Results section). The V2 boundary signals that correspond to the moving 
boundaries select strong motion signals at depth D2 (see Figure 14B in the Results section). 
 A similar type of inter-stream gating signal is proposed to play a key role in explaining 
challenging data about stereopsis, 3D surface perception, and figure-ground separation (Cao and 
Grossberg, 2005; Fang and Grossberg, 2004; Grossberg, 1994, 1997; Grossberg and 
Yazdanbakhsh, 2005). This gating signal is proposed to operate within the form system, namely 
from the thin stripes to the pale stripes of V2, and allows 3D surface feedback to modulate the 
strength of 3D boundaries that control visible 3D form percepts. Thus it seems that several 
different types of gating occur across the parallel visual processing streams at the V2 and MT 
processing levels.  

The boundary-gated signals from layer 4 of MT are proposed to input to the upper layers 
of MT (Figure 7, top-right), where they activate directionally-selective, spatially anisotropic 
filters via long-range horizontal connections (Equation A16). In this long-range filter, motion 
signals coding the same directional preference are pooled from object contours with multiple 
orientations and opposite contrast polarities. This pooling process creates a true directional cell 
response (Chey et al., 1997; Grossberg et al., 2001; Grossberg and Rudd, 1989, 1992). Earlier 
versions of the long-range filter used a spatially isotropic kernel, for simplicity. In order to 
explain the types of data analyzed in this paper, we propose that the long-range filter 
accumulates evidence of a given motion direction using a kernel that is elongated in the direction 
of that motion, much as in the case of the short-range filter. This hypothesis is consistent with 
data showing that approximately 30 % of the cells in MT show a preferred direction of motion 
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that is aligned with the main axis of their receptive fields (Xiao, Raiguel, Marcar and Orban, 
1997).  

The predicted long-range filter cells in layer 2/3 of MT are proposed to play a role in 
binding together 3D directional information that is homologous to the orientationally selective, 
coaxial and collinear accumulation of evidence within layer 2/3 of the pale stripes of cortical 
area V2 for the purpose of 3D perceptual grouping of form (Grossberg 1999; Grossberg and 
Raizada, 2000). This anisotropic long-range motion filter allows motion signals to be selectively 
integrated across occluders with variable degrees of success in response to the various shapes in 
the Lorenceau-Alais displays of Figure 4.  

Level 6: Directional grouping. The model processing stages up to now do not fully solve 
the aperture problem. Although they can amplify feature tracking signals and assign motion 
signals to the correct depths, they cannot yet explain how feature tracking signals can propagate 
across space to select consistent motion directions from ambiguous motion directions, without 
distorting their speed estimates, and at the same time suppress inconsistent motion directions. 
They also cannot explain how motion integration can compute a vector average of ambiguous 
motion signals across space to determine the perceived motion direction when feature tracking 
signals are not present at that depth. The final stage of the model accomplishes this goal by using 
a motion grouping network (Equations A16 and A21), interpreted to occur in ventral MST 
(MSTv). We predict that this motion grouping network determines the coherent motion direction 
of discrete moving objects.  

The motion grouping network works as follows: Cells that code the same direction in MT 
— and also perhaps similar directions, but this possibility is not explored herein — send 
convergent inputs to cells in MSTv via the motion grouping network. Within MSTv, directional 
competition at each position determines a winning motion direction. This winning directional 
cell then feeds back to its source cells in MT. This feedback supports the activity of MT cells 
that code the winning direction, while suppressing the activities of cells that code all other 
directions. This motion grouping network enables feature tracking signals to select similar 
directions at nearby ambiguous motion positions, while suppressing other directions there.  

On the next cycle of the feedback process, these newly unambiguous motion directions 
select consistent MSTv grouping cells at positions near them. The grouping process propagates 
across space as the feedback signals cycle through time between MT and MSTv. Chey et al. 
(1997) and Grossberg et al. (2001) first used this process to simulate data showing how the 
present model solves the aperture problem, and Pack and Born (2001) have recently provided 
supportive data, by showing that the response of MT cells to the motion of the interiors of 
extended lines is over time dynamically modulated away from the local direction that is 
perpendicular to the contour and towards the direction of line terminator motion.  
 It is worth noting that both the V2-to-MT and the MSTv-to-MT signals carry out 
selection processes using modulatory on-center, off-surround interactions. The V2-to-MT signals 
select motions signals at the locations and depth of a moving boundary. The MST-to-MT signals 
select motion signals in the direction and depth of a motion grouping. Such a modulatory on-
center, off-surround network was predicted by Adaptive Resonance Theory to carry out attentive 
selection processes in a manner that enables fast and stable learning of appropriate features to 
occur. See Raizada and Grossberg (2003) for a review of behavioral and neurobiological data 
that support this prediction in several brain systems. Direct experiments to test it in the above 
cases still remain to be done. 
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Analysis and Simulation of Psychophysical Experiments  
This section is devoted to a detailed analysis and simulations of three important kinds of 
psychophysical displays: shapes moving behind occluders (Lorenceau-Alais, 2001), chopsticks 
(after Anstis, 1990) and rotating ellipses (Weiss and Adelson, 2000).  

Movement behind occluders. Lorenceau and Alais (2001) created displays in which 
circular-parallel motion was visible through the two vertically oriented apertures, but the corners 
of the shapes remained hidden (Figure 4). See http://cns.bu.edu/~juliaber/formotion.html. 
Therefore, observers had to rely on motion integration across space to determine motion 
direction. The success of the motion integration process depended on the type of shape and on 
the contrast of the occluders. The diamond displays resulted in a higher percentage of correct 
responses than the cross and arrow displays, and displays with visible occluders were easier than 

Figure 9. Motion signals in Diamond (A) and Arrow (B) displays with visible occluders. 
Ellipses represent receptive fields of long-range motion grouping MT cells (with 
direction preference indicated by the large gray arrow), that are activated the most by the 
given combination of motion signals. Counterclockwise motion direction is indicated by 
the circular arrow in the middle.  At time t=n, both diamond and arrow centers move 
along the bottom-right quadrant of the circular trajectory, and global motion of the input 
stimulus is up-right (45º). At time t=n+m, global motion of the stimulus is up-left 
(135º). The motion grouping is consistent with the globally perceived motion only in the 
diamond display. See text for details.

t = n+m
DIAMOND

ARROW
t = n t = n+m

t = n

Extrinsic terminator motion

Motion signals at line interior

A

B
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those with invisible ones. For example, a diamond (Figure 4A) rotating behind visible occluders 
created a percept of a single rotating shape. In contrast, a rotating arrow (Figures 4C and 4F) 
produced a percept of two disconnected shapes separately moving in their respective apertures. 
This disconnection was strong even in the case of visible occluders (Figure 4C) and more 
pronounced in the case of invisible occluders (Figure 4F).  

Schematic representations of the motion grouping signals generated by the displays of a 
diamond and an arrow with visible occluders are shown in Figure 9. Both shapes undergo a 
counterclockwise motion (as denoted by a circular arrow in the middle). At the corresponding 
time points (for example, Figures 9A and 9B, t = n), each display has a combination of the same 
set of local motion signals. Perceptual dissimilarities are caused by the difference in relative 
positioning of those motion signals through time. Both the diamond and the arrow are visible 
through the apertures as four linear boundary segments. Each segment produces two types of 
motion signals: ambiguous signals (due to the aperture problem) from line interiors and 
unambiguous signals from terminators (Figure 9 inset). For the visible occluder cases, the 
terminator signals are extrinsic and weak. Ambiguous motion signals of the same direction from 
parallel segments can then combine across space using the model’s anisotropic motion grouping 
filters to produce the perceived object motion.  

For example, in the diamond display in Figure 9A, two line segments with synchronous 
motion in a given direction are located in different apertures. The large anisotropic motion 
grouping cells that prefer this motion direction can thus integrate the diagonal motion signals 
across the apertures. At time t = n, when the diamond center traverses a bottom-right trajectory 
quadrant, two segments moving simultaneously in the up-right (45º) direction activate the 
diagonal motion cells, while only one segment activates vertical or horizontal ones. The MT-
MST motion grouping network therefore prefers the diagonal signals from the line interiors to 
the weaker vertical or horizontal groupings. Cells activated the most would be those over the 
center of the rotating shape. First, the cells with a 45º (up-right) direction preference will be 
activated (t = n), then 135º (up-left) cells (t = n + m), 225º, 315º, and then back to the beginning 
of the cycle. Simulation results are shown in Figure 10. This sequence of motion signals is 
consistent with the circular-parallel motion in a counter-clockwise direction, leading to a 
coherent percept of a rotating diamond. 

For the arrow display in Figure 9B, vertical components of the ambiguous signals from 
the line interiors and vertical extrinsic signals from the line ends activate vertically oriented 
anisotropic long-range filter cells. Diagonal ambiguous motion signals from neighboring parallel 
shape segments can only weakly group together within one aperture, and so lose the directional 
competition that determines the winning direction. As a result, a vertical (upward) direction of 
motion will accumulate in the right aperture (t = n) when the arrow center traverses the bottom-
right trajectory quadrant, but at a later time (t = n + m), top-right trajectory quadrant, this 
vertical direction will develop in the left aperture The result is a seesaw up-and-down 
translational motion that is inconsistent with rotation. Such out-of-phase timing of motion signals 
will prevent motion integration across the two apertures. Another way of saying this is that 
asynchronous motions of similar directions produce a segmentation signal, thus preventing a 
percept of a single rotating object.  

