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Abstract
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This article describes two neural network modules that form part of an emerging theory of how
adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals.
The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajec-
tories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion
(FLETE) model suggests how outflow movement commands from a VITE model may be
performed at variable force levels without a loss of positional accuracy. The invariance of
positional control under speed and force rescaling sheds new light upon a familiar strategy of
motor skill development: skill learning begins with performance at low speed and low limb
compliance and proceeds to higher speeds and compliances. The VITE model helps to explain
many neural and behavioral data about trajectory formation, including data about neural coding
within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties
such as Woodworth’s Law, Fitts’ Law, peak acceleration as a function of movement amplitude
and duration, isotonic arm movement properties before and after arm-deafferentation, central
error correction properties of isometric contractions, motor priming without overt action, velocity
amplification during target switching, velocity profile invariance across different movement
distances, changes in velocity profile asymmetry across different movement durations, staggered
onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of
maximum to average velocity during discrete versus serial movements, and shared properties of
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arm and speech articulator movements. The FLETE model provides new insights into how
spino-muscular circuits process variable forces without a loss of positional control. These results
explicate the size principle of motor neuron recruitment, descending co-contractive compliance
signals, Renshaw cells, la interneurons, fast automatic reactive control by ascending feedback
from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle
error signals to train adaptive movement gains, fractured somatotopy in the opponent organiza-
tion of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback
from Golgi tendon organs. More generally, the models provide a computational rationale for the
use of nonspecific control signals in volitional control, or “acts of will’, and of efference copies and
opponent processing in both reactive and adaptive motor control tasks.

1. Position-code invariance and skill development

In natural motor control, an organism frequently controls two or
more motor system variables simultaneously. For example, in reaching
to a target, an organism can control both the speed and the form,
which includes direction and endpoint, of the reaching movement; and
once a new posture is assumed, the organism can continuously vary the
compliance of its joints without inadvertently changing joint angle.
Despite wide fluctuations in the muscular energy expended, the posi-
tions attained to perform movement at variable speeds or to hold a
posture at variable compliances are remarkably invariant. We often call
this fundamental property position-code invariance.

Whenever an invariance is observed in the behavior of a complex
system, questions arise regarding the mechanisms by which it is
achieved. By definition, a complex system is composed of partially
independent subsystems, whose interactions give rise to the complex
system’s competence. However, whenever two subsystems are con-
nected there is no guarantee that prior system competence will be
preserved. This theme has been recognized by many movement control
researchers (e.g. Bernstein 1967). The point was also recognized by
Piaget as a postulate in his theory of cognitive equilibration: ‘Modify-
ing a scheme must destroy neither its closure as a cycle of interdepen-
dent processes nor its previous powers of assimilation’ (Piaget 1985: 6).

The same issue has emerged as a central theme within neural
network theories of cognition and behavior (e.g. Grossberg 1978, 1982;
Grossberg and Kuperstein 1986, 1989). The particular genus of ‘pre-
servation under interaction’, or invariance problem, treated in this
article has been called the pattern-energy factorization problem (Gross-
berg 1970, 1973, 1982) to emphasize that many neural networks are
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designed to factor pattern differences from overall activity levels. The
overall activity level may be controlled by a nonspecific signal broad-
cast to all network sites. A nonspecific signal is a scalar signal that is
generated at a single command source and delivered, through a parallel
fan-out of pathways, to many target cells. Using a nonspecific signal is
one device whereby voluntary control of speed or compliance may be
simplified. For this control strategy to work, the target cells must be
designed to react in an appropriate state-dependent manner. Then a
single nonspecific signal can be used to effect conscious control over a
large array of cells without the need for conscious control of each cell
in the array.

The pattern-energy factorization problem needs careful analysis be-
cause all biological neurons exhibit electrical potentials and currents
which fluctuate within a bounded range. Thus broadcasting the same
nonspecific signal to an entire array of cells could raise the baseline
level of activity across the array and push the activities of many cells
toward their maximum potentials. The nonspecific signal could thereby
homogenize, or compress, the spatial pattern of cell activities originally
induced by specific inputs to the same array. Because information in a
neural network is carried by such spatial patterns, a nonspecific signal
could easily become information destroying. In what follows, we show
how to design neural control circuits for performing a planned move-
ment and holding a desired posture. These skills can be modulated by
nonspecific speed and compliance control signals without significantly
disrupting their positional control. Speed and compliance rescaling
without a loss of positional control make it possible to flexibly adapt
the motor system to match the demands of a large range of tasks that
would otherwise prove impracticable.

Another important function of such position-code invariance be-
comes apparent when we consider how speed and compliance control
signals are strategically varied during skill acquisition (Gachoud et al.
1983; Humphrey and Reed 1983; Moore and Marteniuk 1986; Thelen
and Fisher 1983). Early in the development of a skill, acts are typically
performed with relatively low joint compliance (relatively high stiff-
ness) and at low speed. As learning progresses, the learner speeds up
and allows the limbs to become more compliant. This pattern con-
stitutes an adaptive strategy because the final high-compliance, high-
speed mode of operation is more energy- and time-efficient, whereas
the initial low-compliance, low-speed mode insulates the learner from
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large untoward consequences of miscalibrated position-control signals.
For example, when learning to transport a glass of milk from table to
mouth, a child performing at low speed will have time to halt, or
correct on-line, misdirected actions, and low compliance will help
prevent large terminal overshoots due to unexpected inertia. The low-
speed, low-compliance parameter setting of the neuromuscular system
defines a period during which the position-control system can receive
the error feedback needed to learn skilled control of objects, while
avoiding large, dangerous errors. Thus, the low-speed, low compliance
period of juvenile behavior provides a kind of internal developmental
‘scaffolding’ that enables safe self-organization of skilled actions. Such
internally generated scaffolding is an analogue of the external scaffold-
ing prevalent in species whose adaptive strategy depends on an ex-
tended juvenile period of learning within a protective social environ-
ment (e.g., Bullock 1987).

Changing from the control strategy of high stiffness and low speed
would be less effective if the skill learning that occurred during this
training period were not transferable to the new control strategy of low
stiffness and high speed. Transferability would be impaired if position-
code invariance could be achieved only at particular values of speed
and compliance. Thus neural circuits capable of position-code invari-
ance at variable speed and compliance levels provide a basis for rapid
skill development and generalization. Our neural models for trajectory
formation and postural maintenance, which were developed in response
to both physiological and psychophysical data, show how position-code
invariance can be achieved without reliance on speed- or compliance-
dependent learning.

2. Neural specification in the control of reaching

Though our results are more generally applicable, we focus herein on
voluntary reaching movements and voluntary postural maintenance of
the arm. To begin, consider the intrinsic relationships among arm
muscle lengths, arm segment lengths, arm joint angles, and the position
of the hand in space. Because the hand rides the end of the forearm
segment, its position in space relative to the torso is determined by the
lengths of the upper- and fore-arm segments, by the angles of the upper
arm with the torso (shoulder joint angles), and by the angle of the
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(radiating arrows originating at sites 3 and 7) cooperate to provide flexible control of movement
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lower arm with the upper arm (elbow angle). The joint angles are in
turn dependent on the lengths of the muscles that control rotations of
arm segments at the joints. Thus, once limb segment lengths and
muscle insertion points are given, any change in hand position can be
described in terms of a set of muscle length changes. Corresponding to
every realizable hand position there is at least one set of muscle length
specifications which, if instated in the arm-controlling muscles, would
move the hand to that position. The central nervous system can hereby
indirectly control hand position by directly controlling muscle lengths.

To understand some of the issues associated with achievement of
position-code invariances, consider fig. 1. In panel 6 of the figure, the
Present Position Command, or PPC, codes hand position in muscle-
length coordinates. The PPC is a pattern of neuronal activation levels
distributed across a set of neuronal populations, each of whose activa-
tion levels rises when the muscle it controls is to be shortened and falls
when its muscle is to be lengthened. If we associate the real variable
PPC; with each of these activation levels, where i =1, 2... n indexes
one of n muscle control channels needed to control the arm, then the
PPC is a vector with n components, (PPC,, PPC,... PPC,). This
vector of real numbers corresponding to the pattern of activation levels
serves as a natural ‘muscle coordinate’ code for present hand position,
just as a three component (x,y,z) vector codes hand position in a
Cartesian coordinate system. The multicomponent PPC generates out-
flow movement signals to spinal neuron pools (panel 9) which in turn
act on muscles capable of moving the arm.

Unfortunately, many factors threaten to disrupt an invariant linear
relation between this array of commanded muscle lengths (PPC) and
actual muscle lengths. First, external forces like gravity tend to rotate
limb segments and thereby stretch or compress muscles to unintended
lengths. Second, even in the absence of external forces, equal changes
in the PPC specification are unlikely to cause equal changes in muscle
length without significant auxiliary circuitry. This is because several
sources of nonlinearity enter between the PPC stage and actual joint
rotations. Even if the motor unit populations consisting of alpha-
motoneurons and associated contractile fibers generated forces that
were strictly proportional to descending neural input (which is not the
case), joint rotations and muscle lengths ultimately depend on the
rotational forces generated, i.e., on muscle torques. Torques depend
both on developed muscular force and on the muscle’s moment arm,
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which changes as a function of joint angle. Finally, as shown in panel 7
of fig. 1, the PPC is not the only command signal directed toward the
spinal neuron pools. Also impinging is a potentially disruptive signal
intended to control joint compliance by simultaneously raising (or
lowering) the contraction level of, and therefore the forces developed
by, muscles pulling from opposite sides of the joint.

To compensate for the initially nonlinear response of arm muscles to
PPC changes, it is necessary for the CNS to measure muscle length
errors (panel 10) and to use error feedback to improve its performance.
While such feedback supplies immediate reactive compensation (diago-
nal arrows from panel 10 to panel 9) via a stretch reflex, we suggest
that it also guides learning in pathways capable of associating com-
pensatory inputs with the specific contexts — such as particular PPC
settings — in which compensations are needed. Such adaptive pathways
afford predictive compensations that pre-empt errors. They are shown
connecting panel 8 with panel 9 in fig. 1. Learning via such pathways is
critical for what Bullock et al. (1991) have called autonomous superces-
sion of control, a widely observed developmental phenomenon in which
the control strategy utilized at an early stage of learning is autono-
mously superceded by a shorter, more efficient strategy as learning
proceeds. In motor control examples, this often involves replacing
iterative, feedback-corrected performances with less iterative perfor-
mances based primarily on feedforward motor commands that were
calibrated by learning during the prior, iterative performance phase. It
is now well established that the cerebellum is one critical module for
the learning of predictive movement-calibrating signals (e.g., Albus
1971; Grossberg 1969; Grossberg and Kuperstein 1986, 1989; Hore
1987; Ito 1984; Kawato et al. 1987; Marr 1969).

Although learned, error-preempting supplements to the PPC’s input
to the spinal motor pools are unavoidable in general, simulations
summarized below suggest that the spino-muscular system is designed
to automatically compensate for large variations in the compliance
control signal even without learning. These compliance control signals
are broadcast to the spinal neuron pools via the pathways from panel 7
through panel 8 to panel 9. The network model that served as the basis
for these simulations is called the FLETE model (Bullock and Gross-
berg 1988d, 1989). The acronym FLETE stands for Factorization of
LEngth and TEnsion, and the model includes a mathematical interpre-
tation of many known aspects of the spino-muscular system (fig. 6),
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which we believe has been shaped by evolution to ensure separable
control of muscle length and muscle force despite the natural tendency
of a muscle’s force to covary with its length. :

In particular, the FLETE model (sections 8-18) shows how joint
compliance may be controlled independently of joint angle by merely
adding the same co-contractive signal to both the outflow channels that
eventually impinge upon the opponent motoneuron pools controlling
muscles acting on opposite sides of a joint. Our analysis of the circuits
that make this possible begins by showing that achieving a wide force
range at each muscle length requires that motor units behave according
to the size principle of motoneuron recruitment if muscle tissue is
subject to yielding at high force levels. We then show that adding the
same co-contractive signal to both outflow channels, in a system that
obeys the size-principle of motoneuron recruitment, poses a threat to
position-code invariance. This' threat may be counteracted by ap-
propriate use of efference copy feedback pathways in combination with
reciprocal inhibition. In vivo, a pathway with appropriate properties is
provided at the spinal segmental level by Renshaw cells and la inter-
neurons. Thus the FLETE model, while achieving an important behav-
ioral invariance property and thereby underscoring a strategy for motor
skill development, also provides a new rationale for the size principle of
motoneuron recruitment and for the opponent organization and para-
metric properties of the Renshaw-la efferent-copy feedback pathway.
Finally, we show how ascending feedback signals arising from spindle
organs can guide opponent cerebellar learning such that the total
descending command to each opponent channel is simultaneously
adjusted to compensate for moment-arm effects. This analysis predicts
a confluence point for specific signals which control joint rotation and
nonspecific signals which control joint compliance. The need to simul-
taneously adjust gains in both opponent channels also provides a
computational rationale for fractured somatotopy in the cerebcllum
(Grossberg and Kuperstein 1986, 1989).

