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Abstract. Neural network models of working memory,
called "sustained temporal order recurrent" (STORE)
models, are described. They encode the invariant temporal
order of sequential events in short-term memory (STM) in
a way that mimics cognitive data about working memory,
including primacy, recency, and bowed order and error
gradients. As new items are presented, the pattern of
previously stored items remains invariant in the sense that
relative activations remain constant through time. This
invariant temporal order code enables all possible group-
ings of sequential events to be stably learned and remem-
bered in real time, even as new events perturb the system.
Such competence is needed to design self-organizing tem-
poral recognition and planning systems in which any
subsequence of events may need to be categorized in order
to control and predict future behavior or external events.
STORE models show how arbitrary event sequences may
be invariantly stored, including repeated events. A prep-
rocessor interacts with the working memory to represent
event repeats in spatially separate locations. It is shown
why at least two processing levels are needed to invariant-
ly store events presented with variable durations and
interstimulus intervals. It is also shown how network
parameters control the type and shape of primacy, recency,
or bowed temporal order gradients that will be stored.

1 Introduction: STORE working memory models

Working memory is a kind of short-term memory (STM)
whereby a temporally ordered sequence of events can

be temporarily stored (Baddeley 1986). Events that are
stored in working memory may be sequentially recalled,
or quickly erased by a distracting event, in contrast to
long-term memory (L TM). A large experimental litera-
ture and a variety of models have elucidated the proper-
ties of working memory (Atkinson and Shiffrin 1971;
Elman 1990; Grossberg 1970; Grossberg and Pepe 1971;
Gutfreund and Mezard 1988; Guyon et al. 1988; Jordan
1986; Reeves and Sperling 1986; Schreter and Pfeifer
1989; Seibert 1991; Seibert and Waxman 1990a, b; Wang
and Arbib 1990).

A class of dynamically defined working memory
neural network models, called "sustained temporal order
recurrent" (STORE) models, encode the temporal order
of arbitrary sequences of items. Larger STM activations
are recalled first and hence represent earlier items. The
ratio of STM codes of previous inputs remains constant
as new inputs enter working memory, even when input
durations and interstimulus intervals vary widely. This
invariance property allows all possible groupings of se-
quential events to be stably learned and remembered in
real time, because invariant activity ratios imply a learn-
able invariance of recognition codes in competitive learn-
ing or self-organizing feature map models that receive
their inputs from a STORE model. STORE models thus
realize an invariance principle (Grossberg 1978a, b) that
enables chunks (compressed, categorical, or unitized rep-
resentations) of variable size to be encoded in L TM in
a manner that is not destabilized as new items are added
to previously learned sequences. Grossberg (1978a,b)
proved that the invariance principle implies that items
are not always stored in working memory with veridical
temporal order. Thus, the fundamental constraint that
temporal learning be stable implies that model working
memories, like those of humans, do not always encode
information in correct temporal order. Correspondingly,
a large cognitive database can be explained by STORE
models, as noted in Sects. 2-4.

The basic, two-level model (STORE 1) that is de-
scribed in Sect. 4 encodes temporal order for input se-
quences whose items are not repeated (Bradski et al.
1991, 1992). This paper develops two extensions of the
STORE 1 model. First, an STM decay term in the
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in working memory in such a way that the pattern of
STM activity across event representations encodes both
the events that have occurred and the temporal order in
which they have occurred. In psychological terms, the
working memory stores both item information and order
information (Healy 1975; Lee and Estes 1981; Ratcliff
1978). The models also include a mechanisms for reading
out events in the stored temporal order. Relative activa-
tion strengths translate into order of performance.
A nonspecific rehearsal wave opens a gate to read out
stored activities. After rehearsal begins, the most active
node reaches its output threshold first, then self-inhibits
its activation via a negative feedback pathway to enable
the next most active node to be rehearsed, and so on,
until all active nodes are reset. An event sequence can
hereby be performed from STM even if it is not yet
incorporated through learning into L TM, much as a new
telephone number can be repeated the first time that it is
heard.

The large database on working memory shows that
storage and performance of temporal order information
from working memory is not always veridical (Atkinson
and Shiffrin 1971; Baddeley 1986; Reeves and Sperling
1986). These deviations from veridical temporal order in
STM were given an explanation by the algebraic working
memory model as consequences of two design principles
that have clear adaptive value. These principles are called
the invariance principle and the normalization rule
(Grossberg 1978a,b).

Fig. 1. a Two-layer STORE 1 model. Layer Fl is a competitive net-
work whose variables Xk relax to steady state when an input is active in
Fo. Level F2 variables Yk track Fl activity when inputs are off. In
STORE 1 items are not repeated within a single working memory
sequence. bInput timing. c An input sequence whose items enter in the
order A, B, C can be stored in Fl as a primacy, bowed, or recency
gradient. The height of a line indicates the level of STM activity

STORE 2 class of models adds a parametric degree of
freedom to the control of relative sizes of working mem-
ory representations (Sect. 6). This physically important
parameter facilitates the quantitative modeling of
cognitive data. Another generalization of the model
(STORE 3) extends system capabilities by allowing both
repeated and non-repeated item sequences to be encoded
and recalled (Sect. 7). This is accomplished using either
a winner-take-all (WT A) or a positional gradient shift
(PGS) preprocessor. Each preprocessor causes spatially
distinct network nodes to become active when an input
item is repeated. This separation allows the network to
invariantly store arbitrary sequences in working mem-
ory. In addition, a simplified, one-level model (STORE 0)
is described and shown to be adequate for working
memory coding and recall, provided that input durations
are restricted (Sect. 5). This one-level model clarifies why
two le~els are needed to invariantly store items of vari-
able duration. Section 8 includes other variants of the
STORE model that illustrate the flexibility and scope of
the STORE design. Section 9 describes applications of
STORE models of temporal recognition, planning, and
inference problems.

