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Working memory neural networks, called Sustained Temporal Order
REcurrent (STORE) models, encode the invariant temporal order of se-
quential events in short-term memory (STM). Inputs to the networks
may be presented with widely differing growth rates, amplitudes, du-
rations, and interstimulus intervals without altering the stored STM
representation. The STORE temporal order code is designed to enable
groupings of the stored events to be stably learned and remembered
in real time, even as new events perturb the system. Such invari-
ance and stability properties are needed in neural architectures which
self-organize learned codes for variable-rate speech perception, senso-
rimotor planning, or three-dimensional (3-D) visual object recognition.
Using such a working memory, a self-organizing architecture for in-
variant 3-D visual object recognition is described. The new model is
based on the model of Seibert and Waxman (1990a), which builds a
3-D representation of an object from a temporally ordered sequence
of its two-dimensional (2-D) aspect graphs. The new model, called
an ARTSTORE model, consists of the following cascade of processing
modules: Invariant Preprocessor — ART 2 — STORE Model — ART 2
— Outstar Network.

1 Introduction

Working memory is the type of memory whereby a telephone number, or
other novel temporally ordered sequence of events, can be temporarily
stored and then performed (Baddeley 1986). Working memory, a kind of
short-term memory (STM), can be quickly erased by a distracting event,
unlike long-term memory (LTM). There is a large experimental literature
about working memory, as well as a variety of models (Atkinson and
Shiffrin 1971; Cohen and Grossberg 1987; Cohen et al. 1987; Elman 1990;
Grossberg 1970, 1978a,b; Grossberg and Pepe 1971; Grossberg and Stone
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1986; Gutfreund and Mezard 1988; Guyon et al. 1988; Jordan 1986; Reeves
and Sperling 1986; Schreter and Pfeifer 1989; Seibert 1991; Seibert and
Waxman 1990a,b; Wang and Arbib 1990).

The present class of models, called STORE (Sustained Temporal Order
REcurrent) models, exhibit properties that have heretofore not been avail-
able in a dynamically defined working memory. In particular, STORE
working memories are designed to encode the invariant temporal order
of sequential events, or items, that may be presented with widely dif-
fering growth rates, amplitudes, durations, and interstimulus intervals.
The STORE model is also designed to enable all possible groupings of
the events stored in STM to be stably learned and remembered in LTM,
even as new events perturb the system. In other words, these working
memories enable chunks (also called compressed, categorical, or unitized
representations) of a stored list to be encoded in LTM in a manner that
is not erased by the continuous barrage of new inputs to the working
memory.

Working memories with these properties are important in many ap-
plications wherein properties of behavioral self-organization are needed.
Three important applications are real-time self-organization of codes for
variable-rate speech perception, sensorimotor planning, and 3-D visual
object recognition. Architectures for the first two types of application are
described in Cohen et al. (1987) and Grossberg and Kuperstein (1989).
Herein we outline how such a working memory can both simplify and
extend the capabilities of the Seibert and Waxman model for 3-D visual
object recognition (Seibert and Waxman 1990a,b; Seibert 1991).

2 Invariance Principle and Partial Normalization

The STORE neural network working memories are based on algebraically
characterized working memories that were introduced by Grossberg
(1978a,b). These algebraic working memories were designed to explain
a variety of challenging psychological data concerning working mem-
ory storage and recall. In these models, individual events are stored in
working memory in such a way that the pattern of STM activity across
event representations encodes both the events that have occurred and the
temporal order in which they have occurred. In the cognitive literature,
such a working memory is often said to store both item information and
order information (Healy 1975; Lee and Estes 1981; Ratcliff 1978). The
models also include a mechanism for reading out events in the stored
temporal order. An event sequence can hereby be performed from STM
even if it is not yet incorporated through learning into LTM, much as a
new telephone number can be repeated the first time that it is heard.
The large data base on working memory shows that storage and per-
formance of temporal order information from working memory are not
always veridical (Atkinson and Shiffrin 1971; Baddeley 1986; Reeves and



272 G. Bradski, G. A. Carpenter, and S. Grossberg

Sperling 1986) These deviations from veridical temporal order in STM
could be explained by the algebraic working memory model as conse-
quences of two design principles that have clear adaptive value. These
principles are called the Invariance Principle and Partial Normalization
(Grossberg 1978b).