Other computational issues arise when we consider how to perform a
reaching movement under the influence of a visual estimate of the
location of an object to be touched. There must exist some mechanism
for changing the Present Position Command (PPC) of panel 6 from its
pre-reach value to a new Target Position Command (TPC) which, when
instated peripherally as an actual pattern of muscle lengths, would
Juxtapose hand and object. Data of Bizzi et al. (1984) suggest that such
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a PPC change is gradual and does not require visual feedback of hand
position. In the VITE model, PPC updating is accomplished gradually
by the ensemble of processes schematized in panels 1-6.

In panel 1, we assume that the visuo-motor system yields an ego-
centric specification of object location within a neural network called a
Target Position Map or TPM (Grossberg and Kuperstein 1986, 1989;
Nemire and Bridgeman 1987). This TPM specification is simply a firing
pattern, distributed across one or more neural fields, that is specific to
a given target locus relative to the body. By panel 2, an adaptive
associative mapping has transformed the TPM specification into a
TPC. The TPC, or Target Position Command, is a distributed neural
pattern that specifies a vector of lengths, to which the arm-controlling
muscles must contract in order to juxtapose hand and object. The
associative mapping between TPM and TPC is adaptive because it
must change as arm segments change their length during development.
Because the hand rides the end of the arm, any change in arm segment
length changes the geometrical meaning of a given TPC vector. Adap-
tive neural networks capable of learning a direct TPM — TPC coordi-
nate transformation have been proposed recently by Kuperstein (1988)
and by Ritter et al. (1989), but these models have not explained data
about the mapping used by primates for eye-hand coordination (see
Bedford 1989; Nemire and Bridgeman 1987; Soechting and Flanders
1989). Recent results on Vector Associative Maps (Gaudiano and
Grossberg 1990, 1991, in press) promise to close this gap.

The descending TPC is compared at stage 5 with the motor vector
ascending from stage 6. The latter is an ‘efference copy’ of the PPC.
The comparison of the TPC with the PPC at panel 5 yields a Difference
Vector, or DV, also in length coordinates, that specifies the muscle
length changes required to move the arm from the PPC to the TPC.
Thus the DV of panel 5 is the first specification so far mentioned that
has the dimensions of a movement command.

Movement is not generated by directly adding the DV to the PPC.
Instead, all components of the DV are multiplied by a nonspecific GO
signal that is under voluntary control. The GO signal starts at zero
before movement and then grows smoothly to a positive value as the
movement develops. The site of the multiplication of the DV by the
GO signal, depicted in panel 4, is called an outflow gate for primed
motor commands. Until the GO signal becomes positive, outflow
pathways from 5 through 4 to 6 are effectively ‘gated shut.” Prior to
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activation of the GO signal, a movement command (DV, panel 5) may
be primed by instatement of a TPC (panel 2) different than the PPC
(panel 6). The DV does not begin to be enacted until the site depicted
in panel 3 begins to nonspecifically broadcast the time-varying GO
signal. The rate of change of each PPC component, PPC,, is propor-
tional to the product of the GO signal multiplied by the DV compo-
nent, DV,. Thus the gating stage (panel 4) at which the GO signal
multiplies the DV computes an estimate of movement velocity. Rescal-
ing the GO signal synchronously modifies the contraction rate of all
muscles contributing to the arm movement. The voluntary release of a
primed movement, and the voluntary setting of movement rate, are
thus both controlled by the nonspecific GO signal.

Components 2-6 of fig. 1 comprise the VITE model for variable-
speed trajectory formation (Bullock and Grossberg 1986, 1988a, 1988b,
1988¢c, 1989). The acronym VITE stands for ‘Vector Integration To
Endpoint’ to contrast its operation with simpler spring-to-endpoint
models of trajectory formation (e.g. Cooke 1980). The VITE model’s
DV specifies the residual distance through which each muscle must
contract before the limb can reach the desired terminal posture. The
model’s mathematical formulation (section 3) explains how to design a
central pattern generator using efference copy feedback to ensure that
the entire array of muscle synergists controlled by the DV may be
influenced by a speed-control GO signal in such a way that all muscles
tend to complete their contractions synchronously and accurately de-
spite: mid-course changes in desired movement endpoint, different
contraction amplitudes for each muscle, different contraction onset-
times for each muscle, and different overall movement speeds. Despite
its simplicity, the VITE model has now been successfully used (Bullock
and Grossberg 1988a, 1988b, 1989) to explain a considerably wider
range of physiological and kinematic data than alternative theories (see
sections 5 and 6).

In summary, the VITE and FLETE circuits are components of a
modular theory of intentional motor control, some key aspects of which
are schematized in fig. 1. The theory seeks to provide a rigorous basis
for understanding the interdependent nature of computations distrib-
uted across several neural sites heretofore treated separately. The two
modules treated in this paper illustrate how invariant yet flexible
positional control may be assured with a minimum of compensatory
learning if careful use is made of efference copy feedback in conjunc-
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tion with nonspecific speed and compliance modulating signals that are
suitably nested within an opponently organized motor command sys-
tem. Without such invariance properties at low levels of the motor
control system, acquisition of skills with significant hierarchical struc-
ture (e.g. Fischer 1980), such as tool manipulation and speech, would
be more protracted, and the cultural modes of adaptation based on
such skills could less easily evolve. The following sections focus on the
computational bases of the cited invariance properties.

3. Position-code invariance under speed rescaling in a VITE circuit

Fig. 2 schematizes the organization of two of »n muscle-length
control channels within a VITE circuit (compare panels 2-6 of fig. 1)
and shows the type of differential equations used to simulate the
circuit. Because a single muscle cannot both pull and push, each fig. 2
channel requires an opponent, or push-pull, microstructure like that
shown in fig. 3. To simplify the exposition, we will consider the units in
fig. 2, and we let TPC;=T,, DV,=V, and PPC, = P,. Although we
consider only one channel in the following discussion, the results hold
for all channels within which updating is controlled by a shared GO
signal, G.

We now explain how T, can update P, with a positional accuracy
that is relatively insensitive to variations in the size of G. Consider a

Fig. 2. Updating rates within all component channels of a VITE circuit are influenced by a

common, multiplicative GO signal. Variable key: 7; = target position command; V, = difference

vector; G = GO signal; P, = present position command. Opponent interactions that exist between
agonist and antagonist sub-channels within each depicted channel are shown in fig. 3.
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Fig. 3. Opponent interactions among VITE circuit sub-channels controlling agonists and their

antagonists enable coordinated, automatic updating of their present-position commands (PPCs).

Outputs from the PPC stage serve as the basis for reciprocal control of opponent muscles’
contractile states. The term shunt refers to a multiplicative interaction between neural variables.

typical case in which initially 7;> P,, which creates a positive dif-
ference vector component, V.. When G becomes positive, the gate
between the cellular site registering activity V, and the cellular site
registering activity P, is opened and updating of P; begins. As shown in
fig. 2, the time rate of change of P, (d/dt)P, is given by the product
[V;]"G, where notation [V,]* means max(V,,0). This product rule
implies that whenever V, becomes zero, so will the updating rate
(d/dt) P, regardless of the value of G. Moreover, because of the
inhibitory effect of P, on ¥V, V, is driven toward zero as P, is updated
towards 7,. Thus the product rule in conjunction with inhibitory
efference-copy feedback assures that updating will self-terminate when
P, =T, even if G is much greater than 0. This is most of the story of
position-code invariance across different settings of G.

However, the size of G can cause positional errors which help to
explain the classical Fitts Law (Fitts 1954) and Woodworth’s Law
(Woodworth 1899). Given any finite value of the averaging rate « at
which V; integrates T, — P, (fig. 2), V;(¢) takes some time to react to
changes in P,(t). In particular, even if P,(¢) =T, at a given time ¢ = ¢,
V.(1) will typically require some extra time after ¢ =1, to decrease to
the value 0, and P,(z) will continue to increase during this extra time. If

a is very large, V;(t) can approach 0 quickly. Consequently, V,(t) will
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not allow P,(t) to overshoot the target value 7, by a large amount. On
the other hand, given any choice of a, the relative amount whereby
P.(t) overshoots the target 7, depends upon the size of the GO
amplitude G. This is true because a larger value of G causes P,(t) to
increase faster, and thus P,(¢) can approach T; faster. In contrast, V,(¢)
can only respond to the rapidly changing values of T, — P,(r) at the
constant rate a. As a result, V,(¢) tends to be larger at a time =1,
when P,(t,) = T, if G is large than if G is small. It therefore takes V(1)

!

longer to equal O after t=1, if G is large. Thus P,(t) overshoots T,
more if G is large. This covariation of amount of overshoot with overall
movement velocity is a speed—accuracy trade-off.

These remarks indicate that position code invariance is achieved
only approximately. The VITE model circuit can generate positional
errors whose sizes depend on network parameters such as the rate « at
which V; integrates T, — P, and the rate G at which P, integrates [V;]™.
Computer simulations and mathematical theorems reported in Bullock
and Grossberg (1988a) proved that these errors obey Fitts’ Law and
Woodworth’s Law. These analyses thus explained these Laws as emer-
gent properties of a network designed to generate synchronous multi-

joint goal-directed movement trajectories at variable speeds.

4. Multiplicative gating in variable-speed synchronous trajectory
formation

The behavioral property of multi-joint synchrony at variable speeds
is based upon the neural property that the GO signal multiplies the DV
components. If, instead, G were added to each V; the relative updating
rates for different muscles would no longer be proportional to the
relative amounts by which they must contract. In particular, muscles
needing to contract through greater distances would take longer times
to do so, and the resultant movements could change direction in an
uncontrolled fashion in mid-course.

In contrast, the VITE model’s multiplicative (DV') - (GO) rule leads
to a robust synchrony property, such that muscles contracting through
different lengths can complete their contractions in equal time. Fig. 4
illustrates the wide operating range of this synchrony property. When
all DV, components are switched on at the same time and multiply the
same GO signal, then all components complete their movement syn-
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Fig. 4. Simulation results showing contraction offset times for three synergistic muscles with

different onset times, as a function of the GO signal scalar (the voluntarily chosen multiplier of

the time-varying GO signal). In each block, the DV component corresponding to muscle one

begins to be read out 0 ms after the start of GO signal buildup, muscle two 150 ms after the start

of GO buildup, and muscle three 300 ms after the start of GO buildup. The GO signal scalar was

10, 20, 40, and 80 in blocks 1-1V, respectively. Results indicate automatic VITE circuit compensa-
tion for staggering of contraction onset times.

chronously no matter how the GO signal is chosen. This synchrony
property was proved mathematically in Bullock and Grossberg (1988a).
When different DV, components are switched on at different times and
multiply the same GO signal, then their onset times may be deferred by
as much as 50 percent of the total movement time without significantly
disrupting offset synchrony. This latter synchrony property is
strengthened when the GO signal starts at zero and grows gradually
during movements (see fig. 5a, b). Then later-starting DV; components
interact with a GO signal which has a larger average size during their
interval of integration.

This staggered-equifinality property may be as important for rapid
skill development as the position-code invariance property. In particu-
lar, Hollerbach et al. (1986) have suggested that staggered onset times
may be needed to generate nearly straight hand trajectories despite
movement planning in muscle-length, or joint-space, coordinates. In
addition, offset synchrony is needed to learn and perform movement
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sequences in which gesture n is rapidly succeeded by gesture n + 1, as
in rapid speech and typing. Without offset synchrony, it would be
difficult to precisely predict the time when any gesture would be
completed, hence also difficult to predictively control onset of the
succeeding gesture without risking interference from a lagging compo-
nent of the prior gesture. The VITE network reconciles staggered
onsets with synchronous offsets by the simple device of a continuously
growing GO signal.

5. Recent neural and behavioral evidence for the VITE model

This section summarizes some of the experimental evidence that has
come to our attention since the extensive summary of data we com-
pleted in October, 1986 when our first journal article on the VITE
model was submitted (Bullock and Grossberg 1988a). We emphasize
evidence for two key predictions of the model: the existence of a
multiplicative GO signal, and the existence of a duration-dependent
asymmetry in velocity profiles.

