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Abstract
After classically conditioned learning, dopaminergic cells in the substantia nigra pars compacta
(SNc) respond immediately to unexpected conditioned stimuli (CS) but omit formerly seen
responses to expected unconditioned stimuli, notably rewards. These cells play an important role
in reinforcement learning. A neural model explains the key neurophysiological properties of these
cells before, during, and after conditioning, as well as related anatomical and neurophysiological
data about the pedunculo-pontine tegmental nucleus (PPTN), lateral hypothalamus, ventral stria-
tum, and striosomes. The model proposes how two parallel learning pathways from limbic cortex
to the SNc, one devoted to excitatory conditioning (through the ventral striatum, ventral pallidum,
and PPTN) and the other to adaptively timed inhibitory conditioning (through the striosomes),
control SNc responses. The excitatory pathway generates CS-induced excitatory SNc dopamine
bursts. The inhibitory pathway prevents dopamine bursts in response to predictable reward-related
signals.  When expected rewards are not received, striosomal inhibition of SNc that is unopposed
by excitation results in a phasic drop in dopamine cell activity.  The adaptively timed inhibitory
learning uses an intracellular spectrum of timed responses that is proposed to be similar to adap-
tively timed cellular mechanisms in the hippocampus and the cerebellum.  These mechanisms are

proposed to include metabotropic glutamate receptor-mediated Ca2+ spikes that occur with differ-

ent delays in striosomal cells.  A dopaminergic burst in concert with a Ca2+ spike is proposed to
potentiate inhibitory learning.  The model provides a biologically predictive alternative to tempo-
ral difference (TD) conditioning models and explains substantially more data than alternative
models.

Key Words:  Dopamine, Substantia Nigra, Reward, Basal Ganglia, Conditioning, Pedunculopon-
tine Tegmental Nucleus, Lateral Hypothalamus, Striosomes, Adaptive Timing

Humans and animals can learn to predict both the amounts and times of expected rewards.  The
dopaminergic cells of the substantia nigra pars compacta (SNc) have unique firing patterns related
to the predicted and actual times of reward (Ljungberg et al., 1992; Schultz et al., 1993; Mirenow-
icz and Schultz, 1994; Schultz et al., 1995; Hollerman & Schultz, 1998; Schultz, 1998).  Figures 1
and 2 summarize some of their main properties, notably how learning enables the SNc cells to
respond immediately to unexpected cues (conditioned stimuli, or CS) but to omit responses in an
adaptively timed fashion to expected rewards (unconditioned stimuli, or US).  Since these firing
patterns also act as learning signals in the striatum and elsewhere (Wickens and Kotter, 1995),
they have been suggested to play a key role in both addictive behavior (Garris et al., 1999) and
reinforcement learning.  In particular, dopaminergic reward signals seem to strengthen the “incen-
tive salience” or “wanting” of a certain reward -- that is, the motivation to work for the reward in a
given behavioral context -- as distinct from the affective enjoyment or “liking” of a reward once
consumed (Berridge and Robinson, 1998).  The “liking” may be mediated by areas other than the
basal ganglia (McDonald and White, 1993).  Recent models (Montague et al., 1996; Schultz et al.,
1997; Suri and Schultz, 1998; Berns and Sejnowski, 1998; Contreras-Vidal & Schultz, 1997;
Houk et al., 1995) of the nigral dopamine cells have noted similarities between dopamine cell
properties and well-known learning algorithms, especially Temporal Difference (TD) models
(Montague et al., 1996; Schultz et al., 1997; Suri and Schultz, 1998).  While providing a degree of
insight into the information carried by the dopamine signal, the TD approach has not been able to
answer the questions of what biological mechanisms actually compute the signal, and how.  In
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particular, how does learning in the circuit that includes these cells enable them to produce a fast
excitatory response to conditioned stimuli and a delayed, adaptively timed inhibition of response
to rewarding unconditioned stimuli, in all the experimental conditions summarized by Figures 1
and 2?  We show here that the known anatomy and cell types in pathways afferent to dopamine
cells lead to an explanation with significant advantages over previous models.

We introduce a model in which the learned excitatory and inhibitory responses are sub-
served by different anatomical pathways, and the adaptively timed inhibitory learning is mediated

by metabotropic glutamate receptor (mGluR)-driven Ca2+ spikes in striosomal cells.  These Ca2+

spikes occur with a spectrum of temporal delays.  When a Ca2+ spike and a dopamine burst occur
at the same time, inhibitory learning is enhanced at the corresponding delays.  To explicate these
excitatory and inhibitory pathways, the model functionally explains and simulates the firing pat-
terns of dopamine cells, striosomal cells of the striatum, pedunculo-pontine tegmental nucleus
(PPTN) cells, ventral striatal cells, and lateral hypothalamic cells (Figures 1-3).  Its mGluR-based
spectral timing mechanism helps to explain more data than the temporal derivative  operation that
defines the class of TD models previously used to describe dopamine cell behavior.  This model is
shown schematically in Figure 4.