2.1 Invariance principle

The spatial patterns of STM activation across the event
representations of a working memory are stored and
reset in response to sequentially presented events so as to
leave the temporal order codes of all past event group-
ings invariant. In particular, a temporal list of events in
STM preserves the stability of previously learned L TM
codes for familiar sublists of the list. For example, sup-
pose that the word 'my' has previously been stored in
a working memory's STM and has established a learned
chunk in LTM. Suppose that the word 'myself' is then
stored for the first time in STM. The STM encoding of
'my' as a syllable of 'myself' may not be the same as its
STM encoding as a word. On the other hand, 'my's' STM
encoding as part of 'myself' should not cause forgetting
of the L TM code for 'my' as a word. If it did, familiar
words, such as 'my', could not be learned as parts of
larger words, such as 'myself', without eliminating the
smaller words from the lexicon. More generally, new
wholes could not be built from familiar parts without
erasing L TM of the parts.

The invariance principle can be algebraically realized
as follows, provided that no list items are repeated. As-
sume for simplicity that the ith list item is preprocessed
by a winner-take-all network. Each list item then acti-
vates a single output node of the preprocessor network.
Properties of the working memory also hold if a finite set
of output nodes is activated for each item. The winner-
take-all case is described herein for notational simplicity.
Let the winner-take-all node that is activated by the ith

2 lnvariance principle and normalization rule

The STORE neural network working memories are
based upon algebraically characterized working memo-
ries that were introduced by Grossberg (1978a, b). These
algebraic working memories were designed to explain
psychological data concerning working memory storage
and recall. In these models, individual events are stored
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item send a binary input Ii to the first working memory
level Fl' Let Xi denote the activity of the ith item repres-
entation of Fl' Suppose that Ii is registered in working
memory at time ti. At time ti, the activity pattern (Xl (t;),
X2(t;), ..., X,,(ti)) across F 1 stores the effects of the list 11,
12" ..,Ii of previous inputs. The input Ii updates the
activity values Xk(ti-l) to new values Xk(ti) for all nodes
k = 1, 2, ..., i according to the following rule: At time ti,
the pattern (Xl(ti-l), X2(Y-l),'" ,Xi-l(Y-l)) of pre-
viously stored STM activities is multiplied by a common
factor Wi as the ith item is instated with some activity Jli'

This storage rule satisfies the invariance principle for
the following reason. Suppose that F1 is the first level of
a two-level competitive learning network (Grossberg
1976). Then F1 sends signals to the second level F2 via an
adaptive filter. The total input to the jth F2 node is
LkXkZkj, where Zkj denotes the LTM trace, or adaptive
weight, in the path from the kth F 1 node to the j th F 2
node. In psychological terms, each active F 2 node repres-
ents a chunk of the F1 activity pattern. When the jth F2
node is active, the L TM weights Zkj converge toward Xk;
in other words, the weight vector becomes parallel to the
F1 activity vector. When a new item is added to the list,
the in variance principle implies that the previously active
items in the list will simply be multiplied by a common
factor, thereby maintaining a constant ratio between the
previously active items. Constant activity ratios imply
that the former F1 activity vector remains parallel to its
weight vector as its magnitude changes under new inputs.
Hence, adding new list items does not invalidate the
STM and L TM codes for sublists. In particular, the
temporal order of items in each sublist, encoded as rela-
tive sizes of both the STM and the L TM variables,
remains invariant.

less active nodes during performance trials, primacy stor-
age leads to the correct order of recall in response to
a short list. Using the same parameters, the STM activity
pattern exhibits a bow in response to longer lists, and
approaches a recency gradient in response to still longer
lists. An STM bow leads to performance of items near the
list beginning and end before items near the list middle.
A larger STM activity at a node also leads to a higher
probability of recall from that node under circumstances
when the network is perturbed by noise. An STM bow
thus leads to earlier recall and to a higher probability of
recall from items at the beginning and the end of a list.

These formal network properties are also properties
of data from a variety of experiments about working
memory, such as free recall experiments during which
human subjects are asked to recall list items after being
exposed to them once in a prescribed order (Atkinson
and Shiffrin 1971; Healy 1975; Lee and Estes 1981).
Effects of L TM on free recall data have also been ana-
lysed by the theory (Grossberg 1978a, b), as have reaction
time data from experiments about the sequential perfor-
mance of stored motor commands (Boardman and Bul-
lock 1991), data concerning errors in serial item and
order recall due to rapid attention shifts (Grossberg and
Stone 1986a), data concerning errors and reaction times
during lexical priming and episodic memory experiments
(Grossberg and Stone 1986b), and data concerning word
superiority, phonemic restoration, and backward effects
on speech perception (Cohen and Grossberg 1986; Gros-
sberg 1986). These data explanations provide converging
evidence that working memory models which satisfy
STORE design principles are used in the brain. The
present article extends the computational capabilities of
this class of models.

4 The basic model: STORE 1
2.2 Normalization rule

The normalization rule algebraically states the classical
property of the limited capacity of STM (Atkinson and
Shiffrin 1971). According to this property, the total net-
work STM activity across all nodes can equal, or increase
to, a finite maximum value S that is insensitive to the
total number of active nodes and hence is normalized.
Parameter S characterizes the 'limited capacity' of STM.
In human subjects, this parameter is determined by bio-
logical constraints. In an artificial neural network, para-
meter S can be set at any finite value.