2.1 Invariance Principle. The spatial patterns of STM activation
across the event representations of a working memory are stored and
reset in response to sequentially presented events in such a way as to
leave the temporal order codes of all past event groupings invariant.

In particular, a temporal list of events is encoded in STM in a way that
preserves the stability of previously learned LTM codes for familiar sub-
lists of the list. For example, suppose that the word MY has previously
been stored in a working memory’s STM and has established a learned
chunk in LTM. Suppose that the word MYSELF is then stored for the first
time in STM. The word MY is a syllable of MYSELF. The STM encoding
of MY as a syllable of MYSELF may not be the same as its STM encoding
as a word in its own right. On the other hand, MY's STM encoding as
part of MYSELF should not be allowed to force forgetting of the LTM
code for MY as a word in its own right. If it did, familiar words, such
as MY, could not be learned as parts of larger words, such as MYSELE,
without eliminating the smaller words from the lexicon. More generally,
new wholes could not be built from familiar parts without erasing LTM
of the parts.

The Invariance Principle can be algebraically realized as follows, pro-
vided that no list items are repeated. Assume for simplicity that the ith
list item is preprocessed by a winner-take-all network. Each list item then
activates a single output node of the preprocessor network. Properties of
the working memory also hold if a finite set of output nodes is activated
for each item. The winner-take-all case is described herein for notational
simplicity. Let the winner-take-all node that is activated by the ith item
send a binary input J; to the first working memory level F; (Fig. 1). Let x,
denote the activity of the ith item representation of F;. Suppose that [; is
registered in working memory at time f;. At time #;, the activity pattern
[x1(t), x2(ti), . .., xn(#:)] across F, stores the effects of the list I, L, ..., I of
previous inputs. The input I; updates the activity values x.(t;-1) to new

values x(t;) for all nodes k = 1,2,...,i according to the following rule:
0 ifk>i
Ik(f.') = Ui ifk=1i 2.1
w;xk(ti_,) ifk<i

At time t;, the pattern [x1(t;_1), x2(ti-1), ..., Xi1(t—1)] of previously stored
STM activities is multiplied by a common factor w; as the ith item is
instated with some activity u;.

The storage rule (2.1) satisfies the Invariance Principle for the follow-
ing reason. Suppose that F; is the first level of a two-level competitive
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Figure 1: (a) Elementary STORE model: STM activity x; at level 1 registers
the item input I;, nonspecific shunting inhibition x, and level 2 STM y;. STM
activity y; at level 2 registers x;. Complementary input-driven gain signals [
and I° control STM processing at levels 1 and 2. (b) Input I{t) equals 1 for
t;—a; <t <t When all inputs are off (t; < t < t;+ ;) level 2 variables y relax
to level 1 values x,(¢;).

learning network (Grossberg 1976). Then F, sends signals to the second
level F, via an adaptive filter. The total input to the jth F, node is Zyxizij,
where z;; denotes the LTM trace, or adaptive weight, in the path from
the kth F; node to the jth F, node. In psychological terms, each active
F; node represents a chunk of the F; activity pattern. When the jth F;
node is active, the LTM weights z; converge toward x;; in other words,
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the weight vector becomes parallel to the F) activity vector. When a new
item is added to the list, the Invariance Principle implies that the pre-
viously active items in the list will simply be multiplied by a common
factor, thereby maintaining a constant ratio between the previously active
items. Constant activity ratios imply that thé former F, activity vector
remains parallel to its weight vector as its magnitude changes under new
inputs. Hence, adding new list items does not invalidate the STM and
LTM codes for sublists. In particular, the temporal order of items in each
sublist, encoded as relative sizes of both the STM and the LTM variables,
remains invariant.

2.2 Partial Normalization. The Partial Normalization rule algebrai-
cally instates the classical property of the limited capacity of STM (Atkin-
son and Shiffrin 1971). A convenient statement of this property is given
by the equation

S,‘ = Zxk(t;) = [A]O,‘ + S(l - 9,) (22)
k

where 6 = 1 and §; decreases toward 0 as i increases. For example, let
6; = 6=}, with 0 < 6 < 1. Total activity S; increases toward an asymptote,
S, as new items are presented. Parameter S characterizes the “limited
capacity” of STM. In human subjects, this parameter is determined by
biological constraints. In an artificial neural network, parameter S can be
set at any finite value.