Figure 1 Dopamine cell firing patterns:  Left:  Data.  Right:  Model simulation, showing model spikes
and underlying membrane potential. A) In naive monkeys, the dopamine cells fire a phasic burst when
unpredicted primary reward R occurs (e.g. if the monkey receives a burst of apple juice unexpectedly).
B) As the animal learns to expect the apple juice that reliably follows a sensory cue (conditioned stim-
ulus, CS) that precedes it by a fixed time interval, then the phasic dopamine burst disappears at the
expected time of reward, and a new burst appears at the time of the reward-predicting CS. C) After
learning, if the animal fails to receive reward at the expected time, a phasic depression in dopamine
cell firing occurs.  Thus, these cells reflect an adaptively-timed expectation of reward that cancels the
expected reward at the expected time.  [The data in Figure 1 (column 1) are reprinted with permission
from Schultz et al. (1997)].
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Figure 2   Dopamine cell firing patterns:  Left:  Data.  Right:  Model simulation, showing
model spikes and underlying membrane potential. A) The dopamine cells learn to fire in
response to the earliest consistent predictor of reward.  When CS2 (instruction) consistently
precedes the original CS (trigger) by a fixed interval, the dopamine cells learn to fire only in
response to CS2.  [Data reprinted with permission from Schultz et al. (1993)] B) During
training, the cell fires weakly in response to both the CS and reward.  [Data reprinted with
permission from Ljungberg et al. (1992)] C) Temporal variability in reward occurrence:
When reward is received later than predicted, a depression occurs at the time of predicted
reward, followed by a phasic burst at the time of actual reward. D) Likewise, if reward occurs
earlier than predicted, a phasic burst occurs at the time of actual reward.  No depression fol-
lows since the CS is released from working memory.  [Data in C and D reprinted with per-
mission from Hollerman and Schultz (1998)] E) When there is random variability in the
timing of primary reward across trials (e.g., when the reward depends on an operant
response to the CS), the striosomal cells produce a “Mexican hat” depression on either side
of the dopamine spike.  [Data reprinted with permission from Schultz et al. (1993)].
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Figure 3 Trained firing patterns in PPTN, ventral striatum, striosomes, and lateral hypo-
thalamus.  Left:  Data.  Right:  Model simulations, showing model spikes and underlying
membrane potential. A)  PPTN cell (cat), showing phasic responses to both CS and pri-
mary reward.  [Data reprinted with permission from Dormont et al. (1998)]  In the model,
phasic signalling is due to accommodation or habituation (Takakusaki et al., 1997),
which causes the cell to fire in response to the earliest reward-predicting CS and US
reward, but not to subsequent CSs prior to reward. B)  Ventral striatal cells show sus-
tained working memory-like response between trigger and a US reward, and a phasic
response to the US reward.  [Data reprinted with permission from (Schultz et al., 1992)]
C)  A ventral striatal cell, predicted here to be a striosomal cell, shows buildup to phasic
primary reward response.  For the model cell, j = 39.  [Data reprinted with permission
from (Schultz et al., 1992)] D) A lateral hypothalamic neuron with a strong, phasic
response to glucose reward.  [Data reprinted with permission from Nakamura and Ono
(1986)]  The majority of these neurons fired in response to primary reward but not to a
reward-predicting CS. The model lateral hypothalamic input is a rectangular pulse.
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Materials and Methods
Dopamine cell responses can be conditioned to phasic cues whose offsets occur long before the
reward signals that they predict (e.g., Ljungberg et al., 1992).  To bridge the temporal gap, a CS is
assumed to activate a sustained working memory input to the model (Funahashi et al., 1989).  A
subsequent primary reward signal from an unconditioned stimulus, or US, is assumed to trigger a
dopamine burst, which augments the weights between the working memory site and the ventral
striatum (Wickens et al., 1996).  This allows future CS presentations to elicit an immediate excita-
tory prediction of reward.  The CS also activates a population of lagged inhibitory signals from
the striosomes to the SNc.  When a dopamine burst occurs at a sufficient lag after CS onset, it
strengthens the subset of lagged inhibitory signals that are active at that time.  These two types of
learning enable a CS to generate an immediate, reward-predictive dopamine signal but also to
cancel subsequent SNc excitation that would otherwise be caused by the predicted reward-related
signals.  When a response is made and reward is received, the working memory input is assumed
to shut off (Funahashi et al., 1989).

We propose that the PPTN is responsible for the phasic bursts of activity in SNc dopamine
cells (see Figures 1 and 2), and thus plays a key role in the learning and maintenance of instru-
mental tasks.  Experiments showing monosynaptic glutamatergic and cholinergic PPTN-to-SNc
projections (Scarnati et al., 1988; Conde, 1992; Futami et al., 1995) support this hypothesis.
Conde (1992) has suggested that the PPTN provides the main source of excitation to the SNc, and
PPTN cells have been found to fire phasically in response to primary reward or reward-predicting
conditioned stimuli, or both, leaving them well situated to provide this kind of SNc input (Dor-
mont et al., 1998) (see Figure 3A).  The phasic nature of PPTN signalling is due to habituation, or
accommodation, in SNc-projecting PPTN cells (Takakusaki et al., 1997).  Lesions of the PPTN
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Figure 4  Model circuit.  Cortical inputs
(Ii) excited by conditioned stimuli learn to
excite the SNc (D) via the ventral striatal
(S)-to-ventral pallidal-to-PPTN (P)-to-
SNc path.  The inputs Ii excite the ventral
striatum via adaptive weights WiS, and
the ventral striatum excites the PPTN, via
double inhibition through the ventral palli-
dum, with strength WSP .  When the
PPTN activity exceeds a threshold GP , it
excites the dopamine cell with strength
WPD.  The striosomes, which contain an
adaptive spectral timing mechanism (xij,
Gij, Yij, Zij), learn to generate lagged,
adaptively-timed signals that inhibit
reward-related activation of SNc.  Pri-
mary reward signals (IR) from the lateral
hypothalamus both excite the PPTN
directly (with strength WRP) and act as training signals to the ventral striatum S (with strength WRS).
Arrowheads denote excitatory pathways, circles denote inhibitory pathways, and hemidisks denote
synapses at which learning occurs.  Thick pathways denote dopaminergic signals.
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produced hemiparkinsonian symptoms, as if the SNc itself had been lesioned (Kojima et al.,
1997), and reversible PPTN inactivation mimics extinction in an instrumental task, even while
rewards, if provided, are readily consumed (Conde et al., 1998).