3 Relation to speech and language data

In Bradski et al. (1992), we showed how neural networks
could be defined which store invariant and normalized
activation patterns in working memory. These activation
patterns are emergent properties of the network dynam-
ics, rather than formal algebraic rules. Such a step is
needed to encode complex events that may be occurring
asynchronously in time, as well as to design hierarchies of
working memories W1, W2,. .., Wn,. ..such that each
node of Wn codes a compressed representation of a stored
activation pattern across the working memory Wn -1. The
nodes of each successive Wn code 'higher invariants' or
'chunks' of the items coded by W1.

The working memory model STORE 1 that was de-
fined in Bradski et al. (1992) is a two-layer, input-gated
neural network (Fig. 1a). The first layer (F1) is a competi-
tive system, whose activity vector (Xl, X2, ..., Xn) repres-
ents working memory. The second layer (F2) tracks and
stores the STM activity of the first layer via its activity
vector (Yl,Y2,. .., Yn). Inputs are presented as a se-
quence of non-repeated items, with arbitrary intra-input
durations lXi and inter-input durations Pi (Fig. 1b). The
ith input to the STORE 1 system consists of a unit input
Ii from the ith node of the input field Fo. Input Ii may

The algebraic invariance principle and normalization
rule imply (Grossberg 1978b) that the pattern
(Xl, ..., xJ of stored STM activities can exhibit primacy
(all Xk-l > Xk), recency (all Xk-l < Xk), or bowing, which
combines primacy for early items with recency for later
items (Fig. 1c). Primacy, recency, and bowing correspond
to properties of STM storage by human subjects. Model
parameters are typically set so that the STM activity
pattern exhibits a primacy gradient in response to a short
list. Since more active nodes are read out of STM before
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memory activity Xi via (2), and thus the inhibitory effect
of total activity X on how strongly x j is activated by I j,
j> i.

The constraint that Xi and Yi can approach their new
equilibria in response to Ii requires that the input pre-
sentation interval (Xi and the inter-input interval Pi
(Fig. 1 b) both be positive; infinitely fast presentation
rates, with (Xi = Pi ~ 0, are not admissible. The input
intervals (Xi and Pi may be arbitrarily small, however,
provided that the rates with which Xi and Yi react are
chosen large enough. Given fixed rates, the model ex-
hibits a fastest input representation rate beyond which
successive events cannot be resolved, as is also seen in
brain data (Miller 1981; Miller and Liberman 1979; Repp
et al. 1978; Tarttar et al. 1983). Data about variable-rate
speech perception (Repp 1980, 1983) have been simulated
using a STORE model in which the storage rate is ad-
justed by automatic gain control to speed up or show
down with the speech rate, leading to a stored STM
pattern that is invariant across a wide range of rates
(Boardman et al. 1993).

represent activation of a recognition category that results
from compressing a distributed representation of an indi-
vidual event, or item, at an earlier processing level. The
STORE input vector I then represents STM activity of
a winner-take-field (Fo) that categorizes previously
learned item recognition codes with a normalized activ-
ity. That is why inputs Ii are chosen equal to 0 or 1. The
STORE working memory responds to these normalized
inputs by storing the temporal order of item representa-
tions.

After entering working memory, items stored at Fi
are recalled in the order of their STM activities Xk, from
largest to smallest. When system parameters are set so
that F 1 stores a primacy gradient (Fig. lc), therefore,
items are recalled in the order in which they were present-
ed. Other parameter ranges yield patterns of bowing or
recency in STM. The dimensionless (1)-(3) describe the
input and STM of a STORE 1 system (Fig. 1):

(1)

5 The reduced model: STORE 0

Before turning to the STORE 2 model, it is informative
to ask whether the competence of STORE 1 can be
achieved by a single-layer network. A single-layer system
(STORE 0) can, in fact, encode an invariant working
memory, but at a cost of losing the robustness to input
timing that characterizes STORE 1. In a single-layer
STORE system, the STORE 1 positive feedback loop
F 1 --+ F 2 --+ F 1 (Fig. 1a) is replaced with direct F 1 --+ F 1
positive feedback (Fig. 2). This is a natural simplification,
since the STORE 1 variable Yk records and feeds back
prior values of Xk. Equation (4) describes the STM dy-
namics of the one-layer system:

(2)

(3)

Analysis of STORE 1 (Bradski et al. 1992) shows that
the STM pattern at F1 stores a (veridical) primacy gradi-
ent if parameter A is small; that bowing can occur if
0 < A < 1; and that F 1 stores a recency gradient if A ~ 1.
These conclusions hold under the assumption that the F 1
STM variables Xk relax to their steady-state values dur-
ing each input presentation interval (ti -lXi, ti), when
I = 1 in (2); and that the F 2 STM variables Yk relax to
their steady-state values during each inter-input interval
[ti, Y + Pi], when It = 1 in (3) (Fig. 1b). In a typical
STORE 1 simulation, input durations were randomly
varied between 10 and 40, with the input intervals
(y -Y-l) set equal to 50. Input duration variations do
not affect the stored activity pattern. Insight into how
STORE 1 works is provided in terms of a mathematical
analysis of the more general STORE 2 model (Sect. 6). In
particular, the nonspecific gain, or gating, term I in (2)
enables the working memory activities to respond to
inputs Ii while they are on, since 1= 1 if any Ii = 1. The
complementary gating term Ic in (3) prevents the stored
memories Yi from responding to inputs Ii while they are
on, since IC = 0 if any Ii = 1. Already stored activities Yi
are hereby buffered against distortion by future inputs I j,
j > i. Each stored activity Yi also influences its working

(4)

Figure 3a shows that, like STORE 1, STORE 0 can
exhibit recency (A = 1.3), bowing (A = 0.3), and primacy
(A = 0.04) gradients. Intuitively, parameter A is an index
of the strength of the current input Ii relative to the
positive feedback term Xi- Large A enhances the influence

Fig. 2. Single-layer STORE 0 model
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activity pattern, due to the gating term I in (4) that holds
Xi constant when no input is present. Thus, STOREO is
an adequate working memory insofar as input prepro-
cessing guarantees approximately equal input durations
and intensities.

t-

6 Control of STM gradients: STORE 2

STORE 1 is perhaps the simplest neural model that is
capable of invariant encoding and recall of temporal
sequences in real time. However, with just one free para-
meter (A), STM gradients tend to be steep. Addition of
another term (and parameter) to the model provides
a new degree of freedom that brings greater flexibility to
applications and cognitive modeling.