Because the VITE model proposes that trajectories are generated as
the arm tracks the evolving state of the PPC, the model can be tested in
two ways: by comparing trajectories of the neural circuit’s output stage
(e.g., fig. 5) with behavioral data concerning actual arm trajectories,
and by checking for the existence of the neural components, including
the PPC, that are postulated in the model. Detailed quantitative
comparisons of model predictions with behavioral data can be found in
Bullock and Grossberg (1988a, 1988b). Among the properties treated
therein are: peak acceleration as a function of movement amplitude
and duration, and isotonic arm movement properties before and after
arm-deafferentation in animals deprived of visual feedback (Bizzi et al.
1984); synchronous and compensatory ‘central error correction’ prop-
erties of isometric contractions (Gordon and Ghez 1987); velocity
profile invariance across different movement distances (Freund and
Biidingen 1978); duration-dependent velocity profile asymmetries and
the invariant ratio between peak velocity and average velocity in speech
and arm movements (Beggs and Howarth 1972; Ostry et al. 1987,
Nagasaki 1989; Zelaznik et al. 1986); and velocity amplification follow-
ing target-switches in speech and arm movements (Georgopoulos et al.
1981; Abbs et al. 1984).
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Neurophysiological data support the existence of the major stages in
the VITE model. In particular, the VITE model includes a DV stage,
the analogue of which does not exist within mass-spring models of
trajectory formation (e.g., Cooke 1980). Cell populations have been
identified that possess all the properties required of an in vivo analogue
of DV stage neurons. For example, Georgopoulos and associates
(Georgopoulos et al. 1984a; Schwartz et al. 1988) have located a class
of cells in the shoulder-elbow zone of the precentral motor cortex (area
4). Called vector cells, they have the following properties in common
with VITE model DV cells: (1) activity levels correlate with arm
movement direction but not arm movement endpoint; (2) activity levels
may be primed prior to movement, as required by the postulate that
actual movement depends on GO signal activation; (3) the time course
of vector cells is highly correlated with the time course of the model
DV; (4) vector cell coding of movement direction does not reverse
during the second half of the movement, indicating pure kinematic
coding with no braking-force component; and (5) vector cells project to
interneurons rather than directly to motoneurons, as required by the
VITE model postulate of an outflow PPC stage that must be supple-
mented by additional signals, such as FLETE model signals, to gener-
ate the total movement command. Thus the VITE model provides a
mechanistic understanding of how the neural population vectors mea-
sured by Georgopoulos and associates may be computed by a distrib-
uted neural circuit. The TPC is likely to be computed in the posterior
parietal cortex. Evidence for a GO signal generator in the globus
pallidus will now be summarized.

An in vivo candidate for a GO signal pathway must pass four tests.
First, stimulation at some site in the proposed pathway must have an
effect on the rate of muscle contractions. Second, it must have this
effect without affecting the amplitude of the contractions. Thus stimu-
lation should have no effect on movement accuracy, except possibly for
effects caused by imperfect motor realization of the PPC commands.
Third, this rate-modulating effect should be nonspecific: it should
affect all muscles that are typically synergists for the movement in
question. Fourth, because movement depends on the conjunction of a
positive DV and a positive GO signal, no movement should occur in
the absence of either signal.

Studies conducted by Horak and Anderson (1984a, 1984b) have
supplied data that support all of these properties. Horak and Anderson
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(1984a) showed that ‘when neurons in the globus pallidus [of Macaque
monkeys] were destroyed by injections of kainic acid (KA) during task
execution, contralateral arm movement times (MT) were increased
significantly, with little or no change in reaction times’ (p. 290). This
satisfies the rate criterion. The rate of motor recruitment was depressed
‘in all the contralateral muscles studied at the wrist, elbow, shoulder,
and back, but there were no changes in the sequential activation of the
muscles” (p. 20). This satisfies the nonspecificity criterion. ‘Animals
displayed no obvious difficulty in aiming accurately ... they did not
miss the 1.5-cm target more often following KA injections, and there
was no noticeable dysmetria around the target’ (p. 300). This satisfies
the accuracy criterion.

Horak and Anderson (1984b) used an electrical stimulation para-
digm instead of a lesion paradigm. They found that ‘stimulation in the
ventrolateral internal segment of the globus pallidus (GP;) or in the
ansa lenticularis reduced movement time, whereas stimulation at many
sites in the external pallidal segment (GP,), dorsal GP;, and putamen
increased movement times for the contralateral arm’ (p. 305). Once
again, these effects were nonspecific: ‘no somatotopic effects of stimu-
lation were evident. If stimulation at a site produced slowing, it
produced a depression of activity in all the muscles studied. Even
stimulus currents as low as 25 pA affected proximal as well as distal
muscles, flexor as well as extensor muscles, and early- as well as
late-occurring activity’ (p. 309).

The conjunction criterion for a GO-signal pathway was also met. In
the VITE model, activation of the GO-signal pathway produces move-
ment only if instatement of a TPC different from the current PPC leads
to the computation of a non-zero DV, regardless of the value of G. In
agreement with this property, Horak and Anderson (1984b) observed
that ‘stimulation at sites that speeded movements did not induce
involuntary muscle activation in resting animals nor did it change
background EMG activity prior to self-generated activity during task
performance’ (p. 313). In Bullock and Grossberg (1988a) we noted that
“very rapid freezing can be achieved by completely inhibiting the GO
signal at any point in the trajectory’. This property of the model was
partially shown to be a property of the GP system by the demonstra-
tion, noted above, that stimulation in inhibitory zones adjacent to GP,
significantly slowed movement. Horak and Anderson also reported that
‘stimulation with 50 or 100 pA at ... sites ventral and medial to



20 D. Bullock, S. Grossberg / Adaptive neural networks

typical GP; neuronal activity completely and immediately halted the
monkey’s performance in the task’ (p. 315). Though the sites producing
halting in the Horak and Anderson studies apparently do not inhibit
the GP,, they may inhibit targets of the GP; output pathway. Prior
studies using much larger currents in zones known to inhibit GP, have
produced halting (Van Buren et al. 1966). Taken together, their experi-
ments led Horak and Anderson (1984b) to conclude that ‘the basal

ganglia ... determine the speed of the movement’ (p. 321). Consistent
rate-control data for speech movements have been reported by Mateer
(1978).

In a study of timing relations between natural pallidal neuron
discharges and the earliest detectable EMG activity, Anderson and
Horak (1985) observed that though about 30% of pallidal neurons
began firing 50-150 ms before mechanically detectable movement,
‘only 13 of 108 neurons showed changes in activity before the earliest
EMG activity recorded during the same trials, and for only two of
them did the initial changes in firing rate precede the initial changes in
EMG activity by more than 25 ms’ (p. 444). From this they concluded
that ‘it is unlikely that changes in pallidal firing would be important in
determining the initiation of the arm movement ... But they could be
important in controlling the buildup or scaling of EMG activity and
thus the duration of the movement’ (p. 444). Similar timing relations in
monkeys have been reported by Mitchell et al. (1987).

These timing relations have several alternative interpretations that
require further discussion, especially in the light of cat data consistent
with an initiating role for pallidal output signals (Neafsey et al. 1978).
Both theoretical and empirical considerations suggest that Anderson
and Horak may have underestimated the role of the GP; in movement
initiation. In any planned movement context, there are likely to be a set
of central events, all of which may be jointly involved in ‘determining
the initiation of the arm movement’. In particular, an arm movement
will be more successful if the muscles controlling body segments that
serve as the postural base for the arm are activated before the phasic
arm movement is itself initiated. Gahery and Massion (1985) have
reported central and muscular postural adjustments with lead times in
excess of 25 ms before the onset times for central and muscular
arm-movement producing activations.

From this perspective, the data of Anderson and Horak do not rule
out the GP; as the output stage of a GO signal generator. Rather, they
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further buttress the argument that a gradually increasing GO signal
exists in the GP;. In particular, each animal individually showed some
pallidal activity at least 25 ms prior to the earliest EMG activity. Close
inspection of Anderson and Horak’s (1985) fig. 8 reveals that this
‘short’ 25 ms lead time held only for the thoracic paraspinal muscle,
whose activity was probably generated by the separate circuit responsi-
ble for preparing the postural base for the forthcoming arm movement
(Gahery and Massion 1985). In contrast, pallidal activity led EMG
activity in all arm-projection muscles (biceps, deltoid, radialis) by at
least 50 ms. Such a lead time is compatible with an initiating role
because the GP; may be tri-synaptically linked to motoneurons via two
separate pathways.

In addition, Anderson and Horak used a simple RT task, which
allows complete DV priming before onset of the GO signal. Such a task
would be expected to eliminate any effect of the GO signal on RT as
well as reduce to a minimum the lag between GO activation and initial
muscle activation. Initial muscle activity in the model is affected by the
product of the GO signal and the large initial DV. Because the GO
signal is assumed to start small and to grow gradually, only a small
proportion of pallidal neurons should become active prior to initial
muscle activity. Thus the Anderson and Horak (1985) observations of
gradual recruitment of active pallidal neurons are consistent with the
hypothesis of a gradually growing GO signal. This hypothesis also
helped to quantitatively explain a variety of data about arm movement
velocity profiles in Bullock and Grossberg (1988a). The Anderson and
Horak paradigm provides an opportunity to make a direct neurophysi-
ological test of whether a gradually growing GO signal helps to
reconcile staggered onset times with near-synchronous offset times. Are
nearly straight reaching movements with widely staggered onset times
rendered less controllable by rapid onset of pallidal activity caused by
direct electrical stimulation?

Because the internal segment of the globus pallidus is one of two
main output nuclei for the basal ganglia (BG), an assessment of its
suitability as a GO signal generator needs to consider inputs to the
basal ganglia. Do the basal ganglia receive the afferents one would
expect to govern the final decision to execute a primed motor com-
mand? This issue has recently been addressed by Passingham (1987),
who concluded ‘that it is the basal ganglia that finally direct the action
to be taken’ (p. 90). Regarding BG inputs, he noted that for a correct
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evaluation of the context for action, ‘the motor system must be
influenced by information from all of the cortical regions ... In fact
there is a massive projection from all these areas, but it runs not across
the cortex but downward to the basal ganglia’ (p. 85). Moreover ‘the
ventral striatum [one of the BG input zones] receives a heavy projection
from the amygdala ... [which] plays a crucial role in the learning of
motivational and emotional associations (p.85).” Thus the basal ganglia
do receive inputs whereby cognitive and motivational information may
be integrated to arrive at decisions to act. These convergent pathways
to the basal ganglia support the interpretation of the GO signal as ‘the
will to act’. No ‘will’ implies a zero GO signal. When a positive ‘will to
act’ can be continuously modulated, it provides a basis for variable-
speed control.

The other main output nucleus of the basal ganglia — the substantia
nigra (SN) pars reticulata — is known to gate read-out of movement
commands controlling saccadic eye movements. It does this by disin-
hibiting deeper layers of the superior colliculus (Sparks and Jay 1986;
Wurtz and Hikosaka 1986). Grossberg and Kuperstein (1986, 1989)
have modeled how this gating action enables planned and attentionally
modulated eye movement commands to effectively compete with more
rapidly computed visually reactive eye movement commands to decide
which type of information will determine where the eye looks in any
given situation. In baboons, SN lesions produced a marked increase in
the duration of a forelimb pointing movement without causing a
change in movement accuracy, and the slowing involved the whole
trajectory (Viallet et al. 1983), consistent with VITE model equations.

Further data relevant to the existence of a GO-signal pathway were
recently reported by DeJong et al. (1990). Continuous response mea-
sures taken during a choice RT study of control processes underlying
response inhibition revealed ‘that responses could be interrupted at any
time’ (p. 164). When considered in the context of other experimental
results, this finding led them to conclude that ‘the distinction between
a central and a peripheral inhibitory mechanism is also consistent with
the distinction between central processes, concerned with the program-
ming of the movement, and more peripheral processes, involved in the
initiation of the movement and the control of its speed, proposed by
Bullock and Grossberg (1988) in their model for the control of limb
movements’ (p. 179).

