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Abstract

B This paper describes a self-organizing neural model for cye-
hand coordination. Called the DIRECT model, it embodies a
solution of the classical motor equivalence problem. Motor
equivalence computations allow humans and other animals to
flexibly employ an arm with more degrees of freedom than
the space in which it moves to carry out spatially defined tasks
under conditions that may require novel joint configurations.
During a motor babbling phase, the model endogenously gen-
erates movement commands that activate the correlated visual,
spatial, and motor information that are used to learn its internal
coordinate transformations. After learning occurs, the model is
capable of controlling reaching movements of the arm to pre-
scribed spatial targets using many different combinations of
joints. When allowed visual feedback, the model can automat-
icallv perform, without additional learning, reaches with tools
of variable lengths, with clamped joints, with distortions of

1. THE PROBLEM OF MOTOR
EQUIVALENCE

This article introduces a self-organizing neural network
model that explains many aspects of the flexibility and
robust performance that are characteristic of human
reaching behaviors. Central to the model is an analysis
of how visual, spatial, and motor representations are
formed and combined for the control of goal-oriented
reaching.

Spatially defined goals, or targets, can typically be
reached using multiple motor means. These multiple
motor means derive from having an effector system of
higher dimensionality than the goal specification, e.g., a
seven degree of freedom (DOF) arm moving a finger
along a desired path in three-dimensional (3-D) space.
This phenomenon, termed motor equivalence, poses the
following problem. How does an organism rapidly and
correctly choose among the alternative means that are
available to perform spatially defined tasks on different
occasions? The model is capable of autonomously learn-
ing to combine visual, spatial, and motor information in
a way that supports motor equivalent reaching behaviors.
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visual input by a prism, and with unexpected perwrbations.
Thesc compensatory computations occur within a single ac-
curate reaching movement. No corrective movements are
needed. Blind reaches using internal feedback have also been
simulated. The model achieves its competence by transforming
visual information about target position and end effector po-
sition in 3-D space into a body-centered spatial representation
of the direction in 3-D space that the end effector must move
to contact the target. The spatial direction vector is adaptively
transformed into a motor direction vector, which represents
the joint rowations that move the end effector in the desired
spatial direction from the present arm configuration. Properties
of the model are compared with psychophysical data on human
reaching movements, neurophysiological data on the tuning
curves of neurons in the monkey motor cortex, and alternative
models of movement control. Bl

In particular, it can learn an inverse kinematic transfor-
mation from directions in 3-D space to joint rotations
that are capable of moving the arm in these spatial di-
rections. Before describing the model, we discuss kev
conceptual and experimental considerations that moti-
vate our approach.

1.1. The Need for Internal Spatial
Representations

Several different phenomena fall under the general head-
ing of motor equivalence. For example, when reaching
a target with the tip of the finger, different spatial paths
of the finger from initial to final position may be equally
effective. Alternatively, goal realization may require a
prescribed spatial path, yet allow variability in the effec-
tors used to trace this path, e.g., shoulder and elbow vs.
shoulder and wrist. For example, psychophysical studies
of reaching, handwriting and drawing have shown that
the spatial trajectory is more invariant than the joint
rotations, or than force-time patterns (Morasso, 1981,
1986; Teulings, Thomassen, & van Galen, 1986). Produc-
tion of a prescribed speech sound may also be accom-
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plished using different combinations of articulators
(Abbs & Gracco, 1984; Kelso, Tuller, Vatikiotis-Bateson,
& Fowler, 1984).

The need for spatial representation in the control of
motor-equivalent behaviors is not merely a matter of
defining target movements with respect to an external
3-D space. It concerns, more profoundly, the manner in
which internal representations of 3-D space develop and
can be used to control motor equivalent actions. These
internal representations are expressed in both head-cen-
tered coordinates and body-centered coordinates since
the eyes move within the head, whereas the head, arms,
and legs move with respect to the body. The spatial
nature of these internal representations is illustrated by
the following competence. Imagine that your right hand
is moved by an external force to a new position in the
dark. Thus, neither visual cues nor self-controlled out-
flow movement commands are available to encode the
right hand’s new position. Despite the absence of vision
and self-controlled volition, it is easy to move your left
hand to touch your right hand in its new location. The
motor coordinates that represent the position of your
right hand are different from the motor coordinates that
your left arm realizes in order to touch it. Some repre-
sentation needs to exist that mediates berween the dif-
ferent motor coordinates of the two arms. This mediating
scheme is the internal spatial representation.

The above examples illustrate that different motor
plans, whether for the control of one arm or two, are
often used to reach a prescribed position in space, and
that properly defined internal spatial representations are
a prerequisite to discovering a biologically relevant so-
lution of the motor equivalence problem.