STORE 1 can be augmented in a variety of ways. One
natural way is to include a working memory decay term
( -Bx;) to the description of the activations Xi at F 1,
namely,

STORE 2: F 1 working memory

dx.I = (AIi + Yi -XiX -Bx;}I
(7)dt

of the current input Ii relative to the STM representation
Xl' ..., Xi-1 of past inputs, and so produces a recency
gradient. Invariance is illustrated by the relative STM
activities Xl/Xl + 1, which remain constant through time
as new inputs are added. Figure 3 also illustrates
the normalization property, namely, the total F1 STM
activity:

i
Si = L Xk(tJ (5)

k=l

increases towards a constant asymptotic value S as the
number of items stored in working memory increases.
For both STORE 1 and STORE 0,

S = 0.5[1 + (1 + 4A)1/2] (6)

Figure 3b illustrates that, unlike STORE 1, STORE 0
activity patterns are sensitive to input timing variations.
In Fig. 3a, where ai = Pi = 0.75, STM bows at position
4 when A = 0.3. In Fig. 3b, where A also equals 0.3,
bowing occurs later (position 7) when ai = 0.3; and
earlier (position 2) when ai = 1.2. This property occurs in
STORE 0 because STM values Xk (k < i) decay toward
0 when input Ii is on for a long interval. Thus, temporal
storage in STORE 0 requires that the duration ai of the
input be short enough so that STM of previous items
cannot reach a zero steady state. Shorter input durations
(smaller ai) give less weight to recent inputs, leading to
a longer primacy gradient, while longer input durations
(larger aJ enhance the recency gradient. The length of the
interstimulus interval (Pi) has no effect on the STORE 0

Equations (1), (3), and (7) constitute the STORE 2 model,
which retains the same two-layer geometry as STORE 1
(Fig. 1a) and reduces to STORE 1 when B = O. In that
case, primacy and veridical recall occur for small A,
which gives a current input Ii less weight than past items,
whose presentation order is retained in the F 2 values
Yl,...,Yi-l'

The decay term -BXi modulates the steep STORE 1
activation gradients. Figure 4 shows the results of
STORE 2 simulations that vary both the input strength
parameter A and the STM decay parameter B. Each
rectangle shows the evolving steady-state F 1 STM values
(Xl'.'.' X7) as a sequence of inputs 11,...,17 is pre-
sented. For comparison, all activations Xk(tJ represented
by the bar charts have been normalized by the total
activity (X(t7)) after the final input. From the left column
to the right column, the STM decay parameter B is seen
to 'smooth out' the steep primacy gradient that often
occurs in STORE 1. The additional degree of freedom in
STORE 2 thus allows control of the shape of primacy,
bowing, and recency curves, to keep STM values in
a useable range, in particular above the noise level that
may exist in real systems. We will now mathematically
analyse STORE 2 dynamics as a function of the two free
parameters A and B.

During presentation of the ith input to a STORE 2
system, when ti -lXi < t < ti, Ii = 1 and Yi = O. Therefore

dXj

dt
= A -XiX -BXi (8)

so

(9)
A

Xi -+ x+B
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constant in the next interval (ti -(Xi, ti) when input Ii is
presented. Thus, by (5) and (14), y(tJ ~ X(ti-1) = 8;-1;
and by (13),

A + S;-l -sf -BSi ~ 0 (15)

Solving (15) then implies that the total F 1 activity
x(tJ = S; is given by the iteration formula:

SI = O.5[ -B + (B2 + 4(A + S;-1))1/2] (16)

where So = O. Thus, by (16), Sl > So. Comparison of(16)
evaluated at S; and at S;+ 1 shows, by induction, that

Sl<S2<"'<SI<'" (17)

at all times.
Equations (16) and (17) can now be used to calculate

the position at which the pattern (Xl, X2,' .., X,,) may
bow. STORE 2 exhibits a primacy gradient as long as

X;-l (tJ > X;(ti) (18)

By (9) and (11), this occurs if

Xi-1(ti-l»A (19)

Thus, by (9) and (19), bowing occurs at the first position
j = J at which

( ) A Xj tj ~
Fig. 4. STORE 2. Steady state activations (Xl, ...,X7) nonnalized by
total activity X(t7). The decay parameter B is seen to moderate the
primacy gradient. Arrows indicate bow position -~A~ S.+B

J

In addition, by (9), (17), and (20),

A
Xi(tJ ~ Si + B \""'1

for i > J, since total F 1 activity Si grows monotonically
as new inputs arrive, by (17). By (11) and (21), for all i > J,

Xi-l (tJ < Xi(ti) (22)

In particular, if B ~ 1 in (20), then J = 1, and a recency
gradient occurs. By (20), for 0 ~ B < 1, bowing occurs at
the first position j = J where

S j ~ 1 -B (23)

~<A

For k < i, Ik = 0 and Yk ~ Xk(ti-l) during this interval
(Fig. Ib). Therefore

dxk
-~ XJti-l) -XkX -BXk (10)
dt

so
Xk(ti-l)

B (11)