Another prediction of the VITE model can be seen in the simulation
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results summarized in fig. 5. The model implies that velocity profiles
should not be perfectly bell-shaped. Instead they should deviate from
symmetry in a direction that depends on movement duration. Short
duration movements should have a longer accelerative than decelerative
portion — ‘left-tail asymmetry’ — whereas long duration movements
should have a longer decelerative than accelerative portion — ‘right-tail
asymmetry’. Though their data were not presented in such a way as to
make the effect easy to see, we noted in Bullock and Grossberg (1988a)
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Fig. 5. (a, b): With equal GO signals, movements of different size have e¢qual durations and
perfectly superimposable velocity profiles after velocity axis rescaling. Shown are GO signals and
velocity profiles for 20 and 60 unit movements lasting 500 ms. (c, d, e [see p. 24]): Velocity profiles
associated with small, medium, and large GO magnitudes result in slow, medium, and fast
performance of a 20 unit movement. Each SR value gives the trajectory’s symmetry ratio; that is,
the time taken to move half the distance divided by the total movement duration. These ratios
indicate progressive symmetrization at higher speeds, within the range of speeds shown. (f [sec p.
24]): The velocity profiles shown in (c), (d), and (e) are not perfectly superimposable after time
and velocity normalization.
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Fig. 5 (continued).

that Beggs and Howarth had presented consistent data on right-tail
asymmetry in 1972. Further data documenting both predicted types of
duration-dependent asymmetry have now been reported by a number
of researchers: Zelaznik et al. (1986) and Moore and Marteniuk (1986)
for rapid arm movements, Ostry et al. (1987) for orofacial (speech and
nonspeech) and arm movements, and Nagasaki (1989) for a full speed-
range of arm movements.

Nagasaki’s results are particularly relevant because he compared his
data both to predictions of our model and to predictions of various
optimization models of trajectory formation, including variants of the
minimum jerk model of Hogan (1984) and the minimum effort model
of Nelson (1983). He noted that ‘Bullock and Grossberg (1988a) also
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predicted the same type of asymmetry as ours, though they could not
verify their theoretical results ... because of the lack of available data.
Their model is constructed on a fundamentally different basis from
optimization theory; it needs no explicit preprogramming of movement
kinematics ... Our constrained jerk model assumed that the ballistic
and slow movements were controlled so as to reduce the abrupt change
in acceleration at the start and end of the discrete movements. The
actual movements, however, did not satisfy the minimum-cost thereby
introduced’ (p. 325). More generally, Nagasaki concluded that to
reproduce the duration-dependence predicted by the VITE model and
observed in his data, ‘it would be necessary to examine cost functions
other than jerk or effort for ballistic or slow movements.” In Bullock
and Grossberg (1988b), we showed that the VITE model also greatly
outperformed both minimum jerk and minimum effort models in
predicting the peak accelerations measured by Bizzi et al. (1984).

Two other recent developments also deserve mention. Ebner (1989)
has reported cells in premotor cortex whose activity during arm move-
ments is correlated with motor error, i.e. the residual distance to target,
as are model DV cells. Soechting and Flanders (1989) have used a
‘blind reaching’ paradigm, in which subjects made reaches to visually-
specified targets without on-line visual guidance, to draw conclusions
consistent with VITE model properties. In particular, they concluded
that ‘once target location is represented in body-centered coordinates,
arm movement to a target could be achieved in principle by means of
one transformation: mapping from target location to an appropriate
level of activation of each of the limb muscles ... Once both the initial
and final positions are represented in terms of joint angles, it is
possible to derive the direction and amplitude of the movement re-
quired to attain the target by taking the vectorial difference’ (p. 606).

6. Target switching during movement sequences

By supporting VITE model predictions regarding separate DV and
GO signal processes, the data of Georgopoulos et al. and Horak and
Anderson also support the more general hypothesis that motor systems,
like sensory systems, implement factorization of pattern and energy
(section 1). In the VITE component, this factorization means that a
movement’s speed (‘energy’) can be scaled up or down over a wide
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range without disrupting the movement’s direction or spatial endpoint
(‘pattern’). By using a GO signal that grows gradually during the
movement time (fig. Sa, b), all synergists complete their contractions at
approximately the same time even if movement onset times of different
synergists are staggered by a large amount (fig. 4). These properties of
the model, together with the strong evidence for separate DV and GO
signal pathways in vivo, provide a basis for understanding how primates
can achieve space-time equifinality — all synergists reaching their length
targets at equal times — yet retain separate control of rate and position.
Rate-control models relying on static stiffness adjustments (e.g., Cooke
1980) lack this temporal-equifinality property.

A closely related property of the VITE model gains importance
during the many occasions when the TPC is updated one or more times
during a movement or movement sequence. This may occur, for exam-
ple, if the position of the object to be reached unexpectedly changes.
Alternatively, a subject reaching for an object that is initially in the
visual periphery may make a better estimate of object location after
performing a saccadic eye movement to foveate the object. Saccades
take less time than an arm movement that may be unfolding in parallel.
In either case, the TPC and DV are rapidly updated, and this late-arriv-
ing information affects the arm’s trajectory more quickly because the
GO signal is already fully developed. Thus the factorization of TPC
and GO signal, along with the hypothesis of a gradually growing GO
signal, implies that a higher peak velocity will be achieved as a result of
a mid-trajectory switch in TPC. Such an amplification of velocity
facilitates reaching the target after the incorrect initial TPC is updated.
This speed-up occurs ‘on-the-fly’ as the effects of the perturbation flow
through the system via dynamic real-time computations. Georgopoulos
et al. (1981) have reported such an increase of peak velocity during
target-switching experiments in monkeys.

An experiment by Goodale et al. (1986), analogous to the Geor-
gopoulos et al. (1981) study with monkeys, showed that humans also
possess the ability to compensate for in-course target switches. Their
experiment was also consistent with an explanation in terms of TPC
updating and flow-through, because they eliminated the possibility that
corrections could be based on visual comparisons of the relative
positions of hand and target. In particular, compensations to a change
in target position occurred in the arm’s trajectory even when the arm
and hand were invisible to the subject.
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Fig. 6. FLETE model components: Neuron populations comprising two channels control oppo-

nent muscles acting on a joint. Descending signal P to both channels allows co-contraction and

Joint stiffening. Adjusting the balance between descending signals A, and A4, allows reciprocal

contractions and joint repositioning. For clarity, subpopulations of neurons and some signal

pathways are not depicted. Key: /, = la interneuron population in channel i,i = L2;y, = gamma

motoneurons; M, = a motoneurons; R, = Renshaw cells; + = excitatory input; -~ = inhibitory
input.

Fisk and Goodale (1988) have offered an interpretation of late-oc-
curring in-course error corrections, also proposed by Cooke and Dig-
gles (1984), that is consistent with VITE model mechanisms. They
concluded that many terminal error corrections are not based on either
proprioceptive feedback from the limb or on visual comparisons of the
relative positions of hand and target. Rather, such corrections are
based on a comparison made between an internal representation of the
target’s locus and an internal representation of the hand’s estimated
location based on movement commands. These results support the
VITE model as well as the classical hypothesis that even infants
typically perform reaches without needing to compare the position of
their seen hand with the seen target (Piaget 1963).
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7. From kinematics to dynamics: generating forces to ensure
that the arm tracks the evolving PPC

The VITE circuit places stringent requirements on other components
of the sensory-motor system because it requires continuous or near-
continuous adjustment of the balance of forces acting on the limb to
ensure that the limb tracks the evolving PPC without significant lags or
overshoots. Some of these components are modeled herein to explain
how they autonomously generate the force-time patterns required to
track VITE-generated trajectories. When both types of circuits are
understood, a quantitative mechanistic understanding of the two of the
most fundamental problems in sensory-guided motor control would
then be approached: how to generate continuously modifiable kine-
matic plans, and how to generate the continuously modifiable force-time
patterns needed to realize them.

8. FLETE: an opponent spino-muscular model for factorization of
length and tension

We now address position-code invariance under compliance rescal-
ing. The key problem is how the nervous system ensures independent
control, or Factorization, of the LEngth and TEnsion of muscles
controlling a movable limb, hence the acronym, FLETE, of our model.
We report simulations that show how an opponently organized spino-
muscular system (fig. 6) may use co-contraction to vary limb compli-
ance without causing joint rotations by inadvertently changing the
lengths of opponent muscles.

9. Wide force range at each muscle length requires size principle

Consider the forces, F;, i =1, 2 developed by two muscles operating
on different sides of a joint. In a springy tissue like muscle, developed
force depends on the amount of stretch beyond the resting length.
Because muscle can actively contract, muscle has a variable threshold
length for force development (e.g., Feldman 1986). These properties
can be approximated by

F=g([L-L+C]"), (1)
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where L, is muscle length, I} is the resting muscle length, C, is the
amount of contraction, and function g(w) is monotone increasing.
Notation [w]* means max(w,0). Thus eq. (1) says that whenever the
sum of L, and C, exceed I, the muscle generates a force whose
magnitude increases as L; or C; become larger.

Because contracted fibers relax after each neurally elicited twitch
and yield when the force acting to stretch them is sufficiently large
(Houk and Rymer 1981; Partridge and Benton 1981), a simple law for

C is

d

d_tCi=Bi[(Bi_Ci)Mi_8Ci]_[E—FF]+’ @

where 0 <B,<1 and M, is the output signal of the ith alpha-
motoneuron pool. As M; grows, it activates more contractile fibers up
to the limit set by B,. Parameter 8 specifies the fiber relaxation rate.
When force F, exceeds threshold I, which may happen when an
external or antagonist muscle’s force opposes muscle shortening, it
reduces contraction. By constraining B; to be between 0 and 1, contrac-
tion caused by neural input M, is assured to be slow relative to the
decontraction or ‘yielding’ produced by external or already developed
antagonist muscle forces. The kind of functional relation among force,
muscle length, and contractile state created by egs. (1) and (2) is
schematized in fig. 7.

At equilibrium, (d/d7)C; = 0 in (2), so the equilibrium value of C is

F— +
MiBi_L_'_'BL_F]_
Ci= M, +§ ‘ (3)

i

<= SHIFT AS C; INCREASES

-G

Fig. 7. In first approximation, the effect of increased muscle stimulation is a shift in the threshold
length for force development.
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Given (3), how is it possible to generate and sustain forces much
larger than I at a fixed muscle length? By (1), greater force at a fixed
length L, can be generated only by increasing C;. However, if §; is
constant and less than 1, then (3) shows that the negative force
feedback will cancel the effects of increasing M,, and C; will not grow
large. To overcome this deficiency, let the contraction rate parameter f3;
and the number of contractile fibers B, increase with M,. Such a
relation has been well-documented empirically, and is called the size
principle of motor unit organization (Hennemann 1957, 1985): as total
excitatory input to the alpha motoneuron population grows, it recruits
additional, progressively larger motoneurons which have faster con-
ducting axons, whose collaterals reach many more motor fibers and
whose potentials evoke more rapid muscle contractions. Eq. (3) pro-
vides a more complete functional perspective on the size principle by
emphasizing the importance of contractile rate for the achievement of
large force magnitudes.

10. Size principle with co-contraction pose a threat to
position-code invariance

However, the size principle, which helps decouple length and force
variation, can pose a threat to position-code invariance. To see how,
suppose that the CNS controls equilibrium muscle lengths by setting
the relative sizes of inputs 4, and A, to motoneurons in opponent
muscle control channels 1 and 2, respectively. If a limb segment is
initially at equilibrium with F} = F,, then by (1),

8([L1—F|+C1(A1)]+)=g([L2"F2+C2(A2)]+)’ (4)

where C;(A4;) denotes the equilibrium value of C; when M, = f(A4,) in
(2). Now try to hold the limb at the same position, but more rigidly, by
increasing the level of muscle contraction on both sides of the joint.
The simplest way to do this is to add a constant P to each motoneuron
input (Humphrey and Reed 1983). Then M, =f(A,+ P) and M, =
f(A,+ P). However, in a system that obeys the size principle, (4)
implies

g([Li~L+ (A4 +P)]")=g([L,- L+ Cy(4,+ P)]") (5)



D. Bullock, S. Grossberg / Adaptive neural networks 3

MOTONEURON POOL

(a) ACTIVATION LEVEL
BIG CELL
ZONE
RECRUITMENT THRESHOLD o H - D
SMALL CELL
ZONE: A, A,
(b)

BIG CELL
JONE
RECRUITMENT THRESHOLD
SMALL CELL Y
YONE, A] Az
l)

Fig. 8. When opponent motoneuron populations obey the size principle, a co-contractive signal P
sent in parallel to both populations can disrupt the joint position code. (a) Signals A4, and A4,
supraliminally activate only small cells in opposing channels and their relative sizes determine the
balance of muscular forces and thus the equilibrium joint position. (b) With 4, > A4,, co-contrac-
tive signal P causes the total input A4, + P to exceed the big cell threshold while input 4, + P
remains below the big cell threshold. Thus part of the signal P is subjected to greater amplifica-
tion in channel 1 than in channel 2. Unless compensated, this would create a new balance of
forces and cause an unwanted joint rotation.

for arbitrary P and the same initial values of L, only if A4, = A4, (see
explanation in fig. 8). Thus a co-contractive input P aimed at stabiliz-
ing limb position could instead cause a large limb rotation. This would
constitute a failure to factorize length and tension.