As shown below, an internal body-centered represen-
tation of 3-D space can be used to help select among the
multiple motor means that can realize arm trajectories
defined with respect to external 3-D space. A control

cycle
SPACEcx, —> VISION —> SPACEin, —> MOIOr —> SPACE

of self-organized mappings between external 3-D space
(spaceex) and internal 3-D (spacei,), mediated by visual
and motor representations, carries out this transforma-
tion. The model hereby contributes to an analysis of how
the “where” or “how” dorsal cortical stream through the
posterior parietal region (Anderson, Essick, & Siegel,
1985; Desimone & Ungerleider, 1989; Goodale & Milner,
1992; Ungerleider & Mishkin, 1982; Wise & Desimone,
1988) may utilize combinations of visual, spatial, and
motor transformations to control goal-oriented arm
movements with motor equivalent properties. As such,
the model explicates how a patient such as DF, who
suffers from a profound visual-form agnosia that prevents
her from indicating her visual orientations either verbally
or manually, can nevertheless exhibit normally oriented
reaching behaviors (Goodale & Milner, 1992).

We show below how the model can, after an explo-

ratory learning phase, perform accurate reaches with
previously inexperienced tools of variable length, clamp-
ing of joints, or distortions of visual input by a prism.
Blind reaches have also been simulated. The compen-
satory computations occur automatically within a single
reaching movement. The model does not need to learn
new commands for each altered movement situation, or
to correct an incorrect first movement with subsequent
corrective movements. These results clarify how mam-
malian movement systems can flexibly modify their
movement trajectories to achieve desired spatial goals in
response to rapidly changing environmental conditions
or new environmental demands. Of particular interest is
that the ability to accurately position tools—which is a
defining characteristic of human societies—may be an
automatic consequence of a general motor-equivalent
movement competence. These results have previously
been briefly summarized in Bullock, Grossberg, and
Guenther (1992).

1.2. Strategies for Achieving Motor
Equivalence

As indicated above, a model of motor equivalent arm
movements needs to specify the coordinate frames in
which trajectory formation takes place and the nature of
the transformation from visual to spatial to motor coor-
dinates. Here we use the terms 3-D bead-centered space
and 3-D body-centered space to mean internal represen-
tations of the spatial location of a tirget with respect to
the head and body, respectively. joint space is an -
dimensional representation wherein » is the number of
distinct musculoskeletal DOFs. For the purposes of this
article, the term motor coordinates can be used inter-
changeably to describe joint space coordinates. Three
nmutin types of coordinate transformations may be imag-
ined for relating representations of 3-D bodv-centered
space to joint space for purposes of motor-equivalent
reaching:

1. Motor Trajectory Formation: The desired target
endpoint in 3-D body-centered space is mapped directly
to a muscle length or joint angle endpoint. Trajectory
formation moves the current arm position continuously
toward the desired final arm position in motor (e.g.,
muscle length or joint angle) coordinates.

2. Spatial Trajectory Formation with Targetr Position
Mapping (STP): Trajectory formation is computed in spa-
tial coordinates, and generates a continuous sequence of
outflow commands that represent desired end-effector
positions in 3-D space. A mapping from each spatial
position to motor coordinates activates the joint config-
urations that achieve these positions.

3. Spatial Trajectory Formation with Direction Map-
ping (STD): Trajectory formation again occurs in spatial
coordinates, but it generates a continuous sequence of
outflow commands that represent desired end-effector
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directions in 3-D space. A mapping from spatial 1o motor
coordinates transforms each spatial direction into an ap-
propriate change in joint angles that causes movement
in the commanded spatial direction.

Motor trajectory formation does not allow direct con-
trol of the spatial characteristics of movements. Although
such a strategy may be sufficient for totally unconstrained
reaches to a target, it cannot be used for spatially defined
tasks, such as tracing a figure 8 in a plane. Such a task
does not allow the subject to arbitrarily define a path in
space between current hand position and target position,
because this path is defined by the figure 8 itself. A
subject could produce a figure 8 by first defining inter-
mediate target points along the figure 8, then using
motor trajectory formation to move between these end-
points. However, accurate tracing would require many
intermediate points to be mapped from spatial positions
o end effector configurations, thereby transforming the
strategy of motor trajectory formation into the strategy
of spatial trajectory formation with target position map-
ping (STP). More generally, many skilled tasks require
control of an arm’s trajectory in space, not its trajectory
in motor coordinates, because objects that the subject
wishes to reach, avoid, trace, etc. exist in 3-D space.