Using equations 2.1 and 2.2, it was proved in Grossberg (1978a) that
the rate at which S; approaches its asymptote S helps determine the form
of the STM activity pattern. The pattern (xy,...,x;} can exhibit primacy
@ll x> xp), recency (all x¢-1 < xi), or bowing, which combines pri-
macy for early items with recency for later items (Grossberg 1978a). These
various patterns correspond to properties of STM storage by human sub-
jects. In particular, model parameters are typically set so that the STM
activity pattern exhibits a primacy gradient in response to a short list.
Since more active nodes are read-out of STM before less active nodes
during performance trials, primacy storage leads to the correct order of
recall in response to a short list. Using the same parameters, the STM
activity pattern exhibits a bow in response to longer lists, and approaches
a recency gradient in response to still longer lists. An STM bow leads to
performance of items near the list beginning and end before items near
the list middle. A larger STM activity at a node also leads to a higher
probability of recall from that node under circumstances when the net-
work is perturbed by noise. An STM bow thus leads to earlier recall
and to a higher probability of recall from items at the beginning and the
end of a list. These formal network properties are also properties of data
from a variety of experiments about working memory, such as free recall
experiments during which human subjects are asked to recall list items
after being exposed to them once in a prescribed order (Atkinson and
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Shiffrin 1971; Healy 1975; Lee and Estes 1981). Effects of LTM on free
recall data have also been analyzed by the theory (Grossberg 1978a,b).

The multiplicative gating in equation 2.1 and the partial normaliza-
tion in equation 2.2 are algebraic versions of the types of properties that
are found in a general form in shunting competitive feedback networks
(Grossberg 1973). A task of the present research was to discover special-
ized shunting networks that realize equations 2.1 and 2.2 as emergent
properties of their real-time dynamics. The STORE model is a real-time
shunting network, defined below, which exhibits the desired emergent
properties. In particular, the STORE system moves from primacy to bow-
ing to recency as a single model parameter is increased.

3 Working Memories Invariant Under Variable Input Speed, Duration,
and Interstimulus Interval

Two types of real-time working memories, transient models and sustained
models, can realize the invariance and partial normalization properties.
In a transient model, presentation of items of different durations can alter
the previously stored pattern of temporal order information. Transient
memory models can still accurately represent temporal order if input du-
rations are controlled by a preprocessing stage. Sustained models allow
input durations and interim intervals to be essentially arbitrary: so long
as these intervals are not too short, temporal input fluctuations have no
effect on patterns stored in memory. A sustained neural network model is
defined below. This two-level STORE model codes lists of distinct items.
A variant of the STORE model design, to be discussed in a subsequent
article, can encode the temporal order of lists in which each item may
occur multiple times. Each item may also be represented by multiple
nodes.

The first level of the STORE model (Fig. 1a) consists of nodes with
STM activity x;. The ith item is assumed to send a unit input I; to the
ith node for a time interval of length ¢;. After an interstimulus interval
of length 3, the next item sends an input to the (i + 1)st node, and so
on. Each STM node also receives shunting inhibition via a nonspecific
feedback signal that is proportional to the total STM activity x. The
second STORE level consists of excitatory interneurons whose activity y;
tracks x;. A critical additional factor in the model is gain control that
enables changes in x; to occur only when an input is present and enables
changes in y; to occur only when no input is present. This alternating
gain control allows feedback from y to x; (k < i) to preserve previously
stored patterns even when a new input I; is on for a long time interva.l.
These processes are defined below in the simplest way possible to permit
complete analysis and understanding of the model’s emergent properties.
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3.1 STORE model equations. The STORE model is defined by the
dimensionless equations

T [AL + yi — xix|] 3.1)
and
dy, ¢
praad i 1 32
where
= Zxk (33)
X
= Yk 3.4)
3
F=1-1 4 (3.5)
and
xi(0) =yi(0) =0 (3.6)

The input sequence I; is given by

1 fti—o<t<y
li(t) = { 0 otherwise

3.7)

(Fig. 1b). The input durations (a;) and the interstimulus intervals (5 =
# —a; — ;1) are assumed to be large relative to the dimensionless relax-
ation times of x; and y;, set equal to 1 in equations 3.1 and 3.2. Thus each
x; reaches steady state when inputs are on and each y; reaches x; when
inputs are off. Otherwise, ¢; and a; can be arbitrary, and their values
have no effect on patterns of memory storage.