PPTN Afferents:  From where does the PPTN receive these response motivating reward
and reward-predicting signals?  We propose that the primary reward signals come from the lateral
hypothalamus, while the excitatory reward-prediction signals (which generate a CS-induced
dopamine burst) travel via the ventral striatum-ventral pallidum pathway, which receives input
mainly from limbic cortex (Schultz et al., 1992) (see Figure 4).  Lateral hypothalamic neurons are
known to play a role in feeding behavior and to fire phasically in response to primary reward
(Nakamura and Ono, 1986), as in Figure 3D.  A strong lateral hypothalamus-PPTN projection has
been found and confirmed by both anterograde and retrograde labelling (Semba and Fibiger,
1992), and the primary reward signal explains the similar phasic reward response in the PPTN.
Thus, the lateral hypothalamus seems to be a principal source of excitation to the PPTN.

Likewise, more than one-quarter of the ventral pallidum projects collaterals to the PPTN
(Mogenson and Wu, 1986).  The ventral pallidum receives projections from the matrisomes of the
ventral striatum (Yang and Mogenson, 1987), which responds to both predicted and primary
reward (Schultz et al., 1992), as in Figure 3B.  The double inhibition from ventral striatum to ven-
tral pallidum to PPTN results in net excitation from ventral striatum to PPTN.  We predict that the
sustained, CS-induced striatal activation that is shown in Fig. 3B is due to receipt of a working
memory trace of the CS from limbic cortex, which is enhanced by learning of CS- reward contin-
gencies (Dias et al., 1996).  The transient component in Fig. 3B results from a phasic primary
reward signal from the lateral hypothalamus (Nakamura and Ono, 1986; Brog et al., 1993).  We
suggest that the ventral striatum is a main pathway of excitatory reward predictions.

Other PPTN afferents are possible candidates for generating phasic PPTN responses.
Some other possible sources, found by retrograde labelling from the PPTN, include the central
nucleus of the amygdala (CNA) and the subthalamic nucleus (STN) (Semba and Fibiger, 1992).
The amygdala does not appear to provide the main source of excitation, despite its processing of
emotional valence information.  In particular, it has been shown that rats with amygdala lesions
could still learn operant tasks (McDonald and White, 1993).  After CNA damage, rats can learn
second order conditioning even though they fail to learn a conditioned orienting response (Gal-
lagher and Chiba, 1996).  Similarly, some studies suggest a modulatory rather than an excitatory
role of the STN-to-SNc projection (Smith and Grace, 1992), and cell recording studies have not
yet shown reward-predicting activity in the STN.

Striosomes:  What suppresses the dopamine burst response to primary reward after condi-
tioning has occurred, and what causes the transient activity drop when expected reward is not
received (see Figure 1)?  The striosomal cells provide a significant source of GABA-ergic inhibi-
tion to the SNc (Gerfen, 1992), which could account for both of these phenomena.  In turn, strio-
somal cells receive dopaminergic projections from the SNc (Gerfen, 1992).  We propose that an
intracellularspectral timing mechanism (Grossberg and Schmajuk, 1989; Grossberg and Merrill
1992, 1996; Fiala et al., 1996) provides the function needed.  Specifically, the striosomal cells
briefly inhibit SNc dopamine cells, after a learned delay period, to provide an inhibitory expecta-
tion of reward.  The model incorporates striosomal cells in both the dorsal and ventral aspects of
the striatum.  Likewise, model dopamine cells correspond to both dorsal and ventral SNc cells
which, despite certain differences, have similar inputs and response properties.  Gerfen (1992) has
noted the distinction between the dorsal and ventral tiers of the SNc:  dorsal tier SNc cells project
to the matrisomes of the striatum (including the model ventral striatal cells), while ventral tier
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SNc cells project to the striosomes.  The model lumps together the ventral and dorsal tiers of the
SNc on the basis of  their similarities.

It has been suggested that striosomal cells provide adaptively-timed inhibition to the
dopamine cells (Contreras-Vidal and Schultz, 1997), much as cerebellar Purkinje cells provide
adaptively timed inhibition of interpositus nucleus cells (Fiala et al., 1996), but this general
hypothesis must be coupled to a biologically-supported local mechanism.  Given evidence that

striatal learning is suppressed by mGluR blockers (Calabresi et al., 1992a) and Ca2+-chelators
(Calabresi et al., 1994), we suggest the following striosomal cell model:  Conditioned stimuli
excite a glutamatergic corticostriatal pathway that activates metabotropic glutamate receptors

(mGluR) on striosomal neurons.  These in turn cause a delayed transient rise in intracellular Ca2+,
at least partly via NMDA channels (Calabresi et al., 1992b), which are known to be potentiated by

mGluR1 receptor activation (Pisani et al., 1996).  This Ca2+ response is proposed to be a basis for
both learning and generating an adaptively-timed inhibitory striosomal-SNc signal.  The model
uses a population of striosomal cells with a range of delayed responses (see Figure 5) which,
taken together, constitute the “spectrum” of possible learned delays.