Analysis of motion signals in the invisible occluder displays (Figures 4D-4F) is similar to 
the analysis above. Because line terminators are intrinsic, they will produce stronger vertical 
signals and aid the vertical motion grouping. Simulations of motion segmentation for the case of 
arrow with invisible occluders (Figure 4F) are shown in Figure 11. 
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Figure 10. Simulation of motion signals in Diamond display with visible occluders. MT 
output (Motion Level 5, Equation A16) in depth D2 for a sequence of four frames 
(1,2,3,4) in four quadrants (bottom right, top-right, top-left and bottom-left) of the 
circular trajectory. This sequence of motion signals is consistent with a circular motion 
of a single shape. Direction and length of individual arrows represent the direction and 
strength of MT cell activation at each point.

1

23

4



 19

  

 

Figure 11. Simulation of motion signals in Arrow display with invisible occluders. MT 
output (Motion Level 5, Equation (A16)) in depth D1 for a sequence of four frames 
(1,2,3,4) in four quadrants (bottom right, top-right, top-left and bottom-left) of the 
circular trajectory. This sequence is consistent with a translational motion of two separate 
shapes. Direction and length of individual arrows represent the direction and strength of 
MT cell activation at each point. 
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An intermediate image configuration, such as the diamond with invisible occluders in Figure 4D, 
creates strong vertical feature tracking signals within each aperture that can better compete with 
the strong diagonal ambiguous motion grouping across apertures. The percept is thus determined 
by competition between two motion directions and results in a larger number of “incorrect 
answers” than does the percept in the visible occluder case of Figure 4A. In the case of an arrow 
with visible occluders in Figure 4C, the vertical signals will be weak because they are extrinsic, 
whereas in Figure 4F they are strong because they are intrinsic. Thus, translation will overwhelm 
rotation less in Figure 4C than in Figure 4F, and the number of correct responses about arrow 
rotation will be higher there. All of these model properties are consistent with the data of 
Lorenceau and Alais (2001). 

Chopsticks with visible and invisible occluders. Two configurations of the chopsticks 
display, with visible and invisible occluders (Figure 3A and 3B), were simulated. See http:// 
cns.bu.edu/~juliaber/formotion.html. In the case of visible occluders, chopsticks are perceived 
moving coherently in a vertical direction. In the case of invisible occluders, the percept is of two 
horizontally moving objects, one moving in front of the other. These two displays differ only at 
the chopsticks’ ends. The difference in motion percept here can be explained by the difference in 
the relative strength of unambiguous feature-tracking motion signals of the intersection and 
either strong (intrinsic) or weak (extrinsic) motion of the chopsticks’ ends. Aperture-ambiguous 
motion signals at the line interiors do not play a significant role in this percept. 

Independent of the visibility of occluders, in the static image, the two chopsticks are 
perceived as one X-shaped pattern. However, in the moving image, chopsticks with invisible 
occluders separate in depth and are perceived as sliding one above another. Simulations of the 
chopstick display in the invisible occluder case are shown in Figures 12 and 13. Figure 12 shows 
how, in the motion system, opposite direction signals from two chopsticks separate in depth. The 
sequence of motion computations leading to this percept starts with strong horizontal motion 
direction signals from the intrinsic terminators at the chopsticks’ ends. These feature-tracking 
signals are amplified by anisotropic short-range motion filters of V1 that accumulate evidence in 
a given motion direction as the chopstick moves along, and are integrated by the long-range 
filters of MT. Attentional priming biases motion signals at one chopstick end (top-left) in the 
near depth. Competition within the MT-MST circuit includes asymmetric inhibition from the 
near depth (D1) to the far depth (D2) (“asymmetry between near and far”). This interaction 
results in the primed motion direction winning in D1 and another motion direction winning in 
D2. Attentionally biased competition in the motion stream is similar to the proposed effect of 
attention in the form stream (Carpenter and Grossberg, 1991; Grossberg, 1980; Reynolds, 
Chellazi and Desimone, 1999). 

Initially, the bipole cells of orthogonal diagonal orientation preferences in the V2 form 
system compete with each other, but are unable to complete over the gap formed by the 
chopsticks’ intersection (Figure 13A). The bias that allows one chopstick to win the competition 
can be provided by an attentional input to the form system, by an attentional input to the motion 
system that is fed back from the motion system to the form system, or by introducing some 
inequality in the chopsticks’ physical properties (e.g., by making one thicker).  

In the current simulations, depth-selective attentive feedback from MT modulates 
complex cells of the corresponding depths in V1. This feedback equals the sum of the motion 
signals at a given depth, and is not orientation-selective or direction-selective. Motion signals in 
MT are spatially restricted to one chopstick in each depth and, through the feedback, enhance  
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Figure 12. Motion computation in MT (Motion Level 5, Equation (A16)) for chopsticks 
with invisible occluders. Rightward motion of one chopstick is represented in depth level 
D1 (A), and leftward motion of the second chopstick at the depth level D2 (B). Direction 
and length of individual arrows represent the direction and strength of MT cell activation at 
each point. 
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Figure 13. Boundary computation (bipole output, Form Level 5, Equation (A38)) for 
chopsticks with invisible occluders. Spatial scale 1 is shown. (A) Initially, there is no 
separation of boundaries between occluder and occluded objects. (B) Bias from motion 
system can strengthen boundary inputs in a topographic manner, and allow one chopstick 
boundary to win and complete in D1. Orientation and length of short individual lines 
represent the orientation and strength of bipole cell activations at each position. The 
rectangular outline represents the location of the left bar in the chopsticks display. 
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boundary signals for this chopstick more than for the other. Due to this motion bias, boundaries 
of the corresponding chopstick complete in the near depth, D1 (Figure 13B), thus pushing the 
second chopstick boundary in the further depth via mechanisms that are simulated in the full 
FACADE model (e.g., Grossberg and Yazdanbakhsh, 2005; Kelly and Grossberg, 2000). Here, 
we use an algorithmic separation of boundaries in depth as soon as the bipole activation 

Figure 14. Motion computations in MT (Motion Level 5, Equation (A16)) for chopsticks 
display with visible occluders. (A) Boundaries in the near depth (D1) select only a weak 
motion signal, and suppress a signal in the middle of the display. (B) Coherent motion 
signal is computed in the farther depth D2. Direction and length of individual arrows 
represent the direction and strength of MT cells activation at each point. 

Depth 1

Depth 2
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(Equation (A38)) of the attended chopstick completes over the ambiguous gap where the two 
chopsticks cross (see Appendix, Equation (A43)). 

In the case of visible occluders, the chopsticks’ ends are extrinsic terminators and do not 
create strong motion signals, but the vertical motion of the chopstick intersection is unambiguous 
and strong. The result of motion integration and competition is a coherent, vertical motion signal 
at the far depth, D2 (Figure 14B). This signal does not provide a segmentation bias in feedback 
from MT to the form system. The form system output at the far depth, D2, is an outline of an 
“X” shape (Figure 7, V2, top-left) moving up and down, and none of the competing boundaries 
is able to win. The form system output at the near depth, D1, consists of two static horizontal 
boundaries of the occluders (Figure 7, V2, top-left). The model predicts that these depth-
separated boundaries in V2 select motion signals in the corresponding depth representations of 
MT via V2-to-MT projections with excitatory centers and inhibitory surrounds; that is, via the 
modulatory on-center, off-surround network. Bottom-up motion signals along the horizontal 
occluder boundaries consist mainly of the motion of extrinsic terminators, and are weakened by 
adaptation at the input layers of V1 (transient cells in Figure 6). Furthermore, surround inhibition 
produced by the same boundaries suppresses motion signals from interior parts of the display. 
This combination of narrow excitatory projections from V2 to MT with wide inhibitory 
surrounds results in no significant motion signal in the MT representation of the near depth, D1 
(Figure 14A). On the other hand, selection by “X”-shaped boundaries in D2 picks up a strong 
bottom-up signal from the chopsticks’ intersection and the selected vertical ambiguous signals 
from line interiors, resulting in a global vertical motion percept in the far depth, D2.  

Gelatinous ellipses. The perception of rigidity of rotating ellipses depends on their shape 
(Figure 5). The 3D FORMOTION model suggests that the processes determining rigidity of the 
boundary are similar to those determining the percept of coherent vs. incoherent motion, as well 
as the percept of a single object vs. assignment of neighboring boundaries to different objects, 
possibly at different depths. In the non-rigid case (thick ellipse), analysis of local motion signals 
shows that local motion signals perpendicular to the ellipse boundary may prevail. As in the case 
of incoherent Lorenceau-Alais displays (arrow), each segment of the ellipse boundary moves in 
the manner inconsistent with a single (object) motion in the display (Figure 15A).  