Psychophysical studies of human reaching support the
idea that trajectory formation occurs in spatial coordi-
nates. In a study of planned arm movements constrained
to a horizontal plane, Morasso (1981) noted that while
the shape of the tangential hand trajectory velocity pro-
files remained relatively constant for the different move-
ments, the shapes of the angular velocity profiles for the
elbow and shoulder varied (see also Flash & Hogan,
1985; Flash, 1989). The combination of spatial coordinate
invariance and motor coordinate variability led him to
conclude that the plan was specified in spatial coordi-
nates.

Consideration of motor equivalent capabilities pro-
vides a rationale for deciding between the STP and STD
control strategies. To exhibit motor equivalence while
reaching a spatial target, the effector system needs-to
possess excess or redundant DOFs. The problem of com-
puting the effector changes needed to realize a spatially
characterized goal is called the inverse kinematics prob-
lem. The existence of redundant DOF simplies that the
inverse kinematics problem is ill.posed and has no
unique solution. The fact of motor equivalence thus im-
plies that a one-to-many map must be controlled,
whether between 3-D spatial positions and joint config-
urations in STP or between 3-D spatial directions and
joint angle changes in STD.

The main advantage of a one-to-many STD map is as
follows. Any linear combination of solutions from spatial
directions to joint angle changes generates a trajectory
that is continuous in joint space and correctly directed
in 3-D space. Joint space continuity obtains because all
solutions have the form of joint angle increments with
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respect 1o a present fixed configuration 8* To see that
the direction of the continuation is also correct, suppose
that 3-D spatial velocity X is related to a joint space
velocity vector 8 by the approximation

%= )60 1)

where /() is the Jacobian of the manipulator. Near the
fixed configuration #* system (1) is approximated by
the linear system in which J(8*) replaces J(8). If for
desired x and known #* the one-to-many STD mapping
computes many solutions 8, then the superposition
property of linear systems implies that any linear com-
bination of the #'” is also a solution, hence is a joint
rotation command capable of generating the desired spa-
tial vector x.

In contrast, the one-to-many map used in the STP
strategy is such that solutions do not combine into ac-
curately directed continuations in joint space. Here, the
functional relation between a 3-D spatial position vector
x and its joint angle configuration & is

x =fl6) (2

where f is nonlinear. If a desired position x corresponds
to many solutions 8, a linear combination of these
solutions will usually not itself be a solution, because f
is nonlinear. Moreover, most solutions ¢ will specify
joint configurations that are not adjacent 1o the current
joint confguration #*. A process must therefore be im-
plemented to suppress all solutions other than one that
is continuous with the current joint configuration 4*.

In summary, the superposition property of STD sys-
tems leads to a simple control strategy for implementing
motor equivalence. This strategy can intuitively be de-
scribed in terms of a synergy or synchronous collection
of increments to one or more joint angles. Suppose that
the motor system associates each of a finite number of
synergies to the spatial movement that results when these
synergies are activated at a given joint configuration.
Then a given movement direction can be achieved by
activating in parallel any linear combination of the sy-
nergies that produces that movement direction. Continu-
ity of trajectories is assured because the mapping takes
the form of small increments to joint angles. Motor equiv-
alence arises when different linear combinations are
used on different movement trials.

This property is consistent with data showing that joint
angle contributions to a desired spatial motion vary as a
function of movement scale and desired accuracy. For
example, data from Lacquaniti, Ferrigno, Pedotti, Soecht-
ing, and Terzuolo (1987) show that the contribution to
a handwriting movement by the elbow and shoulder
scales roughly with the size of the figure drawn. If the
spatial movements defining the figure are specified as
movement directions in 3-D body-centered space, then
contributions by the elbow and shoulder can be added
10 contributions by more distal joints in a linear combi-
nation that preserves the movement's spatial form. When

Volume 5, Number 4




movements must be small, the longer limb segments, for
which even small joint angle changes produce relatively
large end effector displacements, are added to the com-
bination with a very small, possibly zero, coefficient.

1.3. Tool Use

Another human motor trait with important implications
for trajectory formation models is the ability to perform
reaches using tools, such as pointing rods, as the end
effector. For example, subjects in Lacquaniti, Soechting,
and Terzuolo (1982) performed reaches to targets with
lightweight rods strapped to their forearms extending
40 cm beyond the wrist. Even with no practice trials, the
trajectories formed by the subjects were very similar to
trajectories formed without the rods.