X+

By (11), the prior working memory pattern (Xl. ..Xi-l)
is scaled by the common factor (x + B) -I when input Ii is
being stored. Therefore, relative activations are preser-
ved, and STORE 2 satisfies the invariance principle.
Note that storage of a new input I i causes a net amplifica-
tion of the prior pattern (XI(ti-l) ..~ Xi-l(ti-l)) if and
only if

x(tJ +B == Si + B < 1 (12)

by (5) and (11).
Equations for total STM activity at F I and F 2 are

obtained by summing (3) and (7). Thus, setting Y == LkYk,

dx

Xk -+

7 Repeated input items: STORE 3

When order is encoded in STM activation levels and
when, as in STORE 1 or STORE 2, each item is repre-
sented by just one node, repeated items in an input
stream pose a problem. Namely, repeated items could
increase the activation level of the corresponding node in
such a way that the order information encoded by rela-
tive activations is lost. To solve this problem, STORE 3
automatically creates new internal representations when
an input item is repeated. As in Fig. 5, a preprocessor at
level Fo represents repeated items in spatially separate
channels. Both repeated and non-repeated items then
enter level Fl as spatially separate inputs. In this way,
a STORE 3 network can be viewed as a two-dimensional
(2D) array of items x repeats. Two methods for spatially
separating repeated items in level Fo are proposed here.

= (A + Y -X2 '- Bx)1 (13)dt

.~ ., Ik.. III. lilli'

By design, y -+ X(ti-l) in the interval [ti-1, ti-1 + Pi-1]
between input Ii-1 and input Ii (F.ig. lb), and y remains
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Fig. 6. Slice (J of the STORE 3 WTA network: Repeated input items
are separated into spatially distinct channels prior to encoding by
STORE. Input fa fans out with randomly varying connection strengths
rj into a WTA field F~. Inhibition from F~ to F~ prevents subsequent
activation of the jth F~ node. A repeat of input fa then causes another
F~ node to become active

0) (

The first uses inhibitory feedback from the STORE F2
level to a winner-take-all competitive field Fo (STORE 3
WT A) (Fig. 5). The second uses a positional gradient shift
at Fo (STORE 3 PGS) that does not require feedback
from the STORE network.

varying connection strengths rj to n nodes in the WTA
network Fg during the interval (ti -(Xi, ti)'
(B) The Fg node (J) with the largest weighted input
(rjI,,) suppresses activity at the other nodes in Fg.
(C) When activity (wj) of the winning node exceeds
a threshold (T), output from the Jth Fg node excites the
Jth node of the STORE 3 layer Fi.
(D) After input I"I shuts off(ti ::;;: t ::;;: ti + PJ, activity (yj)
of each F~ node delivers positive feedback to the corres-
ponding Fi node (xj) and a large inhibitory signal
-Eyj to the corresponding Fg node (wj). In this way,

each newly active F~ node inhibits subsequent activation
of the corresponding node in Fg by repeats of the item 0'.
(E) If input I" is repeated, a different Fg node becomes
active. STORE 3 hereby treats repeated instances of
a given input as if they were distinct inputs.

The dimensionless STORE 3 WT A network is char-
acterized by (24)-(26). Table 1 describes the STORE 3
parameters.

STORE 3 WTA: F~ preprocessor

~ = c( -Dwj + (1 -wj)[f(wj) + rjla]

7.1 STORE 3 winner-fake-all preprocessor

Figure 6 depicts the slice of the STORE 3 'winner-take-
all' (WTA) network that encodes a single input la to the
item representation 0". A node that becomes active when
item 0" is recognized is connected, via n pathways, to
a repeated-item preprocessor Fo, which in turn feeds into
the STORE 3 network. That is, each input la sends ex-
citatory signals(r~la,' ..,r:la) to an array ofn nodes in
a WT A competitive field Fo. Connection strengths rj are
assumed to be fixed numbers that are randomly chosen
in (0.1). The Fo node J that receives the largest input
becomes active, while activity at other nodes is inhibited.
When activity at the winning node exceeds a threshold T,
the corresponding Jth node in the STORE 3 field
F~ becomes active. Mter the input la goes off, massive
inhibition from the active JthF~ node prevents sub-
sequent activation of the JthFo node, until the entire
STORE network is reset. Inhibition from F~ allows re-
peated instances of input la to excite distinct nodes in the
WTA network Fo, which are chosen in order ofdecreas-
ing size of the strengths rj.

Let O"i denote the ith item representation to be ac-
tivated in an event sequence. The STORE 3 WTA net-
work encodes an arbitrary input sequence la., la., ...,
lai' ...as follows.

-Wj[k~jf(Wk) + Eyj ]) (24)

where 1..(t) = 1 at times t when item 0" is being presented,
1,,=0 otherwise; 0"=1,...}:::; j=l...n; and
f(w) = FW2. See Grossberg (1973, 1982) for an analysis of
the dynamics of shunting on-center off-surround net-
works.

(A) For simplicity of notation, denote a fixed item rep-
resentation 0"; by 0". Input fat = fa fans out with randomly

Fig. 5. STORE 3, winner-take-all (WT A). Repeated items are filtered
at Fo into spatially separate channels and thus enter the STORE
network as if they were separate inputs. An input I. activates one of
n nodes in the Fo layer of the 11th 'slice'
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Table 1. STORE 3 winner-take-all (WTA) parameters

Small, for primacy (Fig. 3)
Modulate F1 gradient (STORE 2)
Fo -+ equilibrium before F1 active
Slow decay at Fg
~ 1: for yj to quench wj
Large: rapid chqice at Fg
Prevent Fg transients from activating F1
Random coefficients; here, r1 > r~ > ...
Maximum number repetitions/item
Intra-input duration ( ~ 1)
Inter-input duration ( ~ 1)

> r:

(b) Seven repeats of input (J

(x~ ...x~)

tl t2 t3 t4 ts t, t7
O.O5

~ I II 1.11 III1 IIIII II1III IIII1II ~ Fa 1

0

(~...~)

STORE 3 WT A: F1 working memory

dxj (A r a ..., + a a
R a\

T-= W,-/I +V,-y,y- y,1

dt '--I.""J -..'.rJ --J" -"J/~ (25)

where x = LaLjxj,] = La]a, and [z]+ = max(z, 0).