In the rigid ellipse case (thin ellipse) the dominant motion signal is consistent with a 
single object rotation that is tangential to the boundary at the points of the highest curvature 
(Figure 15B). The resulting motion percept in the ellipse displays is determined by the 
competition among ambiguous local signals integrated through large MT receptive fields. This 
hypothesis is supported by the “satellite effect” (Weiss and Adelson, 2000): dots moving outside 
of the ellipse can bias the perception of rigidity. If dots, which provide unambiguous motion 
signals, move along circular trajectories, then the ellipse, even a thick one, is perceived as rigidly 
rotating (Figure 16A). If dots oscillate in the direction orthogonal to the contour, the ellipse, even 
a thin one, is perceived as deforming (Figure 16B).  
 Weiss and Adelson (2000) reported that the capture of an ambiguous ellipse motion by 
unambiguously moving satellites happens even if both lie in different depth planes (as defined by 
disparity). Moreover, in the case of two pairs of satellites, the closer one in depth captures 
ambiguous ellipse motion and determines the global percept. These data can be explained by the 
depth-selectivity of V2 → MT projections (Bradley and Andersen, 1998). For example, the 
maximum capture signal will be at the depth of the satellites, and the strength of the capture 
signal will decrease with the difference in depth between the satellites and the ambiguous motion 
signals. The ambiguous motion signals that are closest to the depth of the satellites will thus be 
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captured more easily within their depth plane. The outcome of the competition of two sets of 
satellites will be determined by the one with the stronger motion signal in the ellipse depth plane. 
These effects are not simulated in the present article, but they are clearly implied by the 3D 
FORMOTION model. 

 

A 
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Figure 15. Motion computation in MT (Motion Level 5, Equation (A16)) in the ellipse 
display. (A) Thick ellipse. Motion signals are consistent with stretching of the boundary 
and with nonrigid percept. (B) Thin ellipse. Motion signals are consistent with rotation. 
Direction and length of individual arrows represent the direction and strength of MT cells 
activation at each point. 
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Figure 16. Motion computation in MT (Motion Level 5, Equation (A16)) in the ellipse 
display with satellites. Small arrows within each satellite represent direction of satellite 
movement (A) Thick ellipse, rotating satellites. Motion signals are consistent with 
rotation and with rigid percept. (B) Thin ellipse, stretching/contracting satellites. Motion 
signals are consistent with deformation Direction and length of individual arrows 
represent the direction and strength of MT cells activation at each point. 
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Discussion  
 The 3D FORMOTION model is firmly grounded in neurophysiological data. To explain 
psychophysical results, 3D FORMOTION predicts that a number of functional properties arise 
from known neural circuits of the primate motion system. Table 1 summarizes the key 
physiological projections and neuron properties employed by the model, alongside selected 
references supporting those connections or functional properties. Table 1 also lists the model’s 
key physiological predictions that remain to be tested.  

Previous models of motion integration and segmentation. A number of motion models 
have dealt with mechanisms of directional selectivity, motion integration and segmentation. For 
a review, see Grossberg et al. (2001). Few of them have addressed the issues of extrinsic vs. 
intrinsic terminators, and the effect of this dichotomy on motion processing. Lidén and Pack 
(1999) proposed that T-junctions, which indicate occlusion in 2D images of 3D scenes, can 
suppress motion signals in their vicinity. Their model does not, however, explain how occluding 
and occluded objects are separated in depth, or how varying the relative contrasts at  X-junctions 
and T-junctions can cause totally different outcomes, such as perceived occlusion or 
transparency, as explained in Grossberg and Yazdanbaksh (2005). Wilson, Ferrera and Yo 
(1992) proposed that there are parallel Fourier and non-Fourier channels in motion processing. 
However psychophysical data do not support the existence of these pathways (Bowns, 1996; Cox 
and Derrington, 1994).  

Authors of the three sets of data simulated in this article proposed explanations for their 
respective data that differ from explanations offered by the 3D FORMOTION model. For 
example, Lorenceau and Alais (2001) suggested that some shapes rotating behind occluders 
produce weak rotational motion percepts because of a “veto” imposed on motion integration. 
Only the “bad” shapes, those that cannot form a closed contour, would veto motion integration. 
Mechanisms and cortical locations of the veto process were not specified. In contrast, the 3D 
FORMOTION model suggests that anisotropic receptive fields integrate motion across apertures 
as a part of the basic process that solves the aperture problem by generating a coherent object 
motion percept. Some MT cells have elongated receptive fields (Xiao et al., 1997) that can be 
formed by long-range anisotropic projections (Schmidt, Goebel, Lowell, Singer, 1997; Sincich 
and Blasdel, 2001) in the upper laminae of MT (Malach, Schriman, Harel, Tootell and Malonek, 
1997). The 3D FORMOTION model thus explains differences in motion percepts using known 
cortical mechanisms, and predicts that a correlate of coherent object motion can be found in 
some cells of the MT-MST grouping network. 

Several prior models compute motion signals for gratings and plaids. However, none of 
them can explain in detail the different percepts for the chopstick illusion, which can be 
considered as a limiting case of a plaid consisting of just two bars: the visible occluder case 
produces coherent vertical motion, while the invisible occluder case results in motion separation 
in depth. Typically, alternative motion models concentrate on motion mechanisms and do not 
explain how 3D figure-ground separation mechanisms form extrinsic and intrinsic terminators, 
and how these terminators affect global motion computations. Grossberg et al. (2001) provided a 
partial explanation of how local motion signals in the ambiguous positions can be overwhelmed 
by the propagation of the strong feature-tracking signals from the chopsticks’ ends. The 3D 
FORMOTION model uses the same propagation of feature-tracking signals, together with the 
new form-motion interactions, to more fully explain all aspects of the chopsticks illusion.  
Previous models of the ellipse illusion have either accounted for the differences between rigid 

and nonrigid cases, but not for the effect of satellites (Hildreth, 1983), or for the effect of  
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Table 1 

Functional projections and properties of model cell types and predictions 
 
Connection/Functional property Selected references 
Functional projections  
V1 4Ca to 4B  Yabuta et al., 2001, Yabuta & Callaway, 1998 
V1 to MT  Anderson et al.,1998; Rockland, 2002; Sincich & 

Horton 2003, Movshon & Newsome, 1996  
V1 to V2  Rockland, 1992, Sincich & Horton, 2002 
V2 to MT  Anderson & Martin, 2002; Rockland 2002; Shipp & 

Zeki 1985; DeYoe & Van Essen 1985  
MT to V1 feedback Shipp & Zeki 1989; Callaway 1998; Movshon & 

Newsome 1996; Hupé et al., 1998  
V2 to V1 feedback Rockland &  Pandya, 1981; Kennedy & Bullier 1985 
  
Properties  
V1 adaptation Abbott et al.,1997; Chance et al., 1998; (rat); 

Carandini & Ferster, 1997, (cat) 
V1(4ca) transient nondirectional cells Livingstone & Hubel, 1984 
V1 spatially offset inhibition Livingstone, 1998; Livingstone & Conway, 2003; 

Murthy & Humphrey, 1999 (cat) 
V2 figure-ground separation Zhou et al., 2000; Bakin et al., 2000 
MT figure-ground separation and   
     disparity sensitivity 

Bradley et al., 1998, Grunewald et al., 2002; Palanca 
& DeAngelis 2003  

MT center- surround receptive fields Bradley & Andersen, 1998; Born, 2000; DeAngelis & 
Uka, 2003 

Some MT receptive fields elongated  
     in preferred direction of motion Xiao et al.,1997 
Attentional modulation in MT Treue & Maunsell, 1999 
 
Predictions  
Short-range anisotropic filter in V1 (motion stream) 
Long-range anisotropic filter in MT (motion)* 
V2 to MT projection carries figure-ground completed-form-in-depth separation signal 
MT to V1 feedback carries figure-ground separation signal from motion to form stream 
MST to MT feedback helps solve aperture problem by selecting consistent motion directions  

 
*Although Xiao et al, 1997 found that some MT neurons have receptive fields that are elongated 
along the preferred direction of motion, there is no direct evidence that these neurons participate 
preferentially in motion grouping. 
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satellites but not of background motion (Grzywacz and Yuille, 1991). Multiple depth layers in 
combination with a smoothness constraint helped Weiss et al. (2000) to explain a rigidity percept 
as a function of the aspect ratio, the effect of satellites, and the effect of a background motion. 
That work, however, did not suggest a neural implementation. Our model suggests specific 
mechanisms: depth-specific boundary selection of motion, together with motion integration and 
segregation mechanisms, allows it to address all variations of the ellipse display.  