Fiala et al. (1996) have proposed a model of adaptively timed conditioning in which cere-

bellar Purkinje cells generate a spectrum of differently delayed Ca2+ spikes after excitation of

mGluR1 receptors.  A Ca2+ spike by itself activates a Ca2+-dependent K+ conductance, which is
hyperpolarizing.  In addition, when a climbing fiber signal is received at the same time as a

delayed Ca2+ spike, it causes a long-term increase in the Ca2+-dependent K+ channel conductance

(LTD).  Thus, in the cerebellar model, the Ca2+ spike is a basis for both immediate hyperpolariza-
tion and learned LTD.

We propose that a related but distinct mechanism operates in striosomal cells which,
unlike Purkinje cells (Crepel et al., 1996), possess NMDA receptors.  In this context, a mGluR1-

mediated delayed Ca2+ spike can be amplified and thus serve to transientlyincrease rather than

decrease striosomal cell activity.  A class of recently-discovered Ca-inhibited K+ channels (Joiner

et al., 1998) may also contribute to a Ca-dependent depolarization.  A Ca2+ spike combined with a
phasic burst of dopamine acting on striosomal D1 receptors would also allow LTP in striosomal

cells.  It has been suggested that increased Ca2+ combined with a dopamine burst could result in a
potentiation of glutamate receptors (LTP) (Houk et al., 1995), and dopamine bursts have been
shown to reverse corticostriatal LTD and instead cause LTP (Wickens et al., 1996).  Thus, a

delayed Ca2+ spike in the striosomal cells could serve as both a signalling gate and as one compo-
nent of a learning gate.

Recent work on the cerebellum (Takechi et al., 1998; Finch and Augustine, 1998) has sup-
ported the Fiala et al. (1996) cerebellar model, and demonstrated the feasibility of direct calcium
imaging in local regions of a dendritic arbor using high-speed confocal microscopy.  We suggest
that the same technique could be used in neostriatal cells to investigate the predictions regarding
striosomal Ca dynamics.  Pharmacological inactivation of mGluR1 and IP3 might also verify
whether they are essential components of the Ca spike cascade, as in the cerebellum.

Functionally, the striosomal cells of the model need to receive a sustained input that is
activated when a CS first occurs, as a reference point for the delayed inhibitory signal.   Strioso-
mal cells receive excitatory signals from deep layer V of limbic cortex (Gerfen, 1992). The sus-
tained working memory signal initiates a steady rise of the intracellular calcium level, e.g., via an



 - 9 -

mGluR1-IP3-Ca cascade (as in the cerebellum, see Finch and Augustine, 1998; Takechi et al,
1998), which causes a calcium spike upon reaching a threshold.  The sustained input hereby leads
to a delayed, phasic response within the striosomal cell.  A related property of the model is that, if
the sustained input strength is proportional to the CS intensity, then a weaker CS causes an
increase in the rise time to threshold, resulting in a slower perceived rate of time passage.  This
property agrees with behavioral data (Wilkie, 1987), although due to the complexity of cortical
processing, the striosomal inputs may not be directly proportional to external stimulus intensity.
The model simulations assume a  simple two-state working memory input that is either on or off,
and which could be generated by passing a gradually rising input through a sharp sigmoidal signal
function.  The maximum delay that a single spectrum can adaptively time is still unknown, and
needs to be investigated biochemically; cf. Fiala et al. (1996).  Spectral timing of a single event
also needs to be supplemented by inter-event timing mechanisms that involve network interac-
tions, including prefrontal cortex and cerebellum (e.g., Buonomano and Mauk, 1994; Grossberg
and Merrill, 1996).

Results
Given the above background, the model mechanisms can now be summarized as follows (see
Figure 4):

1. First, a primary reward signal is generated in the lateral hypothalamus (Nakamura and
Ono, 1986) (Figure 3D).  This directly excites the PPTN (Semba and Fibiger, 1992), which fires a
brief burst and then accommodates, or habituates (Takakusaki et al., 1997; Dormont et al., 1998).
This brief burst directly excites the SNc by cholinergic and/or glutamatergic projections (Conde,
1992) and thereby causes a phasic dopamine burst to the striatum (Gerfen, 1992) at the time of
primary reward.

2. Suppose that a CS is received and stored in prefrontal working memory at some timeτ
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prior to the actual reward.  This CS trace generates output signals along adaptive pathways to both
the ventral striatum and the striosomes.  When primary reward occurs, a dopamine burst facili-
tates LTP in the limbic cortical-ventral striatal path (Brog et al., 1993).  Thus, the CS representa-
tion in limbic prefrontal cortex learns to excite the dopamine cells via the limbic cortical-ventral
striatal-ventral pallidum-PPTN-SNc pathway (Yang and Mogenson, 1987).  In the model, the
ventral striatum and ventral pallidum are lumped for simplicity into a single ventral basal ganglia
node, which causes net excitation of the PPTN.

3. The limbic cortical projection to the striosomes (Gerfen, 1992; Eblen and Graybiel,

1995) activates a spectrum of delayed Ca2+ spikes in the striosomal cells via metabotropic
glutamate receptors.  When a dopamine burst arrives from the SNc, it strengthens the CS-acti-
vated limbic cortical connections to any currently spiking components of the striosomal timing
spectrum.  The striosomal cells hereby learn to inhibit the dopamine burst at its expected time via
the inhibitory striosomal-SNc path (Gerfen, 1992).