STORE 3 WT A: F~ stored memory

~dt = (xj -yj)IC

where Ic =

(26)

-1.

Fig. 7. a Fg chooses that node J = 5 with maximum path strength rJ.
Fg reaches steady state rapidly compared with the input presentation
time scale (Cti = Pi = 25). b Seven repeats of items I. activate seven
different Fg nodes. A working memory activation pattern at F1 can be
used to learn and recall this sequence. Parameters are given in Table 1

Figure 7 summarizes a computer simulation of the WT A
preprocessor of the STORE 3 WTA layer Fg. In Fig. 7a,
an input fans out with varying connection strengths to
seven nodes in the WT A network. Bar heights show
evolving Fg activities wi during a brief interval
(0 ~ t ~ 0.06). The WT A dynamics enhances Fg activity
at the node (J = 5) with maximum ri and suppresses
activity at other nodes (j # 5). Only the winning node
exceeds the threshold (T) for sending a signal to F1 (25).
Figure 7b shows the results of seven repeats of input item
la. Each instance activates a different Fg node, leading to
spatially separated activations in layer F1. Figure 8 illus-
trates STORE 3 working memory responses to various
input sequences that include repeated items. In each case, F 1
activity encodes the correct input order, given a small value
of parameter A to ensure that a primary gradient unfolds.

STORE 3
(a) Step-by-step response to BABBCA

Item (J ~ ~,.£ ~ Item (J ~ ~,.£ ~

1 B I 4 B I III

2 A I I 5 C I III I

3B1116AI,1111 xi

7.2 STORE 3 position gradient shift preprocessor

A second method of spatially separating repeated input
items into different channels uses feedforward excitatory
and inhibitory positional gradients to convert repeated
inputs into changing locations in a spatial map. One such
map, called a position-threshold-slope (PTS) shift map,
was introduced by Grossberg and Kuperstein (1989) to
transform different input intensities into different spatial
locations. Another map, called a difference-of-difference-
of-gaussians (DODOG), was introduced by Gaudiano
and Grossberg (1991) to convert different ratios of two
input intensities into different spatial locations. Either
map could be used herein as a preprocessor. If successive
presentations of the same item are stored, then the total
stored input increases with successive presentations and
could be used as the input to a PTS shift map. If each

(b) Final response to other sequences:

ABCD ABCD

(j::= =:~~
ABCD ABCD

[~~~= [~~~~
Fig. 8a, b. Response of STORE 3 WT A working memory to sequences
with repeated items. Bar heights represent equilibrated activations xj in
Fl, where input order is correctly encoded. Parameters are given in
Table 1

item input is broken down into an excitatory and inhibit-
ory input pathway and successive item presentations are
stored in the inhibitory pathway, then the ratio of inputs
in the two pathways changes with successive presenta-
tions and could be used as the input to a DODOG map.
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Fig. 9. STORE 3 position gradient shift (PGS) integrator subcircuit

STORE3PGS

Fa2,
(!:1

FIG

Foa

~~7

The preprocessor that is described below is a variant
of these models that realizes the desired mapping in
a simple way. It is called a position gradient shift (PGS)
map. The PGS preprocessor includes inhibitory connec-
tions within the Fg field, so inhibition does not need to
feed back from F~, as in the STORE 3 WTA variant.
Each input channel u fans out via both excitatory and
inhibitory connections, whose strengths falloff with dis-
tance, to a WTA field Fg. In each channel, an inhibitory
interneuron's activation A" grows with each repeat of
input u. The growing inhibitory gradient allows a differ-
ent node in Fg to become active with each repetition of
1". As with the WTA preprocessor, each Fg node is
connected to the STORE 3 level F 1, and each input event
activates a different node in working memory.

Figure 9 shows the components of a positional gradi-
ent shift repeated item preprocessor. A transient cell
activity 8" converts a sustained input 1"t = 1" of dura-
tion (Xi into a pulse of short fixed duration LIt via an
inhibitory interneuron that shuts 8" off after a brief time
delay. These pulses feed into an integrator cell whose
activity A" steps up with each transient pulse 8".

Figure 10 shows slice u of the STORE 3 PGS net-
work. Input 1at = 1" both directly excites each Fg node
and indirectly inhibits each node, via the integrator cell
A". Input 1" excites Fg nodes via signals whose size
[/" -'1 + j] + decreases linearly with distance away from

the excitatory 1" input node. Similarly, the size of inhibit-
ory signals [A" -'1 -j] + from the integrator cell to

Fg nodes decreases linearly with distance. It is assumed
that the strength of the excitatory connections decreases
more slowly than that of the inhibitory connections,
moving from the Fg cell j = 1 toward the cell j = n; that
is, '1- > '1 +. The combined effect of the excitatory input
gradient from 1" and the growing inhibitory gradient
from A" is to shift by one node the locus of maximal Fg
activation with each repeat of item u. In this manner,
repeated inputs are spatially separated before their order
is encoded in the STORE network, without using any
feedback from the STORE network levels Fl or F2.

Equations (27)-(31), along with the Fl equation (25)
and the F2 equation (26), characterize the STORE 3 PGS
system. Parameters are given in Table 2.