A number of more recent models of vision employ Bayesian techniques. One that is 
particularly relevant to this work is that of Weiss, Simoncelli and Adelson (2002). A traditional 
intersection of constraints approach is enhanced by introducing an individual’s decision 
uncertainty and priors into the process of motion computation. The 3D FORMOTION model can 
be viewed as the brain’s way of using normalized patterns of form and motion activities as “real-
time probabilities” that work together to contextually overcome uncertainty. Various properties 
of the 3D FORMOTION model receptive fields can be viewed as the outcome of developmental 
processes that are sensitive to the statistics of real-world scenes (cf., Grossberg and 
Swaminathan, 2004 and Grossberg and Williamson, 2001), and in this sense embody 
probabilistic constraints on model interactions. It should also be noted that any filtering 
operation, such as the model short-range and long-range filters, may be interpreted as a prior 
(namely, the current neural activity) multiplied by a conditional probability (namely, the filter 
connection strength to the target cell). Likewise, a contrast-enhancing competitive interaction 
that responds to such a filter may be viewed as a maximization operation. These insights have 
been known in the neural modeling literature for thirty years (e.g., Grossberg, 1978). However, 
as Figure 6 and 7 and the model equations in Appendix A show, such local processes do not, in 
themselves, embody the design constraints that lead to the emergent computational intelligence 
of an entire neural system. 

Model parameters. The 3D FORMOTION model is more directly tied to primate 
neurophysiology than purely functional (e.g., Bayesian) models, but it provides a more lumped 
description of cell and network dynamics than, for example, multi-compartmental models of 
single neurons that include a large number of ionic conductances in each cell.  Including all such 
factors would increase the number of parameters, and the run times, in our model many-fold with 
no gain in perceptual insight.  

Because we used such a reduced parameter space, it is not possible to select model 
parameters based on data concerning individual cell firing rates as recorded in V1, V2 or other 
areas of visual cortex. The particular parameter values presently employed (given in Appendix 
A) can, however, be chosen in a robust parameter range without qualitatively changing the 
perceptual phenomena that the model can explain. Because the model is robust to changes in 
many parameters, it is compatible with previous motion models on which it builds, such as those 
of Baloch and Grossberg, (1997), Baloch et al. (1998), Chey et al., (1997, 1998) and Grossberg 
et al. (2001). While a full parameter comparison is given in Table 2 of Appendix A, four 
meaningful changes can here be noted: (1) Because the present simulations employ a higher 
complexity of motion signals in simulated displays and shorter spans of simulated time, the 
balance of excitation and opponent direction inhibition has changed: C3, K3 , C4, and K4 at motion 
Level 2, equations (A7) and (A8);  C6 at motion Level 4, equation (A11); D8 , C9 , and D9 at the 
motion Level 5 (MT and MST), equations (A16) and (A21). (2) The size of spatial kernels has 
been changed to reflect a different size of the display. A more fully developed model would 
include multiple scales of motion processing; here the optimal one was chosen for simplicity: σx 

and σy at the motion Level 5, equation (A16). (3) New mechanisms such as form boundary  
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selection of motion signals via a V2-to-MT interaction required introduction of new layers in the 
model, such as motion Level 5, equation (A14). (4) Thresholds for motion signals at both the 
short-range (V1) and long-range (MT) motion filter levels prevent “leakage” of motion signals 
into the depth of static occluders: θ1  and θ2   at motion Level 3, equation (A9) and θ  at motion 
Level 5 (MT), equation (A17). 

A more intuitive way of understanding model interactions than screening individual 
parameters for a multi-layer system with feedback such as 3D FORMOTION is to examine the 

Figure 17. Chopsticks with invisible occluders and simulated model lesion. Boundary 
computation (bipole output, Form Level 5, Equation (A38)) without feedback from MT-V1. 
Orientation and length of short individual lines represent the orientation and strength of 
bipole cell activations at each position.  Neither boundary can win, as the effects of 
attentional selection in the MT-MST loop cannot propagate to the form system via V1. 
Compare with Figure 13. 
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model’s performance when particular connections are “lesioned”. For example, Figure 17 
illustrates that the model is unable to separate chopsticks boundaries in depth in the invisible 
occluder case without feedback from MT to V1. This result is similar to initial simulation frames 
for a non-“lesioned” network (see Figure 13A). Without the breaking of symmetry afforded by a 
momentary attentional gain fluctuation that favors motion signals for one or the other chopstick, 
neither boundary representation can “win” and claim the near depth in the form system.   

Figure 18 illustrates MT activity in the absence of MST feedback for the case of 
chopsticks with visible occluders. Unlike in Figure 14, motion integration and coherent grouping 
and selection is incomplete: multiple motion signals, many of them spurious, are found in the 
farther depth.  

 

Figure 18. Chopsticks with visible occluders and simulated model lesion. MT activity 
(Motion Level 5, Equation (A16)) without MST feedback. Motion integration is 
incomplete, and multiple motion direction signals are found at the farther depth, D2. 
Compare with Figure 14B. Direction and length of individual arrows represent the 
direction and strength of MT cell activation at each position. 
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Finally, Figure 19 illustrates MT activity in the absence of V2-to-MT boundary selection. In this 
case nothing prevents the occurrence of unwanted motion signals in the nearer depth. Compare 
this result with the perceptually correct lack of significant motion signals in the depth of the 
static occluder in the non-“lesioned” network in Figure 14A. While this paper does not explore 
all “lesion” possibilities in detail, results of the three types of model lesions described above can 
be experimentally tested in vivo by cooling, inhibitory agonist injection, or TMS stimulation.  As 
noted above, the 3D FORMOTION prediction of the loss of depth selectivity in MT while 
preserving motion computations agrees well with the recent data on changes in activity of MT 
cells due to V2/V3 cooling (Ponce. Lomber and Born, 2006).  

Figure 19. Chopsticks with visible occluders and simulated model lesion. MT activity 
(Motion Level 5, Equation (A16)) without V2-MT boundary selection. Nothing prevents 
unwanted motion signals in the closer depth, D1. Compare with Figure 14A. Direction and 
length of individual arrows represent the direction and strength of MT cell activation at 
each position. 
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Conclusions: Mechanisms for Interaction of Form and Motion streams. One of the most 
important components of the 3D FORMOTION model is interaction between form and motion 
processing. Form and motion processing streams in the visual cortex are traditionally considered 
as separate from each other (Mishkin, Ungerleider and Macko, 1983). Separation starts at the 
retinal level. Lesion data seem to support the separation idea: Lesions of the parvocellular, or P-
pathway, do not affect performance in pure motion tasks; lesions of the magnocellular, or M-
pathway, do not affect color or fine spatial frequency sensitivity (Schiller and Logothetis, 1990). 
However, when more complicated motion scenes are considered, independence of the two 
pathways is questionable, as in the Lorenceau-Alais, chopsticks, and gelatinous ellipse displays.  

3D FORMOTION uses interaction of form and motion streams to explain several 
perceptual phenomena. First, motion signals can change based on the occlusion information 
present in the display. For example, the difference between the motion of extrinsic and intrinsic 
terminators explains chopstick displays and some of the Lorenceau-Alais displays. Previously, it 
was suggested that FACADE figure-ground separation would provide a basis for such a 
distinction. However, separation of boundaries in depth does not happen until V2, or at least the 
upper layers of V1. Here we suggest that some difference between extrinsic and intrinsic 
terminators can already be detected in the input layers of V1, and it is established in part by 
adaptation to static boundaries. Electrophysiological recordings of V1 cell activity in response to 
a similar display, the diagonal grating with and without horizontal occluders (Pack et al., 2004), 
can be interpreted as a support to the adaptation hypothesis. These data are also consistent with 
properties of the model feedback from the V2 figure-ground separation mechanisms to the V1 
motion stream. Because these authors did not study temporal dynamics of the suppression along 
occluders, or vary other parameters affecting depth order of the grating and horizontal occluders, 
based on their data it is hard to distinguish between feedforward and feedback mechanisms.  

Second, 3D FORMOTION explains how the motions of two overlapping objects are 
separated in the MT-MST network. The projection from V1 to MT is unlikely to carry depth-
selective signals (Movshon and Newsome, 1996). However, Palanca and DeAngelis (2003) have 
shown that cells in MT have disparity tuning even in the absence of motion. V2 cells appear to 
participate in figure-ground separation (Bakin, Nakayama and Gilbert, 2000, Zhou, Friedman 
and von der Heydt, 2000). The 3D FORMOTION model predicts that the V2 pale stripe 
projection to MT can carry occlusion information necessary to resolve the motion of different 
surfaces in depth. Such an on-center off-surround projection of depth-separated boundaries from 
V2 to the motion stream can also help to explain the absence of motion in the near depth of 
chopsticks (or any other) display with visible occluders. Occluder boundaries represented in the 
near depth plane would select relatively weak “extrinsic” motion signals along them and 
suppress motion signals anywhere else at that depth. This mechanism predicts that a proportion 
of cells in MT representing closer depths will be suppressed when occluder boundaries are 
presented. While neuronal recordings where either disparity-defined (Duncan et al., 2000) or 
contrast-defined (Pack et al., 2004) occluders were presented do not offer such evidence, 
protocols used in these studies did not include a control case of motion presented without 
occluders. Because only motion-sensitive cells are usually selected for recordings, the cell 
populations that are suppressed by form boundaries would be easy to overlook. 