In the light of this problem, one might propose that C; and L,
should interact multiplicatively to produce force. Though this would
reduce the problem, the proposal amounts to a claim that the primary
effect of changing M; is a change in the stiffness (AF/AL) of a
reflexive (deafferented) muscle. However, experimental data show that
stiffness changes relatively little as M, changes; the primary effect of
changing M; is a change in the threshold length for force development,
as suggested in eq. (1) and fig. 7 (Feldman 1986; Rack and Westbury
1969).

If left uncompensated by the spino-muscular system, a different pair
of signals 4, and A, would have to be learned to specify the same
joint angle for every distinct value of the nonspecific compliance
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control signal, P. We now suggest how the spino-muscular system may
compensate for position distortions created by the size principle. It
thereby avoids a combinatorial explosion in the learning required for
limb stabilization across a wide range of joint compliance settings.

11. Automatic compensation by the Renshaw-1alN pathway for
unequal amplifications of co-contractive signals

Renshaw cells (see fig. 6), which receive efferent copies of
motoneuronal outputs as their inputs (Renshaw 1946), are well situated
to play a compensatory role. In Bullock and Grossberg (1988d), we
hypothesized that opponent Renshaw populations R, and R, measure
the output of their respective alpha-motoneuron populations, a-MN,,
and a-MN,, and compare those outputs via mutually inhibitory signals
(fig. 6; see also Ryall 1970). A consensus emerges regarding which MN
channel to inhibit via Renshaw feedback, and which to disinhibit via
feedback along the Ia interneuron (laIN) pathway. Suppose that a
co-contractive input, P, to a-MN, and a-MN, occurs when input A,
exceeds A4, and that the activity of a-MN, is consequently multiplied
by a larger factor than that of a-MN, due to the size principle (fig. 8).
Then R, also becomes much more active due to a size-correlated
synaptic weighting on a-MN, axon collaterals to R, (Cullheim and
Kellerth 1978; Pompeiano 1984). Because the opposing R, has not
experienced as large an input increment, R, will transiently become
more active than R, by an amount that scales with the difference
between the a-MN output increments due to the change in P. Thus,
this system calculates a predicted error due to unequal amplifications of
co-contractive inputs. This predicted-error signal directly inhibits a-
MN, and, by inhibiting IalN,, indirectly activates a-MN,. Both actions
work to zero the error signal, and thereby pre-empt occurrence of an
actual rotation error, without negating either the shared increment in
a-MN, activation required to increase joint stiffness (see fig. 10, below),
or the joint angle setting determined by the different descending inputs,
A, and 4,, to opponent a-MN and IaIN populations (see fig. 9,
below).

This conjecture has been supported by our computer simulations,
which assumed an elbow-like rotary joint affected by two opponent
muscles, each of which is inserted in the moving segment one unit from
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the axis of rotation. The distance from muscle origin to the axis of
rotation was 20 units, and the midpoint of the limb’s 180° excursion
was stipulated to be at joint angle # = 0°. Origin-to-insertion muscle
lengths, L,, were thus functions of §:

L, = \/(cos l9)2 + (20 — sin 0)2 , L,= \/(cos 49)2 + (20 + sin 0)2 i

(6)

Because these simulations concerned only large-scale effects on equi-
librium joint angle, we ignored force-velocity effects and chose a simple
linear force law

Ezk[Li_E+Ci]+’ (7)

where k = 0.5, I} =20.9 and i = 1, 2. Limb dynamics were governed by
equation

2
4o

de
dr2 E(Fl_Fz_ ), (8)

"dr

where m represents mass and n is a damping coefficient. We use forces
rather than torques in (8) to illustrate the compensatory properties of
the Renshaw-IaIN network. This network is not able to compensate for
the moment-arm variation that creates a discrepancy between the
muscle force balance and the torque balance within the opponent
system. A learning process capable of providing moment-arm com-
pensation is described in section 15.

Contractile state C; was governed by (2) with I'.=1. Variables B,
and B, were defined by:

B,=005+002(A4,+P), B,=2+20(4,+P). (9)

Both variables grow as a function of total descending input 4, + P to
the MN pools in channel i, but §8; grows with a smaller slope. Use of 8,
and B, in eqs. (2) and (9) approximates a-MN recruitment effects that
occur as a result of the size principle.

Recruitment of larger motoneurons causes larger inputs to the Ren-
shaw cells (Pompeiano 1984). In our lumped model, this effect was
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absorbed into a single variable, z;, which increases with recruitment
extent, approximated by 4, + P. The equations for opponent Renshaw
populations were thus

ad—tR,.=¢(>\B,.—R,.)z,M,.—R,.(1+Rj), (10)

;=02+0.8(4,+ P), (11)

where {i,/} ={1,2}, ¢=0.2, and A =5. Eq. (10) represents a mem-
brane equation (Hodgkin and Huxley 1952) embedded in a shunting
competitive network (Grossberg 1973, 1982).

We modeled the opponent alpha-motoneuron populations via the
shunting competitive network

iM,~=<1>[(AB,— M)(A;+ P+ xE)| — M8, +QR,+ pF, + 1),

ds
(12)

where {i,j} ={1,2}, §,=1,x=0, p=0or 1, and 2=0 or 1. Inhibi-
tory inputs /;, come from the IaINs (fig. 6) and excitatory inputs E,
from the muscle spindles. Inhibitory input pF, allowed study of the role
of the force feedback known to originate in Golgi tendon organs and to
be passed to a-MNs via IbINs. IaIN dynamics were modeled without
direct dependence on B,, and without a co-activating input P:

%1,.=¢(10—1,)(A,+XE,)—1,.(1+9R,.+1,). (13)

In our simulations, variables A4,, A4,, and P were independent
variables and variables L,, F,, and 6 were dependent variables. Spindle
feedback signals E; and E, in Egs. (12) and (13) were gated off in our
simulations by setting x = 0. This allowed us to test the ability of the
Renshaw-IaIN-MN feedback circuit to achieve position code invari-
ance without assistance from stretch reflexes.

When Renshaw feedback was absent (£ = 0), changing P while A,
and A, remained fixed led to large rotations. When Renshaw feedback
was present (§ = 1), rotations due to changing P with fixed A, and
A, were small. Generally, when the system was not operating in the
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FLETE model. Muscle length L, (dashed line) is a linear function of 4, — A, and varies little

despite large changes in co-contractive signal P. Joint angle 8 (solid line) is shown for compari-
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saturation range, excursions were < 1°. On the other hand, the forces
F,, which were monotone increasing in P, varied over a large range.
This was the invariance property we sought. Fig. 9 plots L, and @
versus A, — A, for half of a full range of limb excursions. The half not
shown, for A, — A4, <0, is symmetrical. The small residual effect on
position of changing P in the range 0-.8 is shown by the vertical bars,
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Fig. 10. Force rises more quickly as a function of co-contractive signal P with mutual Renshaw
inhibition (upper curve) than without it (lower curve).
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which indicate the full range of variation, not standard deviations.
Without the force feedback (p = 0) in (12), the range of variation due
to P was slightly larger, but more importantly, the range was no longer
centered at the P =0 point. Thus in addition to its ability to help
compensate for muscle fatigue (Kirsch and Rymer 1987), it appears
that the force feedback from Golgi tendon organs may correct a mean
bias introduced by the size principle.

Fig. 10 illustrates the importance of including mutual inhibition, via
term —R;R; in (10), between opponent Renshaw cell populations.
Without it, increments in P produce diminishing returns of force
output from each muscle in the system. With it, force development is
approximately linear in P. Compatible results regarding only a-MN,
Renshaw cell interactions may be found in a one-muscle-channel
simulation study of force output by Akazawa (1989).

12. Evidence for assumed distribution of Renshaw connectivity

Two critical hypotheses of our model are (a) that Renshaw cells
participate in the size principle and (b) that the computational unit is
the pair of opponent muscle channels.

A variety of evidence supports the hypothesis that Renshaw cells
participate in the size principle. In our simulations, this assumption
was implemented by scaling up Renshaw population parameters in
parallel with motor-unit rescaling as A4, + P grows. Recent experiments
surveyed by Pompeiano (1984) concur that ‘recurrent inhibition is
produced mainly by large phasic neurons that are recruited late’ (p.
526). In particular, Pompeiano and Wand (1976; Wand and Pompeiano
1979) produced functional evidence for such a size-dependency, and
Cullheim and Kellerth (1978) produced convergsnt anatomical evi-
dence by showing that larger, phasic motoneurons make many more
synaptic contacts with Renshaw cells than smaller, tonic motoneurons.

The second hypothesis has been well supported since Sherrington’s
(1906) observations of reciprocal inhibition, but is oddly ignored in
many treatments. Our treatment extends the reciprocal inhibition
principle, which is a ‘biggest competitor wins’ principle at the IaIN
stage (fig. 6), by including Renshaw populations which compete before
supplying inhibitory feedback to the model’s IaINs and alpha-
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motoneurons (Miller and Scott 1977; Pompeiano 1984). Because the
channel with the larger Renshaw activity receives more inhibition,
reciprocal inhibition at the Renshaw stage follows a ‘biggest competi-
tor loses’ principle. This property extends the classical role of the
Renshaws in stabilizing the peripheral skeleto-motor system; Renshaw
inhibition works against extreme joint angle excursions and comple-
ments the intrinsic damping characteristics of muscles.

More generally (fig. 6), the FLETE model assumes that Renshaw
cells have an inhibitory effect at three sites. The recurrent inhibition to
the alpha-motoneuron population that excites them has long been well
known (Renshaw 1941; Eccles et al. 1954; see Pompeiano 1984, for
recent review). Inhibition of the IaIN population in the same outflow
channel was demonstrated by Hultborn et al. (1971) and confirmed by
others (see Pompeiano 1984: 512-513). Renshaw inhibition of the
Renshaw population of the opposing muscle channel, suspected since
Renshaw (1946), has been convincingly demonstrated by Ryall (1970).
Though there is also evidence that Renshaws have an inhibitory effect
on gamma motoneurons (Pompeiano 1984: 509-511), the effect is
known to be attenuated relative to that on alpha-MNs. Though nearly
all alpha-MNs are inhibited by Renshaws, only about half of gamma-
MNs are so inhibited, and in lesser degree.

The model also assumes that Renshaw cells are directly affected by
an excitatory input from the alpha-motoneurons (see Renshaw 1941),
and an inhibitory input from the opposing-channel’s Renshaw cells
(noted above). A Renshaw inhibiting, «-MN exciting stretch feedback
from spindle organs via group II fibers (Fromm et al. 1977), is fully
consistent with FLETE and will be incorporated in future simulations.
In this connection, we note that a descending inhibitory input from the
red nucleus to Renshaw populations is also well documented (Henatsch
et al. 1986). This inhibitory red nucleus output is coupled with another
rubral output that excites alpha-motoneurons in the same outflow
channel. Thus this descending rubral signal is analogous to the inflow-
ing type II spindle signal. If this parallel rubral output is a reciprocal
command (always increasing in one channel while decreasing in the
opposing channel), it can be seen to be part of a feedforward adaptive
gain control system (Grossberg and Kuperstein 1986, 1989), which
gradually learns to supply predictively the compensations the periph-
eral circuit can only supply reactively (see section 15).
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13. Prior proposals regarding Renshaw function

Proposals regarding Renshaw function have evolved rapidly in re-
cent years. Shepherd (1979) acknowledged that their function remained
mysterious despite the long-standing hypothesis that they might serve
as a source of surround inhibition (and thus perhaps to contrast
enhance the motor-output signal). In the same year Hultborn et al.
(1979) proposed that the Renshaws were well situated to control the
gain of the alpha-motoneuron pool’s response to excitatory inputs. This
proposal was often restated in terms of controlling the gain of the
stretch reflex (e.g., McMahon 1984), a picture since reinforced by
discovery of the descending (rubrospinal) pathways that both inhibit
Renshaw cell activity (thus disinhibiting alpha-motoneurons) and ex-
cite alpha-motoneurons, resulting in a higher-gain stretch reflex
(Henatsch et al. 1986) among other effects. The common scenario
imagined for such Renshaw modulation was during muscle contraction
intended to produce movement. This proposal is not in conflict with
the present proposal, in which muscle co-contraction intended to
prevent movement requires that the Renshaw pathway not be inhibited
by descending signals.