3.2 Temporal order patterns. We will now examine how system prop-
erties vary as a function of the single free. parameter, A, in equation 3.1.
We will see that, in all cases, patterns of past activities remain invari-
ant as new inputs perturb the system, and partial normalization obtains.
In addition, the STM pattern (xy,...,x;) exhibits primacy for small A,
recency for A > 1, and bowing for intermediate values of A, as follows.

By equations 3.1, 3.6, and 3.7, when the ith input is presented, I; = 1,
yi =0, and

A

5o 2 (3.8)
X

For k < i,Iry = 0 and

o Yo Bltiz) (39)
X X

Working Memory Networks 277

Thus the relative sizes of the activities in pattern (x;,...,x;_,) are pre-
served when x; becomes active. Amplitudes increase uniformly if total
activity x < 1, and decrease uniformly if x > 1. Equations equations 3.1
and 3.2 imply that the variable x obeys the equations

=[A+y-2 (3.10)
and
= -y ' (311
where
y= Ekjyk (3.12)

Since y(0) = 0, equation 3.10 implies that x(t;) = VA. At time ¢ = &,
i > 1, equation 3.10 implies that

x(t) = /A +y(t)

and equation 3.11 implies th\/_y(t = x(t;—1). Thus the total activity S; at
time ¢; satisfies S; = x(t;) A and

S; Ex(t,') = \/A +Si,1>1

As the number of items increases, both S; and x(t) approach
S=501+V1+44]
which is the positive solution of
=VA+S

For large A, therefore, 5,57! = 1, whereas for small A,
S5 VAK

Thus, for large A, the total STM activity is approximately normalized at
all times, whereas for small A, it grows rapidly as more inputs perturb
the network. Since the size of parameter A in equation 3.1 reflects the
degree to which the input I; influences the STM pattern, recency for
large A (present input dominates) and primacy for small A (past activities
dominate) would be intuitively predicted. In fact, for large A, the pattern
of STM activity (x1,...,x;) always shows a recency gradient. For small
A, the STM patterns in response to short lists show a primacy gradient.
Specifically, by equations 3.8 and 3.9,

I,’(f,’) = % (313)
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and
ey Xia(tic1)
Xi-1(t) = BTN (3.14)
Thus at time ¢, just after I; has been presented,
Xi—1 > X; iff X (t,'_l) > A (3.15)

Thus if x,(t) > A, (x1,...,x;) shows a primacy gradient until x;(t;) < A.
Presenting additional inputs I; 1, lit2,... causes the STM pattern to bow.
If x;(h) < A, the STM pattern always exhibits recency. Since x;(t;) = VA4,
recency occurs for all list lengths whenever A > 1, while small A values
allow relatively long lists to be stored by primacy gradients. The position
at which the STM pattern bows can be calculated iteratively. For example,
the bow occurs at position i = 2 if 1 > A > .5(3 — V/5) = 0.382.

These properties of the STORE model are illustrated by the computer
simulations summarized in Figure 2. Each row depicts STM storage of a
list at a fixed value of A. In the left column, the STM vector (x1, x3,...,x7)
is depicted at times t,f;,...,ty when successive inputs Iy, L,...,I; are
stored. Each activity x; is represented by the height of a vertical bar. The
top row depicts a recency gradient, the seventh row a primacy gradient,
and intermediate columns represent bows at each successive list position.
The middle column graphs the ratios x;x7}| through time. The horizontal
graphs mean that the Invariance Principle is obeyed as soon as both
items in each ratio are stored. The third column graphs the growth of
total activity x(t) to its capacity S. The input durations ¢; in equation 3.7
varied randomly between 10 and 40. Such variations in input parameters
had no discernible effect on the stored STM patterns.