--.-

,.",
~~'

(1

.,',,'

~ Integrator Cell

-Onset Cell

I.
0

Item nodeo
Fig. 10. STORE 3 PGS network

Table 2. STORE 3 PGS parameter summary

Parameter Description

A = 0.02
B=0.7
C= 10
D = 0.01
£=8
F=40
T=0.5
At = 0.1
'1 + = 0.05
'1- = 0.1
n=7
IX; = 25

Pi=25

Small, for primacy
Modulate Fl gradient
Fo -+ equilibrium before F 1 active
Slow decay at Fg
Inhibition weighting factor influences choice
Large: rapid choice at Fg
Prevent Fg transients from activating F1
Input pulse duration
Excitatory signal fall-of slope
Inhibitory signal fall-off slope ( > '1 + )
Maximum number repetitions/item
Intra-input duration ( ~ 1)
Inter-input duration ( ~ 1)

(27)

(28)

STORE 3 pas: Fg preprocessor

Sustained input
I" = {l for ti -ai < t < ti, when (Ji = (J

0 otherwise

Transient node

{ l for t.-a.<t<t.-a.+At8,,(t) = ' .' .,

0 otherwIse .

Inhibitory integrator node

dA" = e-
(29)dt -U

Excitatory gradient signals to Fa

t/Jj+(lq) = [Jq -'1 + jJ+
-Wj [ L f(w~) + E</Jj-(A..)

k"j
(32)

(30)

Inhibitory gradient signals to Fg

</>j-(A,,)=[Aa-1f-j]+ (31)

where1f- >1f+ >O;j= 1,..., n; and [J..]+ =max(J..,O).
Fg winner-take-all
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l

STORE3PGS
(a) Fifth repeat ofitemcr

Working memory
~UJ£~1 -

Xa~. J i;

~ IFo j Node J = 5
'WjL wins competition

Summed input
(Jto Fo nodes

~

+
;-

Integrator
node

STORE2A
(Xl(tl) ...XI(tl» xk/xk+l X(t) = 1;xt<t)
tl t2 t3 t4 t5 t, t7 t8 tl t4 t8 tl t4 t8

4.0~ 1 II 111111111111111111"11111"111111~2.0~ 20
~ A=O.O

0.0 0.5 .0.0 B=O.'

4.o~1 II 1111I1I1111111I1I111111111I111111~2.0~ 20~ A=0.25

0.0 0.5 0.0 B = 0.'

4.o~ 1 II 11I11I11I1I111I11I1I1I1I11I1I11I1~2.0~ 20~ A-OoS

0.0 o.s 0.0 B:O.,

4.o~lll 11I11I111I1I11I1I111I1I11111I11I1~2.0~ 20~ A =0.75

0.0 0.5 0.0 B = 0.'

4.0~ 111111111I111I1111I1I111I1I11111I1I1~2.0~ 20~:.! I I I I I A = 1.0

0.0 ..5 _.-0.0 -B=O.9

4.G~1 ~ 111111111111111111111111111111I11~2..~ 20~ A = 1.25

0.0 ..5 0.0 -B = 0.'

4.o~ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~2.0~ 20~ A=loS

0.0 0.5 0.0 -B=O.9

4.0~ 1 II 11111111111I11111I11111I111111I1I~2.°C~~~~~J 2Ota~.~ A=I.75

0.0 0.5 -.-0.0 -B=O.'

Fig. 12. STORE 2A. Bowing can occur in any position for this net-
work. For each run, input durations were varied randomly from lXi = 10
to lXi = 40 without affecting order of storage

along with (1) and (3). In (33),

Fig. tta,b. STORE 3 PGS simulation. a Upon the fifth repetition of
input!", node J = 5 wins the competition at Fg. b Increasing inhibition
from the integrator node A" allows successive Fg nodes j = 1, ...,7 to
become active as !" is presented seven times. STORE 3 records the
seven repetitions in working memory

F = A + By -x (34)

where A > 0,0 < B < 1, x = LiXi, and y = LiYi' In (33),
both excitatory and inhibitory nonspecific feedback are
allowed to modulate each Xi' with inhibitory feedback
being stronger. Figure 12 demonstrates that bowing can
occur at any position, with gradual STM primacy and
recency gradients. Input duration was varied randomly
from lXi = 10 to lXi = 40 without affecting the order of
storage.

The second system symmetrizes the feedback between
F1 and F2:

Figure 11 shows how the STORE 3 PGS modeI.records
repeated items in working memory. In Fig. lla, the fifth
Fg node (w~) receives the greatest combined input,
[Ia -5'7+] + -[Aa -5'7-] + when 0" is repeated for the

fifth time. It therefore wins the competition and sup-
presses activity of the other Fg nodes. The fifth node of
F~ then records in working memory the fifth instance of
item 0". Figure lIb shows the evolving storage of seven
repeats of item 0" in working memory. Repeated items are
seen to be processed into spatially separate channels
prior to entering the STORE 3 network, where their
order is subsequently encoded.

STORE 2B: F 1 working memory

dXi

dt
= (xiF + Yi + I;}I

STORE 2B: F2 stored memory

8 Alternative STORE systems
dYi
dt

= (YiG + xJlc
The STORE idea of using two gated layers to create
a working memory that invariantly records item and
order information can be implemented in many ways.
Three such systems are discussed below to illustrate
variations on this general design theme. The first system is:

where F is defined as in (34) and

(37)G = A + Bx -y

Figure 13 shows STORE 2B simulations with para-
meters set for primacy. Inputs were entered singly; two at
a time; 2, 1, 3, 2 at a time; then in a pattern of 3, 1, 3, 1.
This demonstrates that invariance is preserved even if the
inputs do not arrive sequentially.