Reaching with tools is difficult to explain in STP sys-
tems. Since such reaches can be performed without prior
experience with a rod of variable length, the possibility
that subjects have learned additional mappings from spa-
tial target positions to joint configurations that compen-
sate for tool length can be discounted. Subjects might
still use the STP strategy if they could determine an offset
to the spatial target position that compensates for the
tool. Instead of moving the tool to the desired target
position, the controller would move the hand to a “vir-
tual” target position, formed by adding an appropriate
offset to the target position for the tool. This offset de-
pends on the distance and orientation of the tool tip vis-
a-vis the hand at the end of the movement. Thus the
information required to compute the offset is not directly
available at the time when it would be needed, and
spatial trajectory formation would be error-prone. In
particular, consider what would happen if the calculation
of the hand’s target position is inaccurate and leaves the
tool tip displaced from the target. The most natural cor-
rection technique would be to increment joint angles to
move the tool tip in the desired direction. This is not
possible in a STP system, which does not map spatial
directions to joint angle increments. Instead, the STP
system must recalculate a new spatial target position for
the hand by adding the difference between the tool tip
and the target to the hand’s target position. Though not
impossible, such computations are cumbersome and in-
direct relative to computations performed in a STD sys-
tem. In any case, STP systems control at best a two-step
movement in which the second movement corrects the
error of the first movement.

Tool use is much simpler if spatial movement direc-
tions are mapped to changes in muscle lengths or joint
angles, as in an STD system. This is so because joint
angle changes that move the fingertip in a given direction
will move a pointer that is held in the hand in the same
direction. Thus, using the difference between the spatial
positions of the pointer and the target to specify desired
movement directions produces the correct joint angle
changes required to move the pointer toward the target.

This property is simulated in Section 3.4. Since the sys-
tem incrementally moves the tool tip closer to the target
until the target is reached, there is no need to invoke a
separate “correction mode” when the original attempt to
reach the target is not fully successful.

1.4. Unexpected Perturbations

Another advantage of STD systems is the robustness they
exhibit when unexpected events occur in the environ-
ment. For example, loss of motion at a particular joint
during a reaching movement will cause the actual move-
ment produced by the system to mismatch the desired
movement. The effect of such a lost DOF will typically
be a movement in the general direction of the target but
not in a direct path to the target. If the actual movement
direction differs by less than 90° from the desired move-
ment direction, which is typically the case with a single
clamped joint in the human arm, an STD system will
accurately finish the reach, provided that the geometry
of the arm with the clamped joint allows a joint config-
uration that ends at the target position. This is so because
the desired direction of movement continuously reflects
the effects of errant movement as long as accurate infor-
mation about target position and end effector position is
available, and the redundant direction mapping always
moves the end effector closer to the target, although not
necessarily in the optimal direction. This property is
simulated in Section 3.5. Morecover, if only unaffected
synergies are instated, in particular synergies that do not
project to the clamped joint, then the collective activity
of these synergies will move the end effector to the target
with very little deviation from the desired trajectory.

An STD system is also capable of coping on line with
abrupt translations or rotations of the visual field. For
example, prism goggles cause target and end effector
positions to be misperceived. This can result in an in-
accurate estimate of desired movement direction. How-
ever, as long as the desired movement direction as
perceived by the observer differs by less than 90° from
the actual direction of the target with respect to the end
effector, direction mapping under continuous visual
guidance moves the end effector closer to the target, as
shown in the simulation in Section 3.7. Continuous up-
dating of the desired movement direction takes into ac-
count the errant movement, so deviations do not
accumulate.

To complete our comparison of STP and STD systems,
we note one disadvantage of STD systems, albeit a dis-
advantage that is also characteristic of human perfor-
mance. Bock and Eckmiller (1986) have shown that when
humans make a series of movements to visible targets in
the absence of visual feedback of hand position, then
there is an accumulation of hand positioning errors over
the series. Such accumulation is expected in an STD
system, but would not occur in an STP system. In agree-
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ment with the assumptions of our model, which imple-
ments an STD system, Bock and Eckmiller (1986)
concluded that “the pointing performance as observed
in the present study is better compatible with the alter-
native hypothesis that amplitudes, i.e. distances between
objects, are coded in the sensory space, and are trans-
formed into movement amplitudes in the motor space”
(p. 457).

Consideration of the movement problems described
in this section thus suggests the existence of a mapping
from spatial directions to joint rotations, hereafter called
a direction-to-rotation transformation. The following
sections present a self-organizing neural network that
learns such a transformation, thus explaining how the
properties described in the previous paragraphs may
arise in neural systems. This network is called a DIRECT
model to emphasize both the key role of direction map-
ping and the fact that direction mapping leads to goal-
oriented trajectories that move directly to the target un-
der a wide variety of movement conditions. The acronym
DIRECT stands for DIrection-to-Rotation Effector Control
Transform.