4. On a later trial in the trained model, when the CS is received at the expected time
before an actual reward, its working memory trace tonically activates the ventral striatal model
cell, which in turn excites the PPTN, causing an immediate dopamine burst in the SNc.  The adap-
tively-timed inhibition via the striosomal cells then inhibits the SNc so that the subsequent pri-
mary reward signal does not elicit a dopamine burst in the SNc.  If the primary reward signal is
absent on a trial, then the striosomal inhibition causes a phasic dip in the dopamine signal.  These
three properties explain the dopamine cell data of Figure 1.

The model was also used to simulate a variety of other task situations for which dopamine
cell responses are known.  It successfully reproduced all the key SNc dopamine cell data (Figures
1 and 2) as well as firing patterns of known cell types in the PPTN (Figure 3A) and ventral stria-
tum (Figure 3B), which are afferent to the nigral dopamine cells.  In particular, dopamine cell
responses were simulated in eight task situations (Figures 1 and 2).  First, the model received pri-
mary reward R only and showed a strong response to the reward (Figure 1A).  We then trained the
model with a  CS preceding R.  During training, the model fired weakly in response to both the CS
and R (Figure 2B).  As training neared completion, the model SNc responded strongly and only to
the CS (Figure 1B).  In the trained model, we examined the effect of omitting R and found a tran-
sient depression at the predicted time of reward (Figure 1C).  To test the effects of higher-order
conditioning, we first trained the model with the CS-R association.  Then we introduced an addi-
tional conditioned stimulus (CS2) which consistently occurred one second prior to the CS.  With
training, the model dopaminergic cells learned to respond only to CS2 (Figure 2A).

Recent work has examined dopamine cell responses under conditions of variable reward
timing (Hollerman and Schultz, 1995).  The model successfully simulated these data as well.
When the reward R was delayed (Figure 2C), model dopamine cells responded with the character-
istic depression at the expected time of R and then showed a burst later when R did occur.  Simi-
larly, if R occurred prior to the expected time, model dopamine cells again showed a burst in
response to R.  They did not, however, show a dip at the expected time of R (Figure 2D), in agree-
ment with the data, since the working memory trace shut off when R was received.  In some cases,
the timing of primary reward may vary from trial to trial due to its dependence on an operant
response.  The model dopamine response was simulated when the timing of R varied randomly on
an interval spanning 200 msec before and after the expected (mean) time of R, with a uniform ran-
dom distribution.  This caused model striosomal cells to learn to inhibit the dopamine signal dur-
ing the entire interval in which the dopamine bursts occurred.  Since this interval of inhibition is
wider than the dopamine burst, model striosomal cells produced tails of depressed firing on either
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side of the dopamine burst (Figure 2E), generating a kind of temporal Mexican hat function, as in
the data (Schultz et al., 1993).

The PPTN model responses also agree with the cell recording data from conditioning
tasks (Dormont et al., 1998), which show transient bursts in response to both CS and R
(Figure 3A).  In addition, when a CS2 preceded the CS, the model PPTN response to the later CS
disappeared.  This lack of response to subsequent CSs agrees with the data of Dormont et al.
(1998, p. 405), which show a similar disappearance of the CS-induced PPTN response in that
delay task.

Model ventral striatal cells also simulated known cell firing patterns (Figure 3B):  After
the model learned the CS-R association, CS onset produced tonic activity, followed by a phasic
burst in response to the R signal from the hypothalamus (Figure 3D).

Discussion
The present model explains and predicts significantly more data than previous models

through its use of parallel learning pathways.  Several models have attempted to describe the
dopamine cell behavior by a TD algorithm (Montague et al., 1996; Schultz et al., 1997; Suri and
Schultz, 1998).  These models suggest that the dopaminergic SNc cells compute a temporal deriv-
ative of predicted reward.  In other words, they fire in response to the sum of the time-derivative of
reward prediction and the actual reward received.  These models have not been linked with struc-
tures in the brain that might compute the required signals.  The Suri & Schultz (1998) model has
simulated much of the known dopamine cell data.  However, their model can only learn a single
fixed ISI that corresponds to the longest-duration timed signal (xlm(t)) in their model.  If the ISI is
shorter than this, dopamine bursts will strengthen all of the active stimulus representations pre-
dicting reward at the time of the dopamine burstor later.  Thus, their model generates inhibitory
reward predictions beyond the primary reward time, and predicts a lasting depression of dopamine
firing subsequent to primary reward, which is not found in the data.

In contrast to TD models that compute time derivatives immediately prior to dopamine
cells, our spectral timing model uses two distinct pathways:  the ventral striatum and PPTN for
initial excitatory reward prediction, and the striosomal cells for timed, inhibitory reward predic-
tion.  The fast excitation and delayed inhibition are hereby computed by separate structures within
the brain, rather than by a single temporal differentiator.  This separation avoids the problem of
the Suri & Schultz (1998) model by allowing transient rather than sustained signals to cancel the
primary reward signal, thereby enabling precisely-timed reward-cancelling signals to be trained,
and preventing spurious sustained inhibitory signals to the dopamine cells.  This separation also
allows the inhibitory system to follow and precisely cancel the real-time dynamics of the primary
reward signal, as in Figure 1B, where the striosomal signals cancel the dopamine burst despite its
asymmetry.  Where temporal uncertainty exists in reward prediction, the tails of inhibition
(Figure 2E) in the data are explained by the model’s ability to learn temporally distributed net
inhibitory signals that track the temporal dispersion of reward.