4 A Self-Organizing Architecture for Invariant 3-D Visual Object
Recognition

The application summarized below of the STORE model illustrates how
a working memory, whose analog STM weights code both order and item
information, can substantially reduce the number of connections needed
to solve temporal learning problems, and simplify the modeling of such
processes. Seibert and Waxman (1990a,b, 1992; Seibert 1991) have devel-
oped a novel self-organizing neural network architecture for invariant
3-D visual object recognition. In response to moving objects in space,
an Invariant Preprocessor in the architecture automatically generates 2-D
patterns that are invariant under changes in object position, size, and
orientation, and are insensitive to foreshortening effects in 3-D. These
patterns form the input vectors to an ART 2 network (Carpenter and
Grossberg 1987) that self-organizes learned category representations of
the invariant patterns. Each category node encodes a 2-D “aspect” of the
object; that is, a single category node is activated by a collection of simi-
lar 2-D views of the object. The ART 2 vigilance parameter controls how
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Figure 2: STORE model simulations for decreasing values of the input param-
eter A. The STM patterns [x1(t;),...,x(t;)] show recency for large A, bowing
for intermediate values of A, and primacy for small values of A. Total activity
x(t;) = S; grows toward the asymptote S as i increases. When a new input J; is
stored, the previous pattern vector (xy,...,x;_1) is amplified if S; = x(t;) < 1, or
depressed if S; = x(t;) > 1; but the pattern of relative activities is preserved. For
these simulations, input durations o; were varied randomly between 10 and 40,
with the intervals (t; —t;_;) set equal to 50.
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similar these 2-D views must be in order to activate the same category
node J.

Seibert and Waxman have successfully applied their system to the
recognition of real 3-D objects. As the object moves with respect to the
camera, a temporally ordered sequence |1, /2, ..., Jm of 2-D category nodes
is activated. These nodes and their transitions implicitly represent invari-
ant 3-D properties of the object, in much the same manner as an “aspect
graph” (Koenderink and van Doorn 1979). The Seibert and Waxman
model learns to respond to temporal sequences of 2-D category activa-
tions with correct outputs from 3-D Object Nodes. To accomplish this,
Seibert and Waxman modeled an Aspect Network that represents all the
possible pairwise transitions between 2-D aspect nodes (Fig. 3a). The As-
pect Network contains distinct locations Nj; at which sequential activation
of nodes J; and J; are detected. The detection process at Nj; multiplies the
activities x; and x; of the nodes J; and J;. As these activities wax and wane
through time, a large product x;x; denotes that a transition has recently
occurred between the 2-D aspect nodes J; and J;.

The activation pattern across all the transition detectors N;; forms the
input to a competitive learning network (Fig. 3b). The output nodes of
this network are called 3-D Object Nodes because the network learns to
fire such a node only when an unambiguous sequence of 2-D aspect tran-
sitions is activated. An important feature of this model is its ability to
recognize novel sequences composed of previously learned transitions.
This approach to synthesizing 3-D recognition from combinations of dis-
tinct 2-D views is consistent with data of Perrett et al. (1987) about cells
in temporal cortex that are sensitive to different 2-D views of a face.

Despite its many appealing features, the Seibert and Waxman model
could face two types of limitations if used in a more general context:
proliferation of connections and sensitivity to input timing. As in all
networks that explicitly compute pairwise or higher order correlations,
proliferation of connections may occur using Aspect Graphs, although
this problem did not occur in the application considered by Seibert and
Waxman. In general, each different temporal order would use a different
Aspect Network to compute products of the temporally overlapping STM
traces of all successive input pairs at the spatial loci Nj; (Fig. 3a). In order
to compute all possible objects that can be represented by M distinct (and
nonrepeated) 2-D Aspect Nodes J;, one needs to represent M! temporal
orderings by M! Aspect Networks (Fig. 3b). Each Aspect Network com-
putes O(M?) products, which require O(M?) adaptive pathways to each
3-D Object Node.

In our modified architecture, the M 2-D Aspect Nodes J; are the item
nodes of a STORE model. Thus both order and item information are
represented by analog activation patterns across these M codes. As a
result, only one STORE model is needed with M nodes to represent all
M! temporal orders, no Aspect Networks are needed, and only O(M)
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Figure 3: The Aspect Network of Seibert and Waxman detects temporal order
properties by computing the temporal overlap of pairs x; and x; of activities
at distinct locations N;; and then learning the pattern of overlapping traces to
code transitions between 2-D aspects. (a) A single-object Aspect Network. (b) A
complete multi-object Aspect Network in which each 2-D Aspect Node fans out
to contact the Aspect Networks corresponding to all 3-D Object Nodes, which
compete among themselves according to winner-take-all competitive learning
rules. Reprinted with permission (Seibert 1991).
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(3-D OBJECTS)
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Figure 4: Processing stages of an ARTSTORE model for invariant 3-D object
recognition.

adaptive pathways are needed from the STORE model to each 3-D Object
Node (Fig. 4).