2, OVERVIEW OF THE DIRECT MODEL

Figure 1 illustrates the major functional components that
enable a DIRECT model to implement a coordinate trans-
formation from spatial directions to joint rotations. The
right-hand column of this figure shows a cascade of
processing stages that allow external target position to
guide changes in the end effector position during a
reaching task. First, the spatial coordinates of the target
must be computed. In the DIRECT model, a 3-D body-
centered representation of target position is computed
by a neural network that combines visual, eye position,
and head position information. Neural networks that per-
form the transformation using retinal, oculomotor, and
neck-motor signals are described in Greve, Grossberg,
Guenther, and Bullock (1992), Grossberg, Guenther, Bul-
lock, and Greve (1992), and Guenther, Bullock, Greve,
and Grossberg (1992). Second, a spatial difference vector
(DV) is computed by comparing the target position rep-
resentation with a representation of end effector posi-
tion, measured in the same body-centered coordinate
frame. The spatial DV codes both direction and magni-
tude information. It specifies the spatial displacement
needed to bring the end effector into contact with the
target. Third, a spatial-to-motor transformation computes
the joint angle changes, or rotations, that move the end
effector along the spatial DV toward the target. Because
this transformation computes joint rotations that produce
desired spatial motion directions, it can alternatively be
called a direction-to-rotation transformation. Computa-
tion of appropriate joint angle changes requires infor-
mation about both the direction of the spatial DV and
the current joint configuration. Thus, another input to
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the direction-to-rotation stage, coming from a stage cod-
ing joint angles, is depicted. Finally, the fourth major
stage in the feedforward cascade integrates the angle
increments or decrements commanded by the direction-
to-rotation signals. The outputs from this stage specify
angular settings for all joints and thus control end effec-
tor position. Ensuring a close relationship between these
commanded joint angle changes and actual effector po-
sition changes requires a solution to the inverse dynam-
ics problem. Our discussion proceeds on the assumption
that this problem is solved by additional neural circuits,
such as the spinal cord and cerebellar circuits analyzed
in the FLETE model of Bullock and Grossberg (1989,
1991; also see Bullock & Contreras-Vidal, 1992; Bullock,
Contreras-Vidal, & Grossberg, 1992).

Three distinct feedback loops appear in Figure 1. The
first uses the joint angle integrator to update the direc-
tion-to-rotation transform. The joint angle integrator also
updates a multimodal stage that can use either joint
configuration inputs or visually derived inputs to com-
pute the spatial coordinates of the end effector. This
requires an intermediate motor-to-spatial transformation
to convert joint configuration information into the spatial
coordinate frame used for trajectory formation. This spa-
tial representation of end effector position is compared
to the spatial representation of target position to compute
the spatial DV, thereby closing the second feedback loop.
Proprioceptive information can also be used in these
capacities, forming additional feedback loops (not
shown) to augment the two loops just discussed.

The third and longest feedback loop is an external
loop thut exists whenever the end effector is visible. Then
its spatial coordinates can be computed by truansforming
its retinal images into a 3-D body-centered spatial rep-
resentation. This is fed to the multimodal stage where it
can be combined with joint configuration inputs to es-
timate end effector position.

In summury, during the movement cycle, any discrep-
ancy between target position and end effector position
is registered at the spatial DV stage, whose outputs are
transformed into appropriate joint rotations. As the joints
rotate, internal feedback ensures that the direction-to-
rotation transform is adjusted to reflect the new joint
configuration. As the movement proceeds, either internal
or external feedback to the multimodal stage updates the
internal representation of end effector position. Because
this representation changes in the direction of the target,
the spatial DV is driven toward zero. The movement self-
terminates when the internal spatial representations of
end effector position and target position coincide and
the spatial DV equals zero.

As noted above, both internal and external feedback
loops exist for updating the internal representation of
end effector position. The internal loops are faster and
can be used to avoid lag-based instability. Updating via
the internal feedback loop is therefore preferable during
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Figure 1. Processing stages of
the DIRECT model.
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very rapid movements or higher velocity segments of
slower movements. For purposes of accuracy, however,
the slower visual feedback is preferable. These consid-
erations suggest two devices for optimizing performance.
First, it may be useful to make the visual feedback dom-
inant when movement rate is low and internal feedback
dominant when movement rate is high. Second, it maybe
useful to distribute speed over the course of movement
50 as to allow a terminal low-speed phase for accurate
visually guided homing.