Like our model, the TD model of Schultz et al. (1997) uses transient rather than sustained
timing signals.  However, because this model does not separate the computation of excitation and
inhibition, each transient pulse is temporally differentiated to produce an onset burst followed by
an offset depression.  Over the course of many trials, the onset burst strengthens its preceding
timed signal weight, thereby recursively chaining backwards until all timed signal weights
between the CS and R have been activated by learning.  This predicts that the dopamine burst
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gradually travels backward in time, and that the reward response extinguishes well before the CS
response occurs.  The data show instead that dopamine bursts do not occur systematically in the
middle of the ISI during training, and moreover, the dopamine burst occurs concurrently at both
CS and R during individual training trials (Ljungberg et al., 1992).

The Contreras-Vidal and Schultz (1997) model of the dopamine cell system is based partly
on the ART2 model (Carpenter and Grossberg, 1987).  They first suggested that striosomes may
generate a spectrum of adaptively-timed reward predictions, based on the earlier spectral timing
models of Grossberg and colleagues (Grossberg and Schmajuk, 1989; Grossberg and Merrill
1992, 1996; Fiala et al., 1996).  Their striosomal model nonetheless faces problems because it
relies on lateral inhibition among striosomal cells, rather than intracellular timing mechanisms.
GABA-ergic lateral inhibition among striosomal cells is weak (Jaeger et al., 1994; Wilson, 1995)
and may not be strong enough to mediate the competitive choices required by their model.  In
addition, their model assumes adaptively-timed inhibitory reward prediction learning at the strio-
somal-SNc synapses instead of at the cortico-striosomal synapses.  This fails to incorporate data
on corticostriatal LTP/LTD (Wickens and Kotter, 1995).  In their model, corticostriatal LTP/LTD
would cause erroneous timing predictions because the cell with the strongest cortico-striatal input
becomes active first and generates its adaptively-timed signal, while suppressing its competing
neighbor cells via strong lateral inhibition.  After this, the winning cell remains refractory, and the
cell with the next-strongest cortico-striosomal weight becomes active, and so on.  If learning
occurs in the cortico-striosomal path, as much evidence suggests, then the rank ordering of cor-
tico-striosomal weights may change as the synaptic weights change relative to each other.  This
would cause erroneous reward timing predictions, since the model striosomal cells would become
active in the wrong sequential order.  Our model avoids these problems by describing an intracel-
lular mGluR-mediated adaptive timing mechanism, rather than an extracellular one.

Another significant difference between the present model and that of Contreras-Vidal and
Schultz (1997) is the source of excitation to the dopamine cells.  Their model assumes that matri-
somal cells provide the excitatory input to SNc cells indirectly, via double inhibition through the
SNr.  This polysynaptic, matrisomal cell-SNr-SNc pathway cannot be ruled out as a source of net
excitation to the dopamine cells, but as we have shown above, it is not the main pathway of SNc
excitation.  It should also be pointed out that, although the present model attempts to represent the
principal circuitry responsible for dopamine cell responses, additional afferent circuitry exists that
may also be capable of eliciting phasic dopamine cell responses; e.g., the SNr-SNc projection,
and the STN-PPTN and STN-SNc projections.

Houk et al. (1995) model dopamine cell firing using the direct and indirect basal ganglia
pathways.  They assume that the polysynaptic, net excitatory indirect path through the basal gan-
glia is faster than the monosynaptic, direct path.  The indirect path is proposed to generate the ini-
tial excitatory dopamine burst, while the direct path is proposed to mediate the slower inhibition
of the dopamine cells.

With regard to the fast excitation of the dopamine cells, Houk et al. (1995) cite data show-
ing that striatal stimulation results in a fast EPSP followed by a slower IPSP in the globus pallidus
(Kita and Kitai, 1991).  However, it is unlikely that the EPSPs are polysynaptic, since they could
be elicited with as little as 2 msec. latency (Kita and Kitai, 1991).  Likewise, the fast EPSP that
results from cortical excitation (Kita, 1992) might be better explained as from a cortical-STN-pal-
lidal route.  Moreover, STN activity may modulate rather than excite the SNc (Smith and Grace,
1992).  These data contradict Houk and colleagues’ assumption of net striatal-SNc excitation via
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the model indirect pathway.  The data are probably due to STN-SNr excitation and subsequent
SNr-SNc inhibition (Hajos and Greenfield, 1994; Tepper et al., 1995).

With regard to the slow inhibition of the dopamine cells, Houk et al. (1995) propose that
the direct path provides a prolonged inhibition of the dopaminergic cells, which persists from the
time of the reward-predicting CS through the time at which the reward occurs.  This is inconsis-
tent with the data in two distinct but related ways.  First, when the reward-predicting CS occurs, it
produces a dopamine burst, but the dopamine cell firing then immediately returns to baseline.
There is no persistent depression in dopamine cell firing, although the Houk et al. (1995) model
must predict such a persistent depression.  Second, when an expected reward is omitted, there is a
brief depression in the DA cell firing, after which it immediately returns to baseline.  The Houk et
al. (1995) model instead predicts a prolonged (though below baseline) response rather than a tran-
sient response to the omission of expected reward.

The Berns & Sejnowski (1998) model suggests that the primary source of net SNc excita-
tion is the pallidum, via a hypothetical inhibitory neuron.  No suggestion is given regarding the
location of this neuron, or from which pallidal segment (internal or external) the signal originates.
As in our model, the Berns & Sejnowski (1998) model assumes that the striosomal cells are the
main source of inhibition to the SNc, but their model does not treat dopamine cell temporal
dynamics, which would be necessary for it to explain the data of Figures 1 and 2.