STORE 2A: Pi working memory

dXi

dt (33)= (xiF + Yi + li)1

@
Item node 0"

(b) Item 0' repeated seven times~o DDDDDD Workinga 1 memory

XJ ~oo [][I]][]]D]D ,Activity
wf mWTA

J

F~ inputs
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a positive decreasing function of total F2 activity y,
such as

f(y) = K -BY (39)

where K > 1 and 0 < B ~ 1. The position of the bow in
STORE 2C depends on where f(y) becomes less than 1.
Simulation results for STORE 2C are shown in Fig. 14,
where bowing at various positions is demonstrated.

STORE2B
(Xl(tl) ...XI (y)) Xk/Xk+l X(t) = Ext<t)
tl t2 t3 t4 ..~ t6 t7 ts tl t4 ts tl t4 ts

4.0C-- JJ2.0
~ 2O

[2J A:O'4 -8:0.99

0.5 0.0

J 4.°Gi;j~~==] 2.8 »
00 Ll:~ A=l.5

.Prlmacywtlblnputs tln. 8.5~8.0~B=O'99.
9 Recognition and prediction of temporal event sequences

4.0[~~~~~===] 2.0~ 2OLJ0.0 A=2.0

Pri-ywttbl.putpaltera:3-1-3-1 G.5 ..0 B=0.99

Fig. 13. STORE 2B. In this simulation, parameters were set to exhibit
primacy over eight input presentations. Inputs were entered in different
patterns: singly, doubly, and in patterns of 2, 1, 3, 2, and 3, 1, 3, 1 as
a demonstration that STORE networks can handle inputs in parallel if
required. Simultaneous inputs are encoded with identical activation
levels. Parameters in this system can also be set for arbitrary bow
positions

Invariant working memories are typically applied, in
both biological and technological applications, as part of
larger system architectures. The ability to stably learn to
group sequences of real-time events is useful in applica-
tions to variable-rate speech perception, sensory-motor
planning, and 3D visual object recognition. In speech
perception applications, such groupings include pho-
nemic, syllabic and word representations (Cohen and
Grossberg 1986; Grossberg 1986). In sensory-motor
planning, the groupings are often sequences of target
position commands which describe spatial or motor rep-
resentations of desired limb configurations (Grossberg
and Kuperstein 1989). In 3D visual object recognition,
the individual items represent individual views of an
object (Bradski et al. 1992). Grouped item sequences
implicitly represent a 3D object in terms of a stored
sequence of 2D views.

More generally, invariance properties of a STORE
network enable them to be used as a processing substrate
from which temporally evolving recognition codes, rules,
or inferences may be learned. In particular, a STORE
model can be used as the input level of a neural network
categorizer or production system. A recently discovered
family of adaptive resonance theory networks, generi-
cally called ARTMAP (Carpenter and Grossberg 1991,
1992; Carpenter et al. 1991, 1992), is capable of super-
vised learning, categorization, and inference about arbit-
rary input vectors. In particular, ARTMAPs can learn
arbitrary analog or binary mappings between learned
categories of an input feature space (e.g., a STORE item
and order code) to learned categories of an output feature
space (e.g., predictions or names). A predictive error to
the output feature space drives a bout of hypothesis
testing to discover, focus attention upon, and learn about
a more informative bundle of features in the input space.
Using such bouts of hypothesis testing, ARTMAP archi-
tectures are capable of autonomously learning many-to-
one and one-to-many mappings from input to output
categories. A user can extract from these maps an algo-
rithm set of 'if-then' rules at any stage of learning.
ARTMAPs thus embody a type of self-organizing pro-
duction system which sheds new light on how humans
can realize rule-like behavior although their brains are
not algorithmically structured in any traditional sense.
These networks also embody heuristics which enables
them to use predictive errors to match the degree of
generalization of their learned categories, and the ab-
stractness of their learned rules, to the demands of a par-
ticular input environment.

STORE2C
(Xl(tl)...XI(tl» xk/xk+l X(t)=~xllc<t)
t. t2 t3 t4 ts t, t7 t. t. t4 t8 t." t4 t8

2.5

~I II III 1I111j'11~ltlll '"'III:"I1iI~z.~

[~~;;~;~]7.o~ K=1.1 £=0.1

...0.5 0.0 A = 1.1

r-.cy
2.5

~.1 I 11111111Ii111l11111l1111~11111-~z.0

[~~~~~~]7.0~ K=2.0 £=0.2

...0.5 0.0 A = 2.0

.2
2.5~I ~ ~I III 10 \, 1.I'tI1 z.°l~~~~~~~~ 7.0~~:=::]K = 2.0 -~~ £=0.2

ILA 0.5 --.0.0 A = 0.8

,

~ -1e=O.2
f -1A = 0.3

2.5~ _.'I' '1._~::=~~.II"...Iill j 2.0

~;;~~~~7.0( ~~~:JK=2.0 £=0.2

0.0 1.5 --0.0 A = 0.1

primacy

Fig. 14. STORE 2C derived from algebraic constraints

The third system uses:

STORE 2C: F1 working memory

dXidt = (AIi + f(Y)Yi -x;)I (38)

along with (1) and (3). In the other STORE 2 models,
nonspecific inhibitory feedback (-x) increases its effect
on Xi as more items are stored. In STORE 2C, there is no
nonspecific inhibitory feedback x. It is replaced by non-
specific excitatory feedback f(y) that decreases its effect
on Yi as more items are stored. Thus, f(y) in (38) is
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An architecture that combines ART and STORE
networks is generically called an ARTSTORE system
(Bradski et al. 1992). Because a STORE model satisfies
the invariance principle, an ARTSTORE system can se-
lectively attend and learn those stored sequences of past
events or actions that predict a desired outcome. Using
these properties, ARTSTORE models provide a promis-
ing new approach to solving the subgoal planning prob-
lems that form a core part of human and animal problem
solving in complex and rapidly changing environments.
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