A model by Miller and Scott (1977) shares our emphasis on competi-
tion between opponent Renshaw populations. However, the authors
assumed that such competition implicated the Renshaw-IaIN pathway
in locomotor pattern generation, a different function than the one here
proposed. Subsequent research (Pratt and Jordan 1987) appears to have
ruled out the possibility that the Renshaw-IaIN pathway is part of a
spinal locomotor generator, but we believe Miller and Scott (1977) were
correct to implicate the pathway in burst pattern generation as such
(see section 18).

Finally, though some aspects of our model are similar to Feldman’s
(1986) well-known ‘A’ model of skeleto-motor control, neither of our
decending control signals, A ; and P, correspond to Feldman’s stretch-
reflex parameter A. Moreover, we believe that continued use of lumped
parameters like A, and a kindred overemphasis on the concept of
stretch reflex, may hinder attempts to understand how the neuromuscu-
lar system is parsed into functional subsystems. A case in point is the
discovery, upon unlumping reciprocal and co-contractive inputs, that
the Renshaw-IaIN pathway may play a role far more interesting than
being an epicycle of the stretch reflex.
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14. Physiological evidence for separate cortical control of
non-selective co-contractive input to motoneurons

FLETE model simulations of Renshaw function were based on the
assumption that the co-contractive signal, P, is sent in parallel to small
and large MNs alike in both outflow channels (fig. 8). This hypothesis
is supported by data of Humphrey and Reed (1983), who subjected
monkeys to high-frequency, alternating-direction, torque perturbations
at the wrist joint after they trained the monkeys to actively maintain
their wrist angle within a small angular tolerance zone. To prevent the
imposed torques from rotating their wrists to angles outside the desired
range, monkeys instated high levels of tonic co-contraction in wrist
flexors and extensors. Measurements of motor unit activity showed that
high levels of co-contraction were achieved non-selectively and in
accord with the size principle. In particular, Humphrey and Reed
(1983) concluded that ‘As the speed of joint perturbation rises, the
modulated [reciprocal] input to the MN pools is increased and a tonic
coactivation signal is added. ... Thus, an explanation of our observed
MN firing patterns requires no assumption of selectivity of descending
inputs to motor units of different type, nor of any recruitment order
different from that established in previous studies .... Both [reciprocal
and co-activating] control signals appear to converge on both fast and
slow-twitch MNs’ (p. 366).

Humphrey and Reed (1983) were also able to identify a central
source of co-activation signals. In section 5, we cited evidence from
Georgopoulos that precentral motor cortex (Area 4) served as a site of
VITE-like DV computations and thus as a source of reciprocal com-
mands received by spinal motor centers. Whereas Humphrey and Reed
(1983) observed similar reciprocally-engaged precentral cells, they also
discovered a new class of tonically active neurons they called S*; cells
(S = steady, A = shift). These neurons, also found in precentral Area 4,
predominated in a zone slightly anterior to the DV-like cells, and
‘when the animal voluntarily co-contracted his wrist muscles, as in
stabilization of the wrist or tightening of a grip on the handle, these
cells discharged in a brisk and tonic manner’ (Humphrey and Reed
1983: p. 363). Moreover, microstimulation (12 to 20 pA) in the ante-
rior, S cell, zone evoked a co-activation of flexor and extensor muscles
at the wrist and in some cases at other arm joints. Thus the primary
motor cortex seems to be a source of both the specific (reciprocal) and
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the non-specific (co-contractive) signals assumed to ultimately converge
on the spinal motoneurons in the FLETE model.

15. Learned cerebellar compensation for variable moment-arms
using spindle organ error signals

One additional intrinsic source of variability remains to be ad-
dressed. As noted in section 2, joint rotations depend on muscle
torques rather than muscle forces as such. Thus eq. (8) must be
replaced by equations

dd—:20=%(T,—T2+7L—n%g) (14)
and

T,=D,F, i=1,2. (15)
D; is the moment-arm of force F,, T, is the torque associated with

muscle i, and T is an external torque (see next section). The moment-
arm is the perpendicular distance between the line of action of F, and
the axis of joint rotation. Eq. (15) says that the torques 7, are a

function of both the forces F; and the moment-arms D,. The latter are
in turn functions of joint angle 6:

20

D, = ) (16)
sin § — 20 \?
\/( cos 8 ) +1
D, = 20 . (17)
\/ sin 6 + 20 \?
( cos 6 ) +1

Variables D, introduce yet another threat to position-code invari-
ance. However, because of the factorization properties already de-
scribed, moment-arm compensation may take an especially simple form
in a system based on the FLETE module. Recent simulations show that
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ward signal pathways, both mediated by spindle-organ feedback signals, allow the FLETE model

to ensure independent control of muscle length and tension despite angle-dependent variations in
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adaptive gains g(A,, A,) may be learned by mechanisms schematized
in panels 10 and 8 of fig. 1 (see also Ito 1984: 328) and applied with
opposite sign to alter the coefficients of total descending signals,
A, + P, to the opponent alpha motoneuron populations. In particular,
the new descending signals become:

S1=[1_g(Al, AZ)](A1+P)’ (18)
S, =[1+g(4,, 4,)](4,+P). (19)

In our theory the adaptive gains g(A4;, 4,) in eqgs. (18) and (19) are
learned with the aid of collateral ascending projections that arise from
muscle spindle organs. These pathways carry muscle-length error sig-
nals (see fig. 1, panel 10). In egs. (12) and (13), these error signals cause
fast reactive corrections in motoneuron activation via the inputs E,.
Here we assume that they also cause slower adaptive corrections via a
learning process which affords predictive elimination of positional
errors on future performance trials. In particular, the muscle-length
error signals change the adaptive gains g(A4,, A4,) in such a way that
the spindle error signals eventually approach zero. This learning pro-
cess is assumed to occur in the cerebellum. When the learned gains
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g(A;, A,) are used to bias the descending signals 4, + P in eq. (12),
and x=1 in egs. (12) and (13), then moment-arm effects are com-
pensated and position-code invariance is restored, as shown in fig. 11.

Each activation pattern (A4,, 4,) of descending opponent commands
is assumed to control a different adaptive gain g(A,, A,). Grossberg
and Kuperstein (1986, 1989) have shown how such descending com-
mands (A4,, 4,) can give rise to parallel pathways, or corollary dis-
charges, that are transformed further by a competitive learning net-
work. Using this scheme, different activation patterns (A,, A,) can be
converted into different locations in a spatial map, which can, in turn,
activate different pathways, each of which can learn a distinct adaptive
gain. In such a scheme, not every activation pattern (A4,, A4,) can
control its own private gain-control pathway, since infinitely many
patterns but only finitely many pathways exist. Nonetheless, a coarse
coding is learned whereby sufficiently different activation patterns can
activate different gain-control pathways.

The learning rule that was used started with zero initial gains g(A,,
A,). For patterns (A4,, 4,) learning caused g(A4,, A,) to increase if
E, > E, and to decrease if E, > E,. In particular,

'(%g(Al’ A2)=€(E2_E1)- (20)

Here the magnitude of € controls learning rate. This adaptive gain
control process used an opponent organization in two different senses.
First, the error signals E, and E, change the gains g via an opponent
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Fig. 12. One possible design allowing opponent modifications of adaptive gains in a simplified
cerebellar model. Reprinted with permission from Grossberg and Kuperstein (1986, 1989),
chapter 3.
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error term E, — E|. Second, the gains g have an opponent effect, via
terms (1 — g) and (1 + g) in (18) and (19), upon the output signals of
the opponent movement channels. Such an opponent organization 1s
reminiscent of the opponent action of Renshaw feedback at the spinal
level: the net signal emerging from the Renshaw stage competition
between opponent channels simultaneously decrements one channels’
output and increments the opposing channel’s output. Grossberg and
Kuperstein (1986, 1989) seem to have been the first to use opponent
learning and output organization of adaptive gains during sensory-mo-
tor control. They suggested that such an opponent organization may
explain the fractured somatotopy of the cerebellum. Fractured soma-
totopy occurs when internal representations of sensory or motor sites
that are non-adjacent in the body are nonetheless juxtaposed in the
cerebellum. As schematized in fig. 12, juxtaposition of cerebellar strips
responsible for controlling somatotopically non-adjacent but physically
opponent muscles provides a simple device for ensuring such an
opponent learning and performance scheme.

The strategy of skill development discussed in section 1 - starting
with high co-contraction and low speed - is a good method for rapidly
learning moment-arm correction gains g. Because these gains are
independent of the compliance control signal P, the factorization
property that gives the FLETE model its name is preserved.

16. Co-contractive and stretch feedback control of compensation
for external torques

To run the simulations summarized in fig. 11, we used a simple
model of the subsystem composed of y-MNs, intrafusal muscles, and
spindle organs. Our model includes those aspects needed to test factori-
zation of position and compliance at equilibrium. A subsequent paper
will analyse transients during movement (Bullock and Grossberg, in
press). We modeled y-MN activity N, by

SN=0[(10= N)A] - N1+ 4)), (1)

intrafusal muscle contraction U, by

d
qUi=4N-U, (22)



44 D. Bullock, S. Grossberg / Adaptive neural networks

and spindle organ response via

Lw=lu+L-1]"-W, (23)
Eq. (21) embodies the ideas that the y-MNs do not participate in the
size principle — unlike the a-MNs in (12) —, do not receive a co-con-
tractive input P, and that the effect of inputs 4, and A, is normalized
by the shunting term — N(1 + 4,). Eq. (22) says that the intrafusal
muscle contraction U, is proportional to the y-MN activation level N,
Eq. (23) says that the spindle organ responds to intrafusal muscle
contraction U, and extrafusal muscle stretch L, — I}. In addition, x in
eq. (12) was set equal to 1 and E; was defined by

E.=W,. (24)

{ t

Because x E, was non-zero in these simulations, we replaced eq. (9) by
B, =0.05+ 0.02(S; + x E;), B,=2+20(S,+ xE,), (25)

with S; and S, defined by (18) and (19), to assure that stretch feedback
E. played a role in rescaling parameters of active motor units, as occurs
in vivo (Humphrey and Reed 1983). Because a nonlinear force law also
contributes, we replaced the linear law in (7) by

12
Fi=k([Li—Fi+Ci] ) (26)
Although it made little difference in model performance, for greater
realism we replaced the linear force feedback term pF; in (12) with p X,
where X; models the potential of the ith IbIN population. Variable X;
obeys the membrane equation

S X,=6[(10- X)E] - X, 27)

Compliance control by this model is summarized in fig. 13, which
shows that the angular displacement Af@ induced by an external torque
T, applied to the model arm varies inversely with P. This shows that
increases in co-contractive signal P reduce arm compliance in the
FLETE model. Full load compensation is not achieved for any P value
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because the stretch reflex feedback gain of the network as a whole was
less than unity.

The simulations summarized in fig. 13 were run with 6,=0in (12).
Then the model a-MNs behave as neural integrators. With 8,=1,asin
previous simulations, leaky integrator behavior was modeled. Both
parameter choices are consistent with the observation that a-MNs
exhibit plateau potentials in vivo (Hounsgaard et al. 1986).

17. Interplay of fast automatic reactive control and slow adaptive
predictive control: a new synthesis

The endpoint of the present construction — the use of length-error
feedback for load compensation - has traditionally been a starting
point for analyzing the spino-muscular system. In the traditional story
(Merton 1953), muscle length was assumed to be a controlled variable,
and the spindle organs measured length errors to trigger fast automatic
reactive compensations for deviations from desired length.