Summary:  The new spectral timing model of nigral dopamine activity provides functional
explanations of known SNc afferents.  The model suggests how the ventral basal ganglia stream
learns an excitatory prediction of reward via the PPTN, while the striosomal cells learn an adap-
tively timed inhibitory prediction of reward.  This analysis clarifies how the nigral dopamine cells
are linked to four other cell types that are directly or indirectly afferent to the SNc:  ventral striatal
cells, PPTN cells, striosomal cells of the basal ganglia, and cells in the lateral hypothalamus.  The
model predicts that an adaptive timing mechanism occurs at the striosomal cells.  Key explanatory
limitations of previous models, including TD and direct/indirect pathway models of nigral
dopamine cell responses, are overcome by the present model.

Appendix
This section lists the mathematical equations and parameters of the model.  The circuit in Figure 4
was modeled using neurons with a single-voltage compartment. The model variables are summa-
rized in Table 1, and the fixed parameters are summarized in Table 2.  The variables in Figure 4
obey the following equations:  Model ventral striatal cell activityS responds at rateτS and is
excited by primary reward inputsIR and by CS inputsIi that are gated by adaptive weightsWiS:

. (1)

The CS-to-striatal weightsWiS change only whenS is positive.  They are potentiated by a “posi-

tively reinforcing” dopamine burstN+ and depressed by a “negatively reinforcing” dopamine

depressionN
-

, described below.  The weightsWiS range between a minimum of zero and a maxi-

mum ofWS
maxIi, and they decay at a rateβWS with negative reinforcement:

. (2)

The PPTN activityP is excited by striatal inputs S and primary reward inputs IR:

1
τS
----- d

dt
-----S ASS– 1 S–( ) I iWiSi∑ I RWRS+[ ]+=

1
τWS
--------- d

dt
-----WiS S N

+
I iWS

max
WiS–( ) βWSN

-
WiS–=
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. (3)

Accommodation, or habituation, of PPTN activity is modeled as a lasting afterhyperpolarization
, which reduces the excitability of the PPTN in an activity-dependent way:

. (4)

The dopamine cell activityD is excited by the rectified PPTN activity [P-ΓP]+, whereΓP is a sig-

nal threshold, and a tonic arousal signalID.  The notation [x]+ = max(x,0) denotes rectification.
The dopamine cell activityD is inhibited in an adaptively-timed fashion by the summed spectrum

of signals  from the striosomal cells:

. (5)

A tonic dopamine signal is computed as a time average of the momentary dopamine cell potential:

. (6)

Transient deviations from this tonic signal constitute reinforcement learning signals (Wickens et
al., 1996).  The positive reinforcement learning signalN derives from excitatory phasic fluctua-

tions of the dopamine signal above the baseline :

. (7)

The complementary negative reinforcement learning signal is derived from inhibitory phasic fluc-

tuations of the dopamine signal below baseline :

. (8)

Spectral timing in the striosomal cells is mediated by a number of interacting factors, which are
represented by the simplified intracellular system of equations (9)-(13).  A model of spectral tim-
ing in the cerebellum has elsewhere proposed detailed biochemical correlates of this type of learn-

ing in terms of mGluR1, Ca2+, Ca-dependent K+ channels, and intracellular second messengers.
See Fiala et al. (1996) for this biochemically detailed treatment.  Here we simplify and adapt this
model to provide a phenomenological account of intracellular processes that does not attempt to
predict  the exact concentrations of particular chemical species.

Subscripti indexes which CS activates the cells, while subscriptj indexes the response rate of the

jth population of cell sites in the striosomal cell.  It is important to note that the model does not
require a differentcell for each CS at each response rate, or delay, which would lead to a combina-
toric explosion.  Instead, multiple CSs synapse onto a single set of striosomal cells that span a
spectrum of delays.  In addition, not all CSs may be represented.  Ventral prefrontal cortex (which
provides much of the striosomal input signals) seems to preferentially represent CSs that have
some motivational salience (Tremblay and Schultz, 1999).

The spectrum-sharing property of the model is made possible by the intracellular rather
than extracellular delay timing mechanism, which allows a dissociation between the cortical(CS)-

1
τP
----- d

dt
-----P 1 UPWUP+[ ]– P 1 P–( ) SWSP I RWRP+[ ]+=

UP

1
τUP
--------- d

dt
-----UP UP– 1 UP–( )P+=

Gij Yij ΓS–[ ]+
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1
τD
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1
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D
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=

D

N
-
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to-striosomal connection strength and the striosomal cell fixed Ca spike delays. The possibility of
interference among coactive CSs would still necessitate more than a single striosomal spectrum,
possibly at different dendritic sites (cf. Fiala et al., 1996).  Cell recordings in SNc, PPTN, ventral
striatal, and limbic cortical cells during multiple overlapping stimulus-delayed reward tasks might
elucidate the nature of cortical CS representations and the extent to which CS signals may con-
verge or interfere with each other in the excitatory and inhibitory pathways.  The model predicts
that multiple excitatory CS signals converging on the same DA cell will, in the trained animal,
elicit multiple dopamine bursts, provided that the CSs are not predictably paired during training.
Likewise, the model predicts that multiple CSs converging on the same striosomal cell may
impair the ability of that particular cell to predict later rewards in a series during overlapping
tasks.  These predictions have yet to be tested.  The spectral timing dynamics of the model are

defined as follows:  Striosomal cell activityxij  responds to theith CS at raterj:

. (9)

To provide a range of adaptively-timed Ca2+ spikes, the striosomal buildup rate parameter spans a
range of values for a given set of cells:

,    j = 1, 2, ..., n (10)