2.1. Relationship to the VITE Model of
Trajectory Formation

The existence of a low-speed homing phase in spatially
accurate point-to-point movements is well established
(Woodworth, 1899, Howarth & Beggs, 1972; Nagasaki,
1989). This and several other kinematic properties of
point-to-point motions, notably synchronous contraction
of synergetic muscles and voluntary contro! of movement
speed, have received a unified explanation in terms of

the Vector Integration to Endpoint, or VITE, model of
Bullock and Grossberg (1988a, 1988b), which is sche-
matized in Figure 2a. The VITE model introduced several
of the main computational processes out of which the
DIRECT model is fashioned, including continuous com-
putation of a difference vector (DV) from the difference
between a target position vector (TPV) specifying the
intended movement goal, ‘and an outflow movement
command called the present position vector (PPV). The
DV, in turn, is multiplied by a speed-controlling GO
signal before being integrated at the PPV stage to form
the outflow movement command. The original VITE
model dealt only with trajectory formation in joint space.
The Adaptive VITE, or AVITE, model of Gaudiano and
Grossberg (1991) extended VITE to learn coordinate
transformations within the motor trajectory generator.
The AVITE model was further generalized in Gaudiano
and Grossberg (1991) to the Vector Associative Map, or
VAM, model to show how coordinate transformations
from spatial positions to joint configurations could also
be learned using DV stages repeated in a hierarchical

Bullock et al. 413



i
Figure 2. (a) Block diagram
of the VITE model of trajectory
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cascade of spatial-to-motor processing stages. Analysis of
this model and the limitations of STP models set the
stage for developing the present STD model by focusing
on the key role of spatial and motor DVs in the control
of movement.

The DIRECT model thus remains broadly consistent
with those aspects of the VITE and VAM designs that allow
both voluntary control of movement duration and gen-
eration of realistic velocity profiles. In particular, both
properties appear in the DIRECT model if a movement-
gating GO signal multiplies the joint rotation commands
prior to their integration at the joint angle command
stage, as in Figure 2b. If the GO signal is zero, a spatial
DV and desired rotations are computed, but no move-
ment occurs. When the GO signal becomes positive, end
effector movement rate is proportional to its magnitude
multiplied by the magnitude of the spatial DV. The de-
cline of the spatial DV magnitude during movement leads
to movement slowing even if, as is usually assumed, the
GO signal grows during movement.

The next few sections define the DIRECT model in
more precise computational terms and illustrate how it
works. Section 2.2 describes the two main types of neural
representations used in the DIRECT model: map and
vector representations. Section 2.3 describes learning of
the motor-to-spatial and direction-to-rotation mappings.
Section 3 presents the results of several simulations
designed to illustrate motor equivalence, tool use, ro-
bustness under unexpected perturbations, and blind
reaching. Section 4 provides a detailed description of the
current DIRECT implementation, including the equations
used in computer simulations. Section 5 summarizes
neurophysiological studies of motor cortical cell prop-
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erties and relates these data to the current implementa-
tion as well as possible alternative implementations of
the mapping from spatial directions to joint angle incre-
ments. Section 6 compares the DIRECT model with al-
ternative models of movement control.

2.2. Classifying Processing Stages into
Maps and Vectors

The DIRECT model uses a number of processing stages
that can profitably be classified into maps and vectors.
Map codes are position codes and vector codes are fea-
ture codes. Thus, in a map, different locations in a spatial
array of neurons represent the data to be coded. This
spatial array typically approximates a 2-D surface, or a
laminar organization of cell populations that is parame-
terized by a 2-D surface (Hubel & Wiesel, 1977; Mouat-
castle, 1957). In a vector code, each neuron or population
of neurons represents a different feature, or combination
of features. The activity levels of these neurons are the
coordinates of the vector code. Changes in the relative
and absolute amounts of featural activation across all the
vector coordinates constitutes the code.

Figure 3 shows a simple example that illustrates map
and vector neural representations. Consider the problem
of representing the point p in the 2-D space shown in
Figure 3a. In Figure 3b, a positionn map (PM) is used to
represent p. In this representation, a large number of
neuron populations, or nodes (shown as black circles),
are used to represent the 2-D space. Each neuron pop-
ulation, or node, codes a small region of the 2-D space,
such that the node’s firing rate or activity level (shown
as the bar above the circle) is maximal when the quantity
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Figure 3. (a) An example of 2-D space. (b) A position map repre-
senting the point p in this space. (€) A position vector representing
the point p.

being represented is within this small region. Thus, a
single population in the map of Figure 3b is maximally
active, and this population codes a small region of the
input space, including the point p. In Figure 3¢, a position
vector (PV) is used to represent the point p. In this
representation, one neuron's firing rate increases for
increased position along the x axis, and a second neu-
ron’s firing rate increases for increased position along
the y axis. Thus, the pattern of activity across the two
neurons represents the point p in the 2-D space.