The 3D FORMOTION model makes specific predictions about the laminar distribution 
of Form-Motion interaction properties of MT cells. MT input cells modulated by localized V2 
boundaries (Equation A14) are predicted to show a strong activation at the boundary positions 
and a weak one in empty spaces between boundaries. On the other hand, long horizontal 
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connections in superficial layers of MT are suggested to carry a motion grouping function 
(Equation A17) that renders cells less selective to a specific boundary position. This raises the 
question of why there seems to be an absence of a perceived motion signal in the intervening 
spaces between visible features, as happened in the case of induced motion (Duncker, 
1929/1937). More selective motion binding to boundary positions may be due to replication of 
the V2-to-MT selection mechanism at a higher stage of processing than MT. Such a process is 
not implemented in this article. Another possibility is that not all active cells can carry a 
conscious percept of a perceptual quality. For example, if resonant activities at layer 4 become 
conscious, but not activities of cells in the long-range motion integration stage in layers 2/3, then 
no additional circuitry would be needed to explain the binding of motion percepts to emergent 
boundaries.  

Other Form-Motion interaction phenomena can be explained by feedback projections 
between cortical areas. Different motion signals coexisting in the image can create a motion-
defined boundary (separation in 2D plane) or two motion planes (separation in depth). This 
suggests that projections from the motion system go to the form boundary/surface processing 
system. Such a projection from MT to V1 was used in the present model to explain the perceived 
separation of chopsticks in depth in the invisible occluder case. Neurophysiological studies of the 
function of the MT-to-V1 projection (Movshon, and Newsome, 1996, Jones et al., 2001) used 
either microstimulation or microinjection techniques in the context of simple local motion 
displays. The effect of the feedback projection was often excitatory, sometimes inhibitory, but its 
overall function was not clear. We predict that it is realized by a modulatory on-center, off-
surround network, much like in the MST-to-MT feedback pathway, and other attentional top-
down circuits within the form processing stream (Grossberg, 1999; Raizada and Grossberg, 
2003). Model predictions (Figure 17) can be tested using simultaneous recordings (from V1 or 
V2 cells) and inactivation of motion feedback areas (MT) using complex motion displays; for 
example, the chopsticks display that was used in our modeling study. 

Projections from the motion to the form stream can also distort boundaries of objects 
under certain conditions, as in the case of gelatinous ellipses. In this article we show only the 
result of computations in the motion stream: a tangential motion in the case of the rigid ellipse, 
and radial motion in the case of non-rigid ellipse. Tangential and radial biases are consistent with 
rotation or deformation, respectively. A role for a motion-to-form projection in the distortion of 
boundary positions was explored in a follow-up of the current model (Berzhanskaya et al., 2004). 
Fu et al. (2004) demonstrated a motion-dependent shift of V1 receptive fields. Psychophysical 
experiments using TMS stimulation indicate the importance of MT-to-V1 connections for 
motion detection and a perceived position shift, albeit in a different paradigm (Silvanto, Lavie 
and Walsh, 2005; McGraw, Walsh and Barret, 2004). Further neurophysiological experiments 
are needed to test if MT-to-V1 projections are responsible for this shift and for a deformation 
percept in the case of non-rigid ellipse  

One important difference between the form and motion systems is their difference in 
timing. In particular, the timing of boundary completion is sometimes slow because it may 
involve feedback and competition between different depth planes. There are also latency 
differences between parvocellular and magnocellular streams. The motion signal to MT is very 
quick with a latency of 40 ms, compared to more than 50 ms in orientation-selective simple and 
complex cells in V1 (Bullier, 2001; Bair, Cavanaugh, Smith and Movshon, 2002). While 
adaptation mechanisms resulting in the intrinsic/extrinsic terminator distinction are feedforward 
and quick, boundary selection mechanisms require an additional stage of cortical processing and 
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are slower. On the other hand, motion signals, even in a simple moving line display, suffer from 
the aperture problem. In the visible occluder case of the chopsticks display, the 3D 
FORMOTION model predicts that, initially, the direction of motion in both depth representations 
of MT corresponds to an ambiguous motion signal, and that the correct motion signal develops 
through time. With time, boundary suppression through the V2-to-MT projection starts to inhibit 
the motion signal in the near depth plane, concurrently with the development of the correct 
motion signal in the farther depth plane. This effect could be noticeable in the depth-modulated 
barberpole illusion, as in Duncan et al. (2000), if experiments are modified to afford an analysis 
of timing of motion-sensitive cells relative to boundary onset. Pack, Berezovskii, and Born 
(2001) did demonstrate a switch from ambiguous to veridical direction of motion over a period 
of 50-70ms as detected in the response of certain MT cells to a modified barberpole illusion. The 
effect of suppression of motion in the corresponding depth remains to be shown. On the other 
hand, a longer time-scale phenomena, such as alternation between coherent and transparent plaid 
motion with a characteristic time of 1-5 min (Hupe and Rubin, 2003), can be explained by 
adaptation to an active motion direction. Such an adaptation mechanism has been used at the 
MT-MST stage to explain related data about plaid adaptation. See Chey, Grossberg,and Mingolla 
(1997, Section 7C) and Grossberg, Mingolla, and Viswanathan (2001, Section 3.10). An 
adaptation to a coherent plaid direction of motion would allow other strong directions 
(component motion) to win and facilitate separation of motion in depth, as in the case of two 
chopsticks with invisible occluders simulated in this paper. 

The 3D FORMOTION model explanations are consistent with those of many other 
motion data by earlier versions of the model (Baloch and Grossberg, 1998; Chey et al., 1997; 
Francis and Grossberg, 1996; Grossberg et al., 2001). The same mechanisms can be also applied 
to illusory boundaries from motion (Anderson and Barth, 2000), aperture discontinuity (Palmer 
and Kellman, 2001), flash lag and flash-drag effects (Nijhawan, 1994; Whitney and Cavanagh, 
2000), and motion induction/motion capture effects (Murakami 1999). Some of these issues are 
addressed in a follow-up of the current model (Berzhanskaya et al., 2004). 
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Appendix A: 3D FORMOTION equations, parameters and implementation 
 

All stages of the model, except simple cells in the form system (Equation A23) were numerically 
integrated using a 4th order Runge-Kutta method with a fixed integration step. The activity of 
simple cells was computed at equilibrium. Each layer, including the input, was represented by a 
60x60 matrix for each combination of attributes used at the given layer. For example, for the 
motion system, if there were 2 spatial scales, there were (2x8) cells sensitive to different 
combinations of scale and direction at each point of the matrix. For the scale-sensitive form 
system cells, there were (2x4) scale and orientation cells at each point in the image. For visual 
clarity, figures depict activities of the central part of the corresponding layers (about 30x30 
cells), where most of the input motion was generated. 
 

 
I. Motion system  
All motion sequences are given to the network as series of static 2D frames representing black-
and-white image snapshots at the consecutive moments of time. In both form and motion 
systems, inputs are not separated in depth; i.e., both occluder and occluded objects exist in the 
same image plane. Activities at each layer ( ny ) are results of computation in a dynamical 
system, where the rate of activity change is proportional to some function f of this layer’s 
activities, inputs I and, sometimes, feedback F. Dynamics can be described in a general form as: 

( )FIyfA
dt

dy
nn

n ,,= ,       (A1) 

where nA  scales how fast ny  changes. High values of nA  result in fast dynamics, while low 

values of nA  result in slow dynamics. Outputs of all stages are rectified: [ ] )0,max( nnn yyY == + . 
All model equations are membrane equations: 

[ ] [ ] [ ] leakleakinhibinhibexcitexcitm gEVgEVgEV
dt
dVC −−−−−−=   (A2) 

In this equation, gexcit and ginhib represent the total inputs from excitatory and inhibitory neurons 
synapsing on the cell; gleak is a leakage conductance. Parameters Eexcit , Einhib,  and  Eleak are 
reversal potentials for excitatory, inhibitory and leakage conductances, respectively. All 
conductances contribute to the divisive normalization of the membrane potential, V, as shown by 
equilibrium solution for V: 

( )
( )leakinhibexcit

leakleakinhibinhibexcitexcit

ggg
gEgEgE

V
++

++
=    (A3) 

(Grossberg, 1973, 1980; Grossberg and Raizada, 2000). Reversal potentials in the following 
simulations were (for simplicity) set to Eexcit =1, Einhib = -1, and Eleak =0 (unless noted otherwise). 
When the reversal potential of the inhibitory channel, Einhib, is close to the resting potential, the 
inhibitory effect is pure “shunting”; i.e., decreasing effect of excitation only through an increased 
membrane conductance. It balances excitatory inputs and prevents network activities from 
saturating. In the equations where saturation effects are not possible (for example A9), the 
shunting term was not used.  

Depending on a layer’s functionality, activities at each position (i,j) are represented as p
ijx , 

where }2,1{∈p  indicates whether the cell (population) belongs to an ON or OFF stream; or as 
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d
ijx , where { }8,...,1∈d  indicates directional preference within a single spatial scale; or else as ds

ijx  
where { }8,...,1∈d  indicates motion directional preference, and }2,1{∈s  indicates spatial scale. 