The activitiesxij  induce intracellular calcium dynamics to cause transient calcium spikes at delays

that are determined byrj.  These Ca2+ spikes determine the times at which the corresponding cells

can learn from a dopamine burst.  In particular, quantity [GijYij ]
+ represents an intracellular Ca2+

spike (Grossberg and Merrill, 1992), where

(11)

and

. (12)

In (11), fG(x) is a step function:  0 for x < 0, 1 for x > 0.  ParametersΓG andΓY in (11) and (12)
are signal thresholds.  WhenGij  is activated by suprathreshold striosomal cell firing at a rate that

varies withrj, it rapidly increases the intracellular Ca2+.  As the calcium concentration rises to its

maximal level, the available Ca2+ (Yij  ) rapidly decreases, causing a rapid falloff in the Ca2+ con-

centration.  The Ca2+ concentration remains low as long as the mGluR1 receptors receive tonic
input.  Subsequent Ca spikes occur only when the tonic input is removed long enough for reset, in
which the mGluR1 receptor and available Ca return to baseline.  In the brief interval when the cal-
cium concentration exceeds the activity thresholdΓS in (5), striosomal cell transmitter release is
significantly enhanced, and the CS- striosomal weightZij  is potentiated via LTP if a dopamine
burst is received:

. (13)

d
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Simulated spike trains were generated with an integrate-and-fire (IAF) model using the cell mem-
brane potentialsM as input (defined for cells in equations (1),(3), (5), and (9) above, by variables
S, P, D,andxij , respectively, and shown in Figures 3B (S), 3A (P), 1 and 2 (D), and 3C (xij)):

. (14)

The noise termε was Gaussian with varianceσ2
noise.  When the voltage exceeded a thresholdVI

value, a spike was generated, and the voltage was reset to 0.  Model outputs were computed from
the model spiking response for 20 trials, and the model spikes were grouped into 20 millisecond-
wide bins to compute histograms.  The default Integrate-and-Fire parameters (Table 2) were:VI =
0.5, R = 1333,C = 0.025,σnoise = 0.4, except that for the dopamine cell,R = 80; for the PPTN
cell, R = 6667,C = 0.005, andσnoise = 0.1.  The differentR andC values were necessary to model
the different firing properties of the cells.

Simulations:  The model performed a series of simulated learning trials.  Each trial lasted
10 seconds.  The CS was active for two seconds, and the reward (R) was active for 750 msec. dur-
ing the CS, beginning 1.2 seconds after CS onset.  Numerical integration was performed with an
adaptive step size fourth-order Runge-Kutta method except for the integrate-and-fire model,
which used a first-order method and a discrete stepsize of 0.001 sec.  The adaptive stepsize output
was converted to a fixed stepsize by linear interpolation, so that it could be used to drive the inte-
grate-and-fire model.  The CS was active fromt=2 seconds into the trial, and it shut off when the
primary reward signal shut off, or aftert=3.95, whichever was earlier.  The primary reward signal
typically began att=3.2 and lasted for 750 msec, with a magnitude of 1.0.  The CS input (ICS) had
an amplitude of 0.6.

TABLE 1. Model Variables

S Ventral Striatal cell

IR Reward input signal from lateral hypothalamus

WiS CS-to-striatum synaptic weights

N+ Above-baseline dopamine burst signal

N
- Below-baseline dopamine dip signal

Ii CS input signal

P PPTN cell activity

UP PPTN cell afterhyperpolarization

xij Striosomal metabotropic response

GijYij Striosomal calcium concentration

Zij CS input-to-striosomal synaptic weights

D Dopamine cell activity

Baseline average dopamine signal

rj Striosomal activity buildup rate parameter

M Membrane potential driving Integrate-and-Fire (IAF) spiking model

ε Gaussian noise input to IAF model

d
dt
-----V M ε+

C
--------------

1
RC
--------V–=

D
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TABLE 2. Model Parameters

Symbol Description Value

αr Striosomal spectrum spacing 50.0

βr Striosomal spectrum offset 1.0

ΓG Calcium spike threshold 0.37

αG Calcium activation rate 5.0

βG Calcium passive decay rate 20.0

BG Calcium concentration maximum 5.0

αy Calcium recovery rate 1.0

βy Activity-dependent calcium inactivation rate 80.0

ΓY Calcium inactivation threshold 0.18

ΓS Striosomal output threshold 0.2

γs Striosomal learning gain 10000

αz Striosomal learning rate 0.1

wRS Hypothalamus-to-Ventral Striatum synaptic weight 1.2

τS Ventral striatal cell response time constant 30.0

τWS CS-to-ventral striatal learning rate 20.0

WS
max Maximum CS-to-ventral striatal synaptic weight 2.5

βWS CS-to-ventral striatal weight decay rate 0.2

AS Ventral striatal activity passive decay rate 0.7

ΓN Phasic dopamine signal threshold 0.0

τP PPTN cell response time constant 200.0

tUP PPTN afterhyperpolarlization time constant 4.0

τD Dopamine cell response time constant 15.0

WPD PPTN-to-Dopamine cell synaptic weight 50.0

WSP Ventral striatal-to-PPTN cell synaptic weight 2.0

WRP Hypothalamus-to-PPTN cell synaptic weight 0.8

WUP PPTN afterhyperpolarization gain 140.0

ΓP PPTN output signal threshold 0.135

Baseline average dopamine time constant 4.0

ID Tonic input to dopamine cell 0.15

hD Dopamine cell maximum hyperpolarization 0.1

τ
D
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