In addition to representing absolute positions, vectors
and maps can be used to represent the difference (i.e.,
distance and direction) between two positions. A differ-
ence or direction map (DM) can be used to represent
the length and direction of a commanded movement in
a map whose maximally activated node changes with
these parameters. A differenice or direction vector (DV)

represents the same movement properties by changes in
the balance of feature activations. For example, a DV is
formed in the VITE model by subtracting a present po-
sition vector (PPV) from a target position vector (TPV).
This DV codes the distance and direction from the pres-
ent position to the target position using featural activa-
tions computed in joint coordinates. In the DIRECT
model, the term direction vector is used rather than the
term difference vector to emphasize the directional, as
opposed to positional, nature of the quantities being
represented.

Grossberg (1989) articulated the distinction between
maps and vectors by noting that both a difference map
(DM) and a difference vector (DV) appear to be used for
purposes of eve movement control. In the deeper lavers
of monkey superior colliculus, a difference map (DM)
code exists wherein each map location tends to code a
different combination of movement length and direction
(Mays & Sparks, 1980, 1981; Sparks, 1978, 1991; Sparks
& Jay, 1987; Sparks & Mays, 1981). The most eccentric
locations tend to code the longest movements. Changing
the 2-D polar angle of locations in the map tends to
change movement direction. Exciting cells at a pre-
scribed map location tends to cause a saccadic eye move-
ment of corresponding length and direction. In the
monkey motor cortex, a DV code exists wherein each
cell tends to generate a broad unimodal tuning curve of
direction preference that may include 180 degrees of
movement directions (Evarts & Tanji, 1974, Georgopou-
los, 1986, 1989; Georgopoulos, Kalaska, Caminiti, & Mas-
sey, 1982; Georgopoulos, Kalaska, Crutcher, Caminiti, &
Massey, 1984; Georgopoulos, Schwartz, & Kettner, 1986;
Tanji & Evarts, 1976). Movement amplitude tends to co-
vary with the firing rate of cells in their direction of
maximum sensitivity (Fu, Suarez, & Ebner, 1992).

The concepts and notation of maps (M) and vectors
(V) enables a systematic vocabulary to be developed for
the processing stages that are described below for the
control of motor equivalent reaching. This notation also
suggests a systematic shorthand for conceptualizing the
multiplexed combinations of constraints to which cells
at the various processing stages are tuned. For example,
we will encounter below a PDM stage to encode in a
topographic map (M) the direction (D) in which the limb
is commanded to move when it is in a particular present
position (P). Another distinction concerns whether a rep-
resentation encodes external spatial locations with re-
spect to the body, or internal joint angles of a limb. The
subscripts “s” and “m,” for “spatial” and “motor,” are used
to denote this distinction. Thus the notation PPM,, sig-
nifies a processing stage at which the joint angles (m) of
the present limb position (PP) are represented by a
topographic map (M). Notation DV signifies a processing
stage at which movement directions (D) in external 3-D
space (s) are represented by a feature vector (V). Nota-
tion PDM,,, signifies a processing stage at which infor-
mation about the joint angles of the present limb position
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(Pm) is combined with information about desired move-
ment directions in external space (D;) in a topographic
map (M). The notation PDMus — DV, thus means that
when the limb attains a particular present joint position
(Pm) and a desired spatial direction of movement (D) is
selected, then this conjoint constraint (PDMy,s) is used
10 activate DV, and thus the limb joints are rotated by
the proper relative amounts to realize the desired move-
ment direction in space. The transformation PDMp, —
DV,, is sometimes called the direction-to-rotation trans-
form in the subsequent discussion.

2.3. Autonomous Learning of the DIRECT
Transformations during Motor Babbling

Figure 4 illustrates the DIRECT model that was used in
our computer simulations of motor equivalent reaching.
This figure fills in several processing stages left out of
Figure 1. Figure 4 shows that the DIRECT model contains
two learned transformations, which are indicated by
filled semicircles. A spatial-to-motor, or direction-to-ro-
tation, transformation in the right processing stream
commands the motor actions needed to carry out a spa-
tially defined trajectory. A motor-to-spatial transformation
in the left processing stream allows motor information
regarding end effector position to be used in place of
visual information when performing reaches without vis-
ual feedback. Learning in the DIRECT model is achieved
through autonomously generated repetition of an action-
perception cycle, which generates the associative infor-
mation needed to learn these transforms. Such a cycle
was called a circular reaction by Piaget (1963). A circular
reaction endogenously creates movements in babies dur-
ing a motor babbling phase, and leads to learning of
transformations among representations that are corre-
lated through these movements. After learning takes
place, the movements may later be carried out in an
intentional, or goal-oriented, manner.