Some reactive compensation is indeed provided by the classical
stretch reflex constituted by the spindle — a-MN — muscle pathway
(fig. 6). Continuous reactive feedback compensations must, however, be
kept small relative to the measured deviation in order to avoid instabili-
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ties such as persistent tremor (Rack 1981). Thus continuous reactive
compensation via the stretch reflex can provide only partial compensa-
tion. :

While we also believe that muscle length is a controlled variable, our
explanation of how length can be precisely controlled is different than
that imagined by Merton (1953) or more contemporary workers. In our
account, length-error feedback does both less and more than other
scientists have described. It does less because fast automatic compensa-
tion for threats to length control is also provided to a significant degree
by the Renshaw-IaIN subsystem (section 11). It does more by directing
slow learning of adaptive gains to predictively control movement
commands (section 15). Such slow adaptive adjustment of feedforward
signals to the a-MNs allows nearly complete pre-emptive compensation
for predictable sources of deviation from desired length, without creat-
ing instabilities. (See Hasan and Enoka (1985) for discussion of why
compensation can only be nearly complete.) By conceiving of the
length-error feedback in this teaching role in addition to its stretch-re-
flex role, and by deferring its consideration until other potential spinal
resources for length-error compensation were thoroughly explored, we
have been able to construct a theory of how position-code invariance
may be achieved by the spino-muscular system that sheds new light on
features of its circuitry that have been anatomically well-known but
functionally mysterious for a long time.

18. Compatibility of the FLETE model with other properties
of the spino-muscular system

Many other properties of the spino-muscular system are clarified by
the theoretical perspective adopted in this paper. Three classes of
phenomena to be systematically treated in forthcoming papers of this
series are: (1) muscle operating characteristics; (2) neuronal and muscu-
lar transients generated during transitions between equilibrium states
of the system; and (3) additional spinal and supraspinal connectivities.
Here a few remarks must suffice (see also Bullock and Grossberg 1989).
Muscle operating characteristics aid position-code invariance during
movement and posture. For example, the force-velocity relation for
muscle (Hill 1938) assists damping during shortening contractions, and
the asymmetrical, non-monotonic force-length relation (Gordon et al.
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1966) provides some moment-arm compensation. Computer simula-
tions indicate that a rapid, reciprocal, ramp-like change in A, and A4,
causes the FLETE circuit to transiently generate tri-phasic burst pat-
terns involving agonist and then antagonist (Bullock and Grossberg, in
press). Though the origin and adaptive tuning of such bursts is a
complex issue, this finding partially corroborates Feldman’s (1986)
prediction that the spino-muscular system would prove capable of
generating such bursts, which are frequently observed in vivo (Lestienne
1979).

Finally, many additional aspects of known connectivity may be
incorporated into a composite VITE-FLETE-Cerebellum model. For
. example, the inhibitory feedback from spindle II fibers to Renshaw
cells (Fromm et al. 1977), and the descending projections from red
nucleus to Renshaw cells (Henatsch et al. 1986) can be interpreted in
terms of balancing reactive and predictive contributions to position-
code invariance, because the red nucleus lies in the pathway from
cerebellum to spinal cord.

19. Nonspecific signals and the development of voluntary control

The present article provides two examples of how to understand a
key paradox in the organization of voluntary motor control. When we
exercise voluntary control, or acts of ‘will’, it seems that we do
something quite simple, yet we know that such control involves the
coordinated activity of millions of neural and muscular units. One
device whereby voluntary control is simplified is the use of nonspecific
control signals. A nonspecific signal is a scalar signal that is generated
at a single command source and broadcast, through a parallel fan-out
of pathways, to many target cells. It is then up to the target cells to
react appropriately to the widely broadcast signal. If each cell reacts in
a state-dependent manner, a nonspecific signal can exert voluntary
control over an entire array of events without requiring conscious
knowledge of the controlled array.

In the VITE circuit, a single GO signal sent in parallel to a large
number of primed muscle-control channels can initiate a goal-oriented
synchronous movement trajectory, and control its speed without dis-
rupting its form. In the FLETE circuit, a single co-contraction signal
sent in parallel to a large number of muscle channels can control joint
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rigidity without disrupting postural stability. Both circuits thus clarify
the old mystery about volitional action: if every act is so complex, why
do volitional acts, or acts of ‘will’, seem to be so simple?

Once such invariance-preserving components evolve, they can be
expected to be incorporated into many subsequent evolutionary special-
izations (Bullock 1987; Grossberg and Kuperstein 1986, 1989; Lieber-
man 1984; Powers 1973; Simon 1969). Here and elsewhere, we have
argued that the VITE architecture or close variants may have been
replicated across many systems which control phasic goal-oriented
movements, including both arm and speech movements (Bullock and
Grossberg 1988a, 1988b), and the circuit of fig. 6, which is mathema-
tized in the FLETE model, is known to exist throughout the higher
vertebrates. Similarly, the cerebellum serves as an adaptive gain control
stage in a wide range of motor systems (Grossberg and Kuperstein
1986, 1989; Ito 1984; Kawato et al. 1987). Despite initial appearances
of overwhelming complexity, perhaps we may reasonably hope that the
discovery of a modest number of robust and broadly applicable circuits
will allow us to explain a large portion of the basic motor competence
of higher vertebrate species.

References

Abbs, J.H., V.L. Gracco and K.J. Cole, 1984. Control of multi-movement coordination: Sensori-
motor mechanisms in speech motor control. Journal of Motor Behavior 16, 195-231.

Akazawa, K., K. Kato and K. Fujii, 1989. A neural network model of force control based on the
size principle of motor unit. Proceedings of the International Joint Conference on Neural
Networks 1. pp. 739-746.

Albus, J.S., 1971. A theory of cerebellar function. Mathematical Biosciences 10, 25-61.

Anderson, M.E. and F.B. Horak, 1985. Influence of the globus pallidus on arm movements in
monkeys. HI. Timing of movement-related information. Journal of Neurophysiology 54,
433-448.

Bedford, F., 1989. Constraints on learning new mappings between perceptual dimensions. Journal
of Experimental Psychology: Human Perception and Performance 15, 232-248.

Beggs, W.D.A. and C.I. Howarth, 1972. The movement of the hand towards a target. Quarterly
Journal of Experimental Psychology 24, 448—453.

Bernstein, N., 1967. The coordination and regulation of movements. New York: Pergamon Press.

Bizzi, E., N. Accornero, W. Chapple and N. Hogan, 1984. Posture control and trajectory
formation during arm movement. Journal of Neuroscience 4(11), 2738-2744.

Bullock, D., 1987. ‘Socializing the theory of intellectual development'. In: M. Chapman and R.A.
Dixon (eds.), Meaning and the growth of understanding: Wittgenstein's significance for
developmental psychology. New York: Springer-Verlag. pp. 187-218.



D. Bullock, S. Grossberg / Adaptive neural networks 49

Bullock, D., G.A. Carpenter and S. Grossberg, 1991. ‘Self-organizing neural network architectures
for adaptive pattern recognition and robotics’. In: V. Milutinovic and P. Antognetti (eds.),
Neural networks and their applications. Englewood Cliffs, NJ: Prentice Hall. pp. 33-53.

Bullock, D. and S. Grossberg, 1986. Neural dynamics of planned arm movements: Synergies,
invariants, and trajectory formation. Paper presented at the symposium on Neural Models of
Sensory-Motor Control at the annual meeting of the Society for Mathematical Psychology,
Cambridge, MA, August 20.

Bullock, D. and S. Grossberg, 1988a. Neural dynamics of planned arm movements: Emergent
invariants and speed-accuracy properties during trajectory formation. Psychological Review
95(1), 49-90.

Bullock, D. and S. Grossberg, 1988b. ‘The VITE model: A neural command circuit for generating
arm and articulator trajectories’. In: J.A.S. Kelso, A.J. Mandel, and M.F. Shlesinger (eds.),
Dynamic patterns in complex systems. Singapore: World Scientific. pp. 305-326.

Bullock, D. and S. Grossberg, 1988c. ‘Self-organizing neural architectures for eye movements, arm
movements, and eye-arm coordination’. In: H. Haken (ed.), Neural and synergetic computers.
Berlin: Springer-Verlag. pp. 197-228. »

Bullock, D. and S. Grossberg, 1988d. Neuromuscular realization of planned trajectories. Neural
Networks 1, Supplement 1, 329,

Bullock, D. and S. Grossberg, 1989. * VITE and FLETE: Neural modules for trajectory formation
and postural control’. In: W.A. Hershberger (ed.), Volitiona! action. Amsterdam: North-Hol-
land. pp. 253-297.

Bullock, D. and S. Grossberg, in press. Emergence of tri-phasic muscle activation from the
nonlinear interactions of central and spinal neural network circuits. Human Movement
Science.

Cooke, J.D., 1980. *‘The organization of simple, skilled movements’. In: G.E. Stelmach and J.
Requin (eds.), Tutorials in motor behavior. Amsterdam: North-Holland. pp. 199-212.

Cooke, J.D. and V.A. Diggles, 1984. Rapid error correction during human arm movements:
Evidence for central monitoring. Journal of Motor Behavior 16, 348-363.

Cullheim, S. and J.O. Kellerth, 1978. A morphological study of the axons and recurrent axon
collaterals of cat a-motoneurones supplying different functional types of muscle unit. Journal
of Physiology (London) 281, 301-313.

Delong, R., M.G.H. Coles, G.D. Logan and G. Gratton, 1990. In search of the point of no return:
The control of response processes. Journal of Experimental Psychology: Human Perception
and Performance 16, 164182,

Ebner, T., 1989. Representation of movement kinematics and accuracy in the premotor cortex.
Paper presented at the symposium on System Solutions to Motor Problems, Tempe, Arizona,
27-29 October.

Eccles, J.C., P. Fatt and K. Koketsu, 1954. Cholinergic and inhibitory synapses in a pathway from
motor-axon collaterals to motoneurones. Journal of Physiology (London) 126, 524-562.

Evarts, E.V. and J. Tanji, 1974. Gating of motor cortex reflexes by prior instruction. Brain
Research 71, 479-494,

Feldman, A.G., 1986. Once more on the equilibrium-point hypothesis (A model) for motor
control. Journal of Motor Behavior 18, 17-54,

Fischer, K.W., 1980. A theory of cognitive development: The control and construction of
hierarchies of skills. Psychological Review 87, 477-531.

Fisk, J.D. and M.A. Goodale, 1988. The effects of unilateral brain damage on visually guided
reaching: hemispheric differences in the nature of the deficit. Experimental Brain Research 72,
425-435.

Fitts, P.M,, 1954. The information capacity of the human motor system in controlling the
amplitude of movement. Journal of Experimental Psychology 47, 381-391.



50 D. Bullock, S. Grossberg / Adaptive neural networks

Freund, H.-J. and H.J. Biidingen, 1978. The relationship between speed and amplitude of the
fastest voluntary contractions of human arm muscles. Experimental Brain Rescarch 31, 1-12.

Fromm, C., J. Haase and E. Wolf, 1977. Depression of the recurrent inhibition of extensor
motoneurones by the action of group Il afferents. Brain Research 120, 459-468.

Gachoud, J.P., P. Mounoud, C.A. Havert and P. Viviani, 1983. Motor strategies in lifting
movements: A comparison of adult and child performance. Journal of Motor Behavior 15,
202-216.

Gahery, Y. and J. Massion, 1985. ‘Co-ordination between posture and movement’. In: E.V.
Evarts, S.P. Wise, and D. Bousfield (eds.), The motor system in neurobiology. Amsterdam:
Elsevier. pp. 121-125.

Gaudiano, P. and S. Grossberg, 1990. ‘A self-regulating generator of sample-and-hold random
training vectors’. In: Proceedings of the International Joint Conference on Neural Networks,
Washington, DC. Hillsdale, NJ: Erlbaum.

Gaudiano, P. and S. Grossberg, 1991. Vector associative maps: Unsupervised real-time error-based
learning and control of movement trajectories. Neural Networks (in press).

Gaudiano, P. and S. Grossberg, in press. Adaptive vector integration to endpoint: Self-organizing
neural circuits for control of planned movement trajectories. Human Movement Science.

Georgopoulos, A.P., J.F. Kalaska and J.T. Massey, 1981. Spatial trajectories and reaction times of
aimed movements: Effects of practice, uncertainty, and change in target location. Journal of
Neurophysiology 46, 725-743.

Georgopoulos, A.P., J.F. Kalaska, R. Caminiti and J.T. Massey, 1984a. On the relations between
the direction of two-dimensional arm movements and cell discharge in primate motor cortex.
Journal of Neuroscience 2(11), 1527-1537.

Georgopoulos, A.P., J.F. Kalaska, R. Caminiti and J.T. Massey, 1984b. *The representation of
movement direction in the motor cortex: Single cell and population studies’. In: G.M.
Edelman, W.E. Gall, and W.M. Cowan (eds.), Dynamic aspects of neocortical function. New
York: Wiley. pp. 501-524,

Goodale, M.A., D. Pelisson and C. Prablanc, 1986. Large adjustments in visually guided reaching
do not depend on vision of the hand or perception of target displacement. Nature 320,
748-750.