Level 1: Input. Motion processing starts from the input layer of V1 (4Cα). Previous 
models (Baloch et al., 1997) analyzed how LGN ON and OFF cell streams interact to create 
boundaries from a 2D image. They demonstrated that in static images ON cells within on-center 
off-surround networks, and OFF cells within off-center on-surround networks create thin 
boundaries on the edges of the object. Boundaries at the leading edge of a moving bright bar are 
represented mainly by the ON stream, while boundaries at the trailing edge are represented 
mainly by the OFF stream. Based on the results of Baloch et al. (1997), a simplified input p

ijI to 
the visual cortex was represented by 2-cell wide boundaries in two separated ON and OFF 
channels. This simplification was motivated by the fact that we used simple black-and-white 
images. The boundary on the leading edge of the object was represented by the ON channel, and 
the boundary on the trailing edge by the OFF channel. No interactions between ON and OFF 
channels were simulated.   

Level 2: Transient cells. At the first stage of V1, non-directional transient cell activities 
ijb  are computed as a sum of ON (p = 1) and OFF (p = 2) channels: 

p
ij

p

p
ijij zxb ∑= ,       (A4) 

where input cell activities, p
ijx , perform leaky integration on their inputs p

ijI : 

( )( )1 1 1

p
ij p p p

ij ij ij

dx
= A -B x + C - x  I

dt
.    (A5) 

Non-zero activation p
ijx results in slow adaptation of a habituative transmitter gate p

ijz : 

( )p
ij

p
ij

p
ij

p
ij zxKzA

dt
dz

22 1 −−=      (A6) 

(Abbott et al., 1997; Grossberg, 1980). In (A5), A1B1
p
ijx  is the rate of passive decay and C1 is a 

maximum activity p
ijx  can reach. For non-zero inputs p

ijI , p
ijx  approaches C1 with a rate 

proportional to (C1 - 
p
ijx ) and decays with the rate proportional to B1

p
ijx  . When a nonzero input 

p
ijx  is presented, p

ijz adapts with the rate of A2K2
p
ijx  in (A6). When the input returns to 0, 

p
ijz recovers to 1 at the rate A2. The parameters used in Level 2 simulations are: A1 = 10, B1 = 3, 

C1 = 1, A2  = 0.01, and K2  = 20. 
Input activity p

ijx combined with transmitter gate p
ijz results in transient non-directional cell 

activities ijb  that model activity of the non-directionally selective cells in layers 4Ca with circular 
receptive fields (Livingstone and Hubel, 1984). ON and OFF inputs summate at this stage. For 
visual inputs with a short dwell time, such as moving boundaries, activities ijb  respond well. A 
static input, on the other hand, produces only a weak response after an initial presentation period, 
because of the habituation (Muller, Metha, Krauskopf, and Lennie, 2001).  

The next two cell layers provide a directional selectivity mechanism that can retain its 
sensitivity in response to variable speed inputs (Chey et al., 1997). As noted above, index d 
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denotes the directional preference of a given cell. First, directional interneuron activities d
ijc  

integrate transient cell inputs ijb : 

[ ] ⎟
⎠
⎞⎜

⎝
⎛ −+−=

+D
XYij

d
ij

d
ij cKbCcBA

dt
dc

3333 .    (A7) 

A directional inhibitory interneuron d
ijc  receives excitatory input from a transient non-directional 

cell activity ijb  at the same position, and suppression from directional interneuron D
XYc  of 

opposite direction preference D at the position (X,Y) offset by 1 cell in the direction d. For 
example, for the direction of motion 45°, X = i+1, Y = j+1, and D  = 135°.  

Activity d
ijc  increases proportionally to input ijb  with coefficient A3C3 and passively 

decays to zero with rate A3B3
d
ijc . The strength of opponent inhibition is K3 cXY

D⎡⎣ ⎤⎦
+

. Inhibition is 
stronger than excitation and “vetoes” a directional signal if the stimulus arrives from the null 
direction. Thus, a bar arriving from the left into the rightward directional interneuron receptive 
field would activate it well; while a bar arriving from the right would inhibit it even if activation 

ijb  is non-zero. The parameters are: A3  = 5, B3  = 2, C3  = 0.5, and K3  = 20. 

Directional transient cell activities d
ije  at the next level combine transient input ijb with 

inhibitory interneuron activity d
ijc . Their dynamics are similar to those of d

ijc : 

[ ]( )+
−+−= D

XYij
d
ij

d
ij cKbCeBA

dt
de

4444 .    (A8) 

Activity d
ije  increases proportionally to transient input ijb , passively decays with the fixed rate, 

and is inhibited by an inhibitory interneuron tuned to the opponent direction. The parameters are: 
A4  = 30, B4  = 1, C4  = 0.5, and K3  = 20. Computation at Level 2 results in multiple directions 
activated in response to a moving line, which is consistent with the ambiguity caused by the 
aperture problem due to the limited size of V1 receptive fields.  

Level 3: Short-range motion filter. Short-range anisotropic filter activities, ds
ijf , 

accumulate motion in each direction d: 
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Here d
ijE  is the rectified output of d

ije  from Level 2, and ds
ijXYG  is a Gaussian receptive field that 

depends on both direction d and scale s:  
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Scale s determines a receptive field size, and therefore the extent of spatiotemporal integration of 
lower-level motion signals. Larger receptive fields respond selectively to larger speeds, smaller 
receptive fields to smaller speeds; cf., Chey et al. (1998). While in our simulations speed did not 
vary much, in more motion-rich environments speed-depth correlations can help to assign an 
approximate depth order to the moving objects. The kernel ds

ijXYG  is elongated in the direction of 
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motion. For a horizontal motion direction, the kernel has s
xσ  = 1.5, s

yσ  = 0.5 for s=1; s
xσ  = 2.5, 

s
yσ  = 0.5 for s = 2; G = 0.15. Kernels for other directions are derived by a rotation which aligns 

the major kernel axis with the preferred direction of motion. Output of the short-range filter is 
thresholded and rectified, [ ]+

−= s
ds

ij
ds

ij fF θ , with threshold θ1  = 0.04, θ2  = 0.08. Self-similar 
scale-specific thresholds provide different speed sensitivity for two spatial scales. If thresholds 
for two scales were the same, the larger scale would be always activated more strongly. With the 
larger threshold it prefers larger speeds. The full simulation of speed sensitivity was performed 
in a similar system by Chey et al. (1997). The value of constant A5  = 50. 

Level 4: Spatial competition and opponent direction inhibition. The next cell layer 
activities, ds

ijh , combine spatial competition within one motion direction across the area 

determined by the kernel ds
ijXYK  with inhibition from opponent direction cells Ds

ijF in the same 
spatial position. A membrane, or shunting, equation combines these effects:  
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Rectified activities, ds
ijF , from Level 3 define the spatial competition through the excitatory 

Gaussian kernel ds
ijXYJ , which is spatially anisotropic with σx = 2.5 and σy = 0.5 (for horizontal 

motion): 
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and the inhibitory kernel ds
ijXYK , which is isotropic with σ  = 4: 
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The center of inhibitory kernel ds
ijXYK  is offset from the (i,j) position by one cell in the direction 

opposite to the cell preferred direction d. This arrangement results in inhibition trailing 
excitation. The strength of spatial competition is determined by parameter C6, and that of 
opponent inhibition by D6. Parameters are: A6  = 50, C6  = 5, D6  = 100, J = 2, and K = 2. D  is 
opposite to d.  

It usually takes few frames of motion to accumulate and accurately compute motion 
signals through the Level 2-4 mechanisms (Equations A4-A13). However, a motion span 
(maximal displacement in one direction) of the Lorenceau-Alais displays is small. The radius of 
rotation and the motion span there are limited by the geometry of the input; in particular, corners 
of the shape that provide unambiguous motion signals are not visible. To accumulate enough 
information for the motion mechanisms to adequately sample the moving stimulus, one may 
increase the size of the network by supersampling and scale the motion sequence 
correspondingly. For example, a 3-pixel sequence of motion in one direction becomes a 9-pixel 
sequence (scaling by a factor of three). In order to keep the simulation times reasonable, this 
scaling was done only up to Level 4 (see Figure 7, layers 4C-4B, and Equations A4-A13). 
Furthermore, due to memory restrictions, displays were computed piece-wise: four segments of 
each shape were processed by a 60 x 60 network each. Output activities at Level 4 were then 
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subsampled by a factor of 3, in order to compensate for the previous supersampling, and 
combined into one 60 x 60 display at Level 5 (Equation A14). A supersampled 9-pixel motion 
sequence thus becomes a subsampled 3-pixel sequence, thereby returning to the original cellular 
dimensions, but motion signals are more thoroughly processed due to the finer scale at the input 
levels. Piece-wise simplification was possible because four segments of an individual Lorenceau-
Alais shape are separated in space and do not interact with each other at the spatial scale of Level 
2-4 computations. When interactions between segments become essential (Level 5 and later), 
activities are combined. Computations for Lorenceau-Alais used the same parameters as for 
other displays. 