This substantial reduction in the number of connections is comple-
mented by invariant temporal order properties and a simpler learning
law. The Seibert and Waxman computation of aspect transitions using
products of successive STM traces is sensitive to changes in input dura-
tion and interstimulus interval. They partially compensate for variations
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in input duration by using a specialized LTM law in their adaptive filters
whose adaptive weights converge to 1 if the corresponding product ex-
ceeds a threshold, and zero otherwise (Fig. 3a). Such an approach cannot,
however, compute the order of events separated by long interstimulus
intervals 5. The working memory representation of a STORE model
automatically discounts variations in input durations and interstimulus
intervals. Thus the invariant temporal order code of a STORE model
can directly input to a standard ART 2 network, which can automatically
learn to select different 3-D Object Nodes in response to different analog
patterns of temporal order information over the same fixed set of work-
ing memory item nodes. Because the model in Figure 4 joins together
ART and STORE models, it is called an ARTSTORE model.

The ARTSTORE model also enables each 3-D Object Node to learn
an arbitrary output pattern via outstar learning (Grossberg 1968, 1978b).
To accomplish this, each 3-D Object Node is the source cell of an out-
star (Fig. 4). All the outstars converge on the same outstar border where
an output name can be represented in an arbitrary format by an exter-
nal teacher. Thus, in response to a 3-D object moving with respect to
the Invariant Preprocessor, the architecture outputs an object name when
enough information about the object's 2-D aspects and their temporal
order have accumulated. The total self-organizing system uses the fol-
lowing cascade of processing stages: Invariant Preprocessor — ART 2
(2-D Aspects) — STORE model (Invariant Working Memory) — ART 2
(3-D Objects) — (Outstar Network). This is a self-organizing multilevel
instar—outstar map specialized for invariant 3-D object recognition (Car-
penter and Grossberg 1991).

5 Control of Working Memory and Temporal Learning

Reset of the working memory can be autonomously controlled by the
object tracking system that Seibert and Waxman have incorporated into
their Invariant Preprocessor. This system enables the architecture’s cam-
era to continuously track a moving object. As continuous tracking occurs,
a sequence of 2-D aspects is learned and encoded in working memory,
after which a ballistic camera movement focuses on a new object. We as-
sume that working memory is reset, and thereby cleared, when a ballistic
movement occurs; for example, by reducing the gain of the recurrent in-
teractions between the variables y; and x; in the STORE model. As a
result, each sequence of simultaneously stored 2-D aspects represents the
same 3-D object with high likelihood.

ART 2 learning of each working memory pattern may be controlled
in either of two ways: (1) Unsupervised learning: Here each new entry
into working memory causes ART 2 to choose and learn a new category.
Each subsequence (1), (1, ]2), (1, )2, ]5), - .. of 2-D aspect nodes can then
learn to activate its own ART 2 node. Only those subsequences which
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are associated with names of 3-D objects generate output predictions. (2)
Supervised learning: Here an ART 2 learning gate is opened only when a
teaching input to an outstar occurs. Consequently, only those sequences
(J1,J2,...) that generate 3-D object predictions will learn to activate ART 2
categories and their outstar predictions. The number of learned ART 2
categories is hereby minimized. In either case, the ART 2 module can
learn to select those combinations of item and order information that are
predictive of an object by using its top-down expectation and vigilance
properties (Carpenter and Grossberg 1987).

6 Concluding Remarks

The present model illustrates how a hierarchically organized neural ar-
chitecture can self-organize a higher order type of invariant recognition
by cascading together a combination of self-organizing modules, each of
which computes a simpler invariant property. The Invariant Preprocessor
computes a position/size/rotation invariant; the first ART 2 computes
a self-calibrating similarity invariant of 2-D aspects; the STORE model
computes a temporal order invariant; and the second ART 2 computes
a self-calibrating similarity invariant of 3-D objects. In particular, the
self-calibrating similarity invariant of 2-D aspects needs the temporal in-
variance of working memory to gain full effectiveness. This is so because
the timing of individual outputs from the 2-D aspect nodes can depend
in a complex way on the 3-D shape of an object and its relative motion
with respect to the camera or other observer.
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