Gordon, A.M., AF. Huxley and F.J. Julian, 1966. The variation in isometric tension with
sarcomere length in vertebrate muscle fibers. Journal of Physiology 184, 170--192.

Gordon, J. and C. Ghez, 1987. Trajectory control in targeted force impulses, 1II: Compensatory
adjustments for initial errors. Experimental Brain Research 67, 253-269.

Grossberg, S., 1969. On learning of spatiotemporal patterns by networks with ordered sensory and
motor components, I. Excitatory components of the cerebellum. Studies in Applied Mathe-
matics 48, 105-132.

Grossberg, S., 1970. Neural pattern discrimination. Journal of Theoretical Biology 27, 291-337.

Grossberg, S., 1973. Contour enhancement, short-term memory, and constancies in reverberating
neural networks. Studies in Applied Mathematics 52, 217-257.

Grossberg, S., 1978. *A theory of human memory: Self-organization and performance of sensory-
motor codes, maps, and plans’. In: R. Rosen and F. Snell (eds.), Progress in theoretical
biology, Vol. 5. New York: Academic Press. pp. 233-374.

Grossberg, S., 1982. Studies of mind and brain: Neural principles of learning, perception,
development, cognition, and motor control. Boston, MA: Reidel Press.

Grossberg, S. and M. Kuperstein, 1986. Neural dynamics of adaptive sensory-motor control:
Ballistic eye movements. Amsterdam: Elsevier,

Grossberg, S. and M. Kuperstein, 1989. Neural dynamics of adaptive sensory-motor control:
Expanded edition. New York: Pergamon Press.

Hasan, Z. and R.M. Enoka, 1985. Isometric torque-angle relationship and movement-related



D. Bullock, S. Grossberg / Adaptive neural networks 51

activity of human elbow flexors: Implications for the equilibrium-point hypothesis. Experi-
mental Brain Research 59, 441-450,

Henatsch, H.D., J. Meyer-Lohmann, U. Windhorst and J. Schmidt, 1986. Differential effects of
stimulation of the cat’s red nucleus on lumbar alpha motoneurons and their Renshaw cells.
Experimental Brain Research 62, 161-174.

Henneman, E., 1957. Relation between size of neurons and their susceptibility to discharge.
Science 26, 1345-1347.

Henneman, E., 1985. The size-principle: A deterministic output emerges from a set of probabilis-
tic connections. Journal of Experimental Biology 115, 105-112.

Hill, A.V., 1938. The heat of shortening and the dynamic constants of muscle. Proceedings of the
Royal Society, B 126, 136-195.

Hodgkin, A.L. and A.F. Huxley, 1952 A quantitative description of membrane current and its
applications to conduction and excitation in nerve. Journal of Physiology 117, 500-544.

Hogan, N., 1984. An organizing principle for a class of voluntary movements. Journal of
Neuroscience 4(11), 2745-2754.

Hollerbach, J.M., S.P. Moore and C.G. Atkeson, 1986. ‘Workspace effect in arm movement
kinematics derived by joint interpolation’. In: G. Gantchev, B. Dimitrov and P. Gatev (eds.),
Motor control. New York: Plenum Press.

Horak, F.B. and M.E. Anderson, 1984a. Influence of globus pallidus on arm movements in
monkeys, 1. Effects of kainic acid-induced lesions. Journal of Neurophysiology 52, 290-304.

Horak, F.B. and M.E. Anderson, 1984b. Influence of globus pallidus on arm movements in
monkeys, I1. Effects of stimulation. Journal of Neurophysiology 52, 305-322.

Hore, J., 1987. Loss of sct-dependent reactions during cerebellar dysfunction causes limb instabil-
ity. In: S.P. Wise (ed.), Higher brain functions. New York: Wiley.

Houk, J.C. and W.Z. Rymer, 1981. ‘Neural control of muscle length and tension’. In: Handbook
of physiology: The nervous system 1I. Bethesda, MD: American Physiological Society. pp.
257-322.

Hounsgaard, J., H. Hultborn and O. Kiehn, 1986. Transmitter-controlled properties of a-
motoneurones causing long-lasting motor discharge to brief excitatory inputs. Progress in
Brain Research 64, 39-50.

Hultborn, H., E. Jankowska and S. Lindstrom, 1971. Relative contribution from different nerves
to recurrent depression of Ia IPSPs in motoneurones. Journal of Physiology (London) 215,
637-664.

Hultborn, H., S. Lindstrém and H. Wigstrém, 1979. On the function of recurrent mhlbmon in the
spinal cord. Experimental Brain Research 37, 399-403.

Humphrey, D.R., and D.J. Reed, 1983. ‘Separate cortical systems for control of Jjoint movement
and joint stiffness: Reciprocal activation and coactivation of antagonist muscles’. In: J.E.
Desmedt (ed.), Motor control mechanisms in health and disease. New York: Raven Press, PP
347-372.

lIto, M., 1984. The cerebellum and neural control. New York: Raven Press.

Kawato, M., K. Furukawa and R. Suzuki, 1987. A hierarchical neural-network model for control
and learning of voluntary movement. Biological Cybernetics 57, 169-185.

Kirsch, R.F. and W.Z. Rymer, 1987. Neural compensation for muscular fatigue: Evidence for
significant force regulation in man. Journal of Neurophysiology 57, 1893-1910.

Kuperstein, M., 1988. Neural network model for adaptive hand-eye coordination for single
postures. Science 239, 1308-1311.

Lestienne, F., 1979. Effects of inertial load and velocity on the braking process of voluntary limb
movements. Experimental Brain Research 35, 407-418.

Lieberman, P., 1984. The biology and evolution of language. Cambridge, MA: Harvard University
Press.



52 D. Bullock, S. Grossberg / Adaptive neural networks

Marr, D., 1969. A theory of cerebellar cortex. Journal of Physiology (London) 202, 437-470.

Mateer, C., 1978. Asymmetric effects of thalamic stimulation on rate of speech. Neuropsychologia
16, 497-499.

McMahon, T.A., 1984. Muscles, reflexes, and locomotion. Princeton, NJ: Princeton University
Press.

Merton, P.A., 1953. ‘Speculations on the servo-control of movement’. In: G.E.W. Wolstenholme
(ed.), CIBA Foundation Symposium: The spinal cord. London: Churchill. pp. 247-255.

Miller, S, and P.D. Scott, 1977. The spinal locomotor generator. Experimental Brain Research 30,
387-403.

Mitchell, S.J., R.T. Richardson, F.H. Baker and M.R. DeLong, 1987. The primate globus pallidus:
neuronal activity related to direction of movement. Experimental Brain Research 68, 491-505.

Moore, S.P. and R.G. Marteniuk, 1986. Kinematic and electromyographic changes that occur as a
function of learning a time-constrained aiming task. Journal of Motor Behavior 18, 397-426.

Nagasaki, H., 1989. Asymmetric velocity and acceleration profiles of human arm movements.
Experimental Brain Research 74, 319-326.

Neafsey, E.J., C.D. Hull and N.A. Buchwald, 1978. Preparation for movement in the cat, II. Unit
activity in the basal ganglia and thalamus. Electroencephalography and Clinical Neurophysi-
ology 44, 714-723.

Nelson, W.L., 1983. Physical principles for economies of skilled movements. Biological Cybernet-
ics 46, 135-147.

Nemire, K. and B. Bridgeman, 1987. Oculomotor and skeletal motor systems share one map of
visual space. Vision Research 27, 393-400.

Ostry, D.J,, J.D. Cooke and K.G. Munhall, 1987. Velocity curves of human arm and speech
movements. Experimental Brain Research 68, 37-46.

Partridge, L.D. and L.A. Benton, 1981. ‘Muscle, the motor’. In: Handbook of physiology: The
nervous system I1. Bethesda, MD: American Physiological Society. pp. 43-106.

Passingham, R.E., 1987. ‘From where does the motor cortex get its instructions?” In: S.P. Wise
(ed.), Higher brain functions. New York: Wiley. pp. 67-97.

Piaget, 1., 1963. The origins of intelligence in children. New York: Norton.

Piaget, J., 1985. The equilibration of cognitive structures. Chicago, IL: University of Chicago
Press.

Pompeiano, O., 1984. ‘Recurrent inhibition’. In: R.A. Davidoff (ed.), Handbook of the spinal
cord, Vols. 2 and 3. Anatomy and physiology. New York: Marcel Dekker.

Pompeiano, O. and P. Wand, 1976. The relative sensitivity of Renshaw cells to static and dynamic
changes in muscle length. Progress in Brain Research 44, 199-222.

Powers, W.T., 1973. Behavior: The control of perception. Chicago, IL: Aldine.

Pratt, C.A. and L.M. Jordan, 1987. Ia inhibitory interneurons and Renshaw cells as contributors
to the spinal mechanisms of fictive locomotion. Journal of Neurophysiology 57, 56-71.

Rack, P.H.M. and D.R. Westbury, 1969. The effect of length and stimulus rate on the tension in
the isometric cat soleus muscle. Journal of Physiology 204, 443-460.

Rack, P.M.H., 1951. ‘Limitations of somatosensory feedback in control of posture and movement'.
In: V.B. Brooks (ed.), Motor control. Handbook of Physiology, Sect. 1, Vol. 2. Bethesda, MD:
American Physiological Society. pp. 229-256.

Renshaw, B., 1941. Influence of discharge of motoneurons upon excitation of neighboring
motoneurons. Journal of Neurophysiology 4, 167-183.

Renshaw, B., 1946. Central effects of centripetal impulses in axons of spinal ventral roots. Journal
of Neurophysiology 9, 191-204.

Ritter, HJ., T.M. Martinez and K.J. Schulten, 1989. Topology conserving maps for learning
visuo-motor-coordination. Neural Networks 2, 159-168.

Ryall, R.-W., 1970. Renshaw cell mediated inhibition of Renshaw cells; Patterns of excitation and
inhibition from impulses in motor axon collaterals. Journal of Neurophysiology 33, 257-270.



D. Bullock, S. Grossberg / Adaptive neural networks 53

Schwartz, A.B., R.E. Kettner and A.P. Georgopoulos, 1988. Primate motor cortex and frec arm
movements to visual targets in three-dimensional space. I. Relations between single cell
discharge and direction of movement. Journal of Neuroscience 8, 2913-2927.

Shepherd, G.M., 1979. The synaptic organization of the brain. New York: Oxford.

Sherrington, C.S., 1906. The integrative action of the nervous system. New Haven, CT: Yale
University Press.

Simon, H.A., 1969. The sciences of the artificial. Cambridge, MA: MIT Press.

Soechting, J.F. and M. Flanders, 1989. Errors in pointing are due to approximations in sensorimo-
tor transformations. Journal of Neurophysiology 62, 595-608.

Sparks, D.L. and M.F. Jay, 1986. ‘The functional organization of the primate superior colliculus:
A motor perspective’. In: H.-J. Freund, U. Bittner, B. Cohen and J. Noth (eds.), The
oculomotor and skeletal-motor systems. Amsterdam: Elsevier. pp.235-241.

Thelen, E. and D.M. Fisher, 1983. The organization of spontaneous leg movements in newborn

~ infants. Journal of Motor Behavior 15, 353-377.

Van Buren, J.M,, C.L. Li and G.A. Ojemann, 1966. The fronto-striatal arrest response in man.
Electroencephalography and Clinical Neurophysiology 21, 114-130.

Viallet, F., E. Trouche, D. Beaubaton, A. Nieoullon and E. Legallet, 1983. Motor impairment after
unilateral electrolytic lesions of the Substantia Nigra in baboons: Behavioral data with
quantitative and kinematic analysis of a pointing movement. Brain Research 279, 193-206.

Wand, P. and O. Pompeiano, 1979. Contribution of different size motoneurons to Renshaw cell
discharge during stretch vibration reflexes. Progress in Brain Research 50, 45-60.

Woodworth, R.S., 1899. The accuracy of voluntary movement. Psychological Review 3, 1-114,

Wurtz, R.H. and O. Hikosaka, 1986. ‘Role of the basal ganglia in the initiation of saccadic eye
movements’. In: H.-J. Freund, U. Biittner, B. Cohen and J. Noth (eds.), Progress in brain
research, Vol. 64. Amsterdam: Elsevier. pp. 175-190.

Zelaznik, HN,, R.A. Schmidt and C.C.A.M. Gielen, 1986. Kinematic properties of rapid aimed
hand movements. Journal of Motor Behavior 18, 353-372.