Level 5: Formotion capture and long-range filter. Rectified motion output signals, ds
ijH , 

from V1 (model Level 4) are selected by form boundary signals, s
ijz~  , from V2 in the input layers 

4 and 6 of MT. The activities, ds
ijq , of these MT cells combine motion and boundary signals via a 

membrane equation:   
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In (A14), an input from the V1 motion stream ds
ije HK  is positively modulated by boundaries 

s
ijz zK ~  in the excitatory term of the equation (A14). In addition, boundaries inhibit unmatched 

motion signals via term ∑ % s s
iXY ijXY

XY
z I . This modulatory on-center off-surround network allows 

boundaries to select motion signals at their positions and corresponding depths. 
Parameter eK determines the strength of feedforward inputs ds

ijH , and zK  the strength of 
modulation by V2 boundaries. The V2 boundary projection to MT is stronger than the bottom-up 
motion projection; that is, eK << zK . The strength of the inhibitory effect of V2 boundaries s

ijz~  is 
proportional to the coefficient Kb, and its spatial reach is determined by inhibitory Gaussian 
kernel IijXY

s : 
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When no boundary is provided and s
ijz~  is 0 everywhere (for example, the parvocellular stream is 

inactivated), motion signals can still activate MT via the term ds
ije HK in (A14). In this case, no 

inhibition is present as well. In the presence of boundary input, motion signals at the boundary 
positions are strong, whereas those outside of the boundary position are suppressed. Activity s

ijz~  
in (A14) codes an idealized 1-cell wide boundary simulating output of V2. It simplifies 
boundaries s

ijz separated in depth by the form system (Equation A38), positioned at the locations 
of input boundaries Iij (Equation A4). Parameter s = 1 corresponds to the near depth, s = 2, to the 
far depth. The parameters are: A7  = 100, Ke  = 1, Kz  = 10, Kb  = 0.12, I = 0.1, and σ  = 6.  

Next, MT cell activities, ds
ijm , in layer 2/3 receive MT signals, ds

ijN , from layer 4 via a 

long-range filter and top-down matching signals, ds
ijT , from MST: 
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To compute the long-range filter inputs, ds
ijN , the MT input activities, ds

ijq , are rectified 

( [ ]+= ds
ij

ds
ij qQ ), squared, and passed through an anisotropic filter ds

ijXYL , thresholded, and rectified 
again: 
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In (A17), ds
ijXYL  is an anisotropic Gaussian kernel: 
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that is elongated in the direction of preferred motion. For the horizontal motion direction, for 
example, σ x = 10, σ y = 4. L = 20, and θ = 0.03. Kernels for other directions are derived by 
rotation, for example to compute 45° kernel, the horizontal kernel is rotated 45° 
counterclockwise. 

This long-range anisotropic Gaussian filter accumulates motion in its preferred direction 
over time and space. The anatomical basis for such integration can be provided by long-range 
horizontal projections in layers 2/3 of MT. The squaring operation gives higher preference to 
larger signals, which leads to winner-take-all dynamics in competitive recurrent networks 
(Grossberg, 1973, 1988).  

The strength of MST feedback is determined by coefficient D8. Its spatial extent is 
determined by the isotropic kernel ds

ijXYP : 
2 2
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with σ = 8. The suppression is from all directions except d. The inhibitory weight dew  between 
given direction d and another direction e is given by:  
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where D  is the direction opposite to d. Because excitatory input ds
ijN is from the preferred 

direction, this asymmetric suppression effectively amplifies d and suppresses other motion 
directions. Motion from unambiguous feature-tracking signals propagates to ambiguous motion 
positions through the large kernel PijXY

s . As in the case of the V2-to-MT and MT-to-V1 
projections, MST-to-MT feedback is defined by a modulatory on-center, off-surround network. 
The parameters are: A8 = 200 and D8  = 5. 

Level 6: Directional grouping and suppression in depth. The MT-MST circuit acts in a 
winner-take-all mode, selecting a single direction of motion at each point. MST activity Tij

es is 
described by 
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where ds
ijM is the rectified MT output [ ]+= ds

ij
ds
ij mM . Inhibition is provided by recurrent 

connections within MST. Its strength is determined by coefficient D9, and its spatial extent by the 
kernel ds

ijXYP . The weighting coefficient dew  and surround suppression kernel s
ijXYP  are the same 

as in equation (A16). MST also includes direction-specific suppression from the near depth (D1, 
s = 1) to the far depth (D2, s = 2), which is important for motion transparency simulations. If the 
motion in the direction d wins in D1, the same direction will be suppressed in D2. This allows 
the model to avoid a single motion direction being represented in both depths. In the case of 
transparent motion, suppression of one direction in a given depth would allow the other direction 
to win. The parameters are: A9  = 400, C9  = 1, and D9  = 10. 

MST can be modulated by attention via term ds
ijO in Equation (A21). If attention is 

attracted by features in the near depth plane, this would help one motion direction to win in the 
near depth. Attention was used only in chopsticks simulations with invisible occluders to break 
the symmetry between competing motion signals from two chopsticks moving in opposite 
directions. Attention was applied as a single Gaussian “spot” in the near depth (s = 1) and 
rightward direction (d = 5): 
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In (A22), σ  = 2, A = 0.05, and (x0, y0) are the spatial coordinates of the top-left moving 
chopstick end. This bias is similar to the one used in the case of transparent motion in Grossberg 
et al. (2001) and allows a single motion signal to win in D1. 
 
II. Form system 
A reduced version of the FACADE model was implemented as the form system in order to keep 
simulations manageable. Only part of the Boundary Contour System (BCS) was simulated. 
Binocular inputs were not considered. Filling-in was not simulated. After completion of object 
boundaries, it was assumed that filling-in processes and boundary competition in a full FACADE 
implementation would complete separation of occluded and occluding objects in different 
depths, as has been demonstrated in other articles; e.g., Cao and Grossberg (2005), Fang and 
Grossberg (2004), Grossberg and Swaminathan (2004), Grossberg and Yazdanbakhsh (2005), 
and Kelly and Grossberg (2000). 

Depending on a layer’s functionality, activities at each position (i,j) are represented as p
ijx , 

where p indicates either whether a cell population belongs to ON or OFF streams, or whether it is 
an odd/even filter; or as rs

ijx , where { }4,3,2,1∈r  indicates orientational preference, and }2,1{∈s  
indicates the spatial scale or depth plane. 

Level 1: Input. Input to V1, p
ijX , corresponds to the input processing by LGN through 

circular center-surround receptive fields. As in the motion system, a simplified input 
OFFON

ijX / was represented by 1-cell wide boundaries in two distinct ON and OFF channels. This 
simplification was motivated by our use of simple black-and-white images. No interaction 
between ON and OFF channels was simulated.  
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Level 2: Simple cells. Model simple cells respond to oriented contrasts in the image in a 
polarity-sensitive manner. Simple cell activities for orientation d and spatial scale s, rs

ijS , are 

computed by convolution of V1 input OFFON
ijX /  with even-symmetric and odd-symmetric 

oriented filters evenrs
ijpqs , and oddrs

ijpqs , , respectively: 
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where odd and even filters are given by 
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and 
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Four orientations (r) and two scales (s) were used. For the vertically oriented filter the 
parameters are: 1r

xσ  = 2r
xσ  = 0.75, 1r

yσ  = 1, 2r
yσ  = 2.5; h = 1, k1 = 1.6, and k2 = 0.8.  

Level 3: Complex cells. Complex cells pool inputs from simple cells of the same 
orientation and opposite polarity. Complex cell activities rs

ijc combine odd and even, and ON and 
OFF, inputs from simple cells: 

OFFoddrs
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ONoddrs
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OFFevenrs
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ONevenrs
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ij SSSSG ,,,,,,,, −+−= .  (A27) 

The activity of the complex cells is computed as:  
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The last term introduces competition between boundaries of the same orientation r, at each point 
(i,j), across scales S and s, thus allowing a given orientation boundary to be represented in only 
one depth. 

Both V2 and MT modulate the response of V1 complex cells to the simple cell 
inputs, rs

ijG , via the terms that multiply, and thus modulate, rs
ijG  in Equation (A28). Thus, the 

model predicts that MT feedback:  
⎣ ⎦∑ −=

d
MT

ds
ij

s
ij MM ϑ ,      (A29) 

to layer 2/3 via apical dendrites in layer 1 of V1 (Callaway, 1998; Shipp and Zeki, 1989), 
where ds

ijM is the rectified MT output [ ]+= ds
ij

ds
ij mM  computed in Equation (A16), can affect not 
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only the motion system but also complex cells in the form system (second term in Equation 
(A28)). This feedback is scale and depth specific, but not orientation or direction specific, and 
provides excitatory modulation only.  MT-to-V1 feedback may also modulate layer 4 or V1, but 
this projection would have no effect on simulation of the targeted data. 

The second feedback component of the second term in (A28) is provided by a 1-cell wide 
approximation rs

ijz~ of V2 boundaries rs
ijz  (see Equation (A28), and also (A38) and (A43) below). 

rs
ijz~ positions correspond to the boundary positions at the input level ijI , and their value is 1 on a 

background of 0's. These boundaries provide a depth-specific bias to V1 complex cells, so if 
FACADE mechanisms assign a certain boundary to depth 1 at the level of V2, this boundary will 
be strengthened in scale 1 at the complex cell layer in V1, and will be weakened in scale 2. This 
mechanism helps to ensure that a given boundary is represented in one depth only. Parameters 
are: A2 = 2, B2 = 1, kex = 25, θΜΤ  = 0.15, and D2 = 10. 

Level 4: Hypercomplex cells. The hypercomplex cell level has both spatial, rs
ijy , and 

orientational, rs
ijn , competition stages. This level models the process of end-stopping. It 

combines feedforward inputs from complex cells, rs
pqC , through the on-center off-surround terms 

4C  and 4E , respectively, with feedback inputs from bipole cells through the on-center off-
surround terms 7C  and 7E , respectively. The activity, rsy , at the spatial competition stage is 
described by: 
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The on-center, rs
ijC4 , and the off-surround, rs

ijE4 , inputs from complex cells obey: 
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and 
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where [ ]+
= rs

pq
rs
pq cC  is rectified input from the complex cell in (A28). The on-center feedback 

from the bipole stage is provided by one-to-one projections:  
rs
ijex

rs
ij ZkC =7 ,       (A33) 

where [ ]+
= rs

ij
rs
ij zZ  is the bipole output from the corresponding orientation r and scale s (equation 

A38). The off-surround feedback from the bipole stage is given by: 
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Summation of inhibitory feedback over all orientations r provides a spatial competition property, 
and suppresses hypercomplex cell activities, rs

ijy , in the case of ambiguous boundary signals. This 
feedback is the part of competitive mechanism that breaks the stems of T-junctions from their 
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tops during figure-ground separation. Parameters are: A3 =50, C=E=1; 5.0=cσ , 1=sσ , kex = 
0.02, and kinh = 0.2. 

The orientation competition activities, rs
ijn , receive rectified inputs [ ]+

= rs
ij

rs
ij yY  from the 

spatial competition stage (A30): 
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In (A35), orientation signals at each point (i,j) compete across orientations via term dr ds
ijE Y . Both 

the excitatory, drC , and inhibitory, drE , kernels have Gaussian profiles across orientations so 
that orthogonal orientation suppression is the strongest. The excitatory orientation competition 
kernel is: 
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The inhibitory orientation competition kernel is: 
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Parameters are: A4  = 100, 5.0=cσ , 75.0=sσ , c = 0.5, and s = 0.75. 
Level 5. Long-range bipole grouping. Bipole cell activities, rs

ijz , cooperatively group 
hypercomplex cell inputs aligned in the same orientation as the bipole orientation preference, and 
allow boundaries to complete over gaps:  

( )5 (1 )= − + − +
rs
ij rs rs rs Rs

ij ij ij ij

dz
A z H z H

dt
 ,   rR ⊥  .  (A38) 

The bipole input is defined by: 
⎣ ⎦1)()( θ−++= rs

ijN
rs
ij

rs
ij

rs
ij NkBgAgH ,    (A39) 

The two terms rs
ijA  and rs

ijB sum collinear hypercomplex cell signals, rs
ijN , from opposite sides of 

the bipole cell, where [ ]+
= rs

ij
rs
ij nN  is the rectified output of the orientation competition stage 

(A35). The signal function: 
⎣ ⎦

⎣ ⎦22

2)(
θ

θ
−+

−
=

xD
x

xg      (A40) 

and threshold θ1 are chosen so that both branches rs
ijA  and rs

ijB  must be sufficiently active to fire 
rs
ijH  in the absence of the direct bottom-up input rs

ijN  .The simplified bipole kernel includes only 
spatial pooling across the same orientation from both bipole branches: 

( ) ( ) rs
pq

pq yx
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  ,  (A41) 

and  
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 ,  (A42) 

where 1=xσ , 2=yσ , and offset h = 5. These kernels are for the vertically oriented bipole. Each 
kernel A (top branch) and B (bottom branch) is elongated along the orientation it is pooling to 
facilitate grouping of the corresponding orientation across boundary gaps. Other orientation 
kernels are derived by rotation. Parameters are D = 0.2, θ1 = 0.5, θ2 = 0.3, kN = 1.5. The last term 
in (A38) introduces competition between orthogonal orientations. Parameter A5 = 50.  

In a 2D image, 3D information such as occlusion is often represented by T-junctions. 
FACADE has proposed how T-junction detection and figure-ground separation occur without 
using explicit T-junction detectors. Simulation of the complete dynamics of boundary separation 
in depth would require large-scale simulations (Kelly and Grossberg, 2000; Grossberg and 
Yazdanbaksh, 2005), and were not implemented. Instead, it was assumed that after one chopstick 
boundary wins in the near depth, D1, these already demonstrated FACADE interactions will 
complete the boundary separation in depth. Algorithmically, a certain boundary orientation r 
won when the ratio, α, of the total boundary activation with orientation r to the total competing 
boundary R activation exceeds a threshold T:  

T
Z

Z

Rs
ij

ij

rs
ij

ij ≥=
∑
∑

α .     (A43) 

This ratio was computed in the circular neighborhood of a given junction. The radius of the 
circle was 5 cells. For a T-junction, the ratio of perpendicular orientations r and R in the 
neighborhood of T-junction was computed. For a Y-junction, the ratio of competing orientations, 
r and R, 45 o apart was computed. After the criterion (A43) was met, further V2 processing of the 
V1 bipole signal rs

ijz  (A38) was simplified by representing the corresponding boundaries by 

idealized 1-cell wide boundary activities, rs
ijz~ , corresponding to the demonstrated ability of 

bipole cells to form sharp boundaries. These boundaries were positioned at the same locations as 
non-zero input boundary values Iij. When one boundary wins in the near depth, it suppresses the 
same orientation via V2-to-V1 feedback in the far depth at the complex cell stage level (A28), 
thus resulting in a given boundary being represented only in one depth. The V2-to-MT 
projection in (A14) was calculated as the sum of the bipole activations across all orientations 

∑=
r

rs
ij

s
ij ZZ , and then simplified with a 1-cell wide depth-separated boundary s

ijz~ .  

 A summary of parameter choices for simulations and comparisons with parameters used 
in previously published models appear in Tables A1 and A2 for the motion and form streams, 
respectively. 
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Table A1 
Comparison of present and previously published parameters for motion levels 

 

 

3D 
FORMOTION 
value 

 
Equation 
Number 

Grossberg et al.,  
2001 value 

Level 2    

1A  10 5 10 

1B  3 5 1 

1C  1 5 2 

2A  0.01 6 0.03 

2K  20 6 100 

3A  5 7 1 

3B  2 7 1 

3C  0.5 7 1 

3K  20 7 10 

4A  30 8 10 

4B  1 8 1 

4C  0.5 8 1 

4K  20 8 10 
Level 3    

5A  50 9 4 
s
xσ   s=1 0.5 10 0.5 
s
yσ , s=1 1.5 10 1.5 
s
xσ , s=2 0.5 10 0.5 
s
yσ , s=2 2.5 10 2.5 

θ,   s=1 0.04 9 0.25 
θ2,   s=2 0.08 9 0.5 
Level 4    

6A  50 11 20 

6C  5 11 10 

6D  100 11 no equiv 
σx J 0.5 12 0.5 

yσ J 2.5 12 2.5 
σx K 4 13 4 

yσ K 4 13 4 
Level 5    

7A  100 14 no equiv 

eK  1 14 no equiv 

zK  10 14 no equiv 
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bK  0.12 14 no equiv 
σ 6 15 no equiv 
 
MT 

 
 

 

8A  200 16 1 

8D  5 16 1 
σx L 4 18 20 
σy L 10 18 20 
θ   L 0.03 17 0 
MST    

9A  400 21 1 

9C  1 21 0.01 

9D  10 21 1 
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Table A2 
Comparison of present and previously published parameters for form levels 

 

Form System 
3D Formotion 

value 
Equation 
Number 

Grossberg and 
Kelly, 2000 value 

Simple cells    
σx, s=1 0.75 25, 26 0.75 
σy, s=1 1 25, 26 1 
σx, s=2 0.75 25, 26 1 
σy, s=2 2.5 25, 26 1.25 
Complex cell    

2A  2 28 0.01 

2B  1 28 15 

exk  25 28 no equiv 
θ  MT 0.15 29 no equiv 

2D  10 28 1 
Hypercomplex cell  

3A  50 30 0.1 

exk  0.02 33 1 

inhk  0.2 34 1 
σc 0.5 31 1 

σsurr 1 32 2 

Orientation comp  

4A  100 35 1 
σc 0.5 36 0.5 
σsurr 0.75 37 0.75 
Bipoles    

5A  50 38 1 

2D  0.2 40 0.1 
Nk  1.5 39 0 

θ 0.5 39 0.1 
θ2 0.3 40 0 
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