Motor babbling is energized by an endogenous ran-
dom generator, or ERG, whose activations are integrated
to generate movement commands (Gaudiano & Gross-
berg, 1991). In the DIRECT model, ERG activations excite
the DV, stage, which encodes motor commands for ro-
tating the joints. The output of the DV, stage is integrated
at the PPV,, stage, whose outputs control joint angles
and, therefore, the end effector location. In this way, ERG
activity causes spontaneous arm movements during the
motor babbling stage. The network uses the information
generated by these spontaneous arm movements in sev-
eral ways. Visual feedback provides information about
the positions and directions of movements in 3-D space.
Internal feedback provides information about the joint
configurations that generate these movements. The net-
work is designed to combine these multiple sources of
information in a manner that solves the motor equiva-
lence problem. The present discussion refines the de-
scription of processing stages given in Section 5 by using
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a consistent map-vector notation and including the stages
that are needed to learn the spatial-to-motor and mator-
to-spatial transformations.

Visual feedback accomplishes two tasks during motor
babbling: it provides information about the position of
the hand for tuning the motor-to-spatial mapping and it
provides information about the direction of hand move-
ment for tuning the direction-to-rotation mapping. To
accomplish the direction-to-rotation mapping, three
types of information need to be properly calibrated and
combined: the DV, which specifies the spatial direction
in which the hand must move to contact the target; the
DVy, the motor direction in which the joints rotate to
generate DV;; and the PPV, the present position of the
end effector. Information from DV and PPV,, need to be
combined to unambiguously command the proper joint
rotation DV,,, by which t0 move in spatial direction DV,
when the joints start in the configuration PPVim. This
combination process occurs at PDM,,, which mediates
the direction-to-rotation transformation from DV, 10 DV,,,.
These calibration and combination processes are sug-
gested 1o occur as follows.

During motor babbling, the endogenously moving end
effector is a salient visual target. As the system visually
tracks its own end effector, the present position and
target position information about the end effector coin-
cide. Correspondingly, visual information about end ef-
fector position is passed to both the PPV; and TPV, stages.
The PPV, stage relays its information 1o the PPV, stage.
Both the 7PV, stage and the PPV, stages relay signals to
the DV, stage. The DV; neurons represent the difference
between end effector position as derived from the ex-
citatory TPV; — DV, pathway and a slightly delaved ver-
sion of end effector position from the inhibitory PPV, —
PPV, — DV, pathway. The slight delay results from the
additional synapse in the latter pathway. The result is that
DV; represents the spatial direction of end effector move-
ment.

Information regarding the direction of end effector
movement, represented at the DV; stage during motor
babbling, drives learning of the direction-to-rotation
transformation. To convert DV; activations into effective
reaching behaviors, each DV; must be transformed into
a DVy,, which produces movement in the corresponding
spatial direction, that is, spatial directions need to be
converted into joint rotations. As noted above, the ap-
propriate DVp, to learn depends on the configuration of
the arm when the DV; is computed. The conjoint acti-
vation of the PDM,, stage by both the PPV, stage and
the DV; stage activates a small number of cells in the
PDM,,s map. These cells then learn the babbled DV,
activity that is producing the motion direction registered
at the DV stage.

How do the vector stages PPV, and DV get trans-
formed into a map stage PDM,,,. that combines a motor
position map (Pn) with a spatial direction (D,)? It is
assumed that the motor vector stage PPV, generates
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Figure 4. Block diagram of a
self-organizing DIRECT model
in map-vector notation.
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corollary discharges as well as outflow movement com-
mands. These corollary discharges may be combined
directly with the vector DV; to form PDM,, via a self-
organizing feature map (Grossberg, 1976, 1982; Gross-
berg & Kuperstein, 1986, 1989; Kohonen, 1988; Malsburg,
1973; Willshaw & Malsburg, 1976). Alternatively, the vec-
tor representation PPV, may first be converted via a self-
organizing feature map into PPMy, after which PPM,, is
combined with the spatial direction vector DV; to form
PDM s

A motor-to-spatial transformation is also learned dur-
ing motor babbling. The goal of this transformation is to
convert a motor representation PPV, of the present end
effector position into a visual representation PPV of pres-
ent end effector position. This transformation is sug-
gested to occur via the learned transformation, described

above, from PPV, 10 PPM,, followed by a learned as-
sociation from PPM,, to PPV, In this way, a joint con-
figuration coded at the PPV, stage learns to predict the
corresponding spatial position of the end effector as
represented through vision at PPV,

In summary, during motor babbling, the ERG sponta-
neously generates motor vectors DV, which are inte-
grated into arm movements by the PPV, stage. The arm
movements draw visual attention to the end effector. As
a result, spatial DV, vectors are computed which, con-
jointly with PPV,, feedback signals, enable the PDMqy
map to learn an appropriate DV, with which to move in
the corresponding spatial direction DV, when the end
effector is at PPVy,. Simultaneously, joint configurations
coded by the PPM,, stage are associated through learning
at the PPV, stage with the corresponding spatial posi-
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tions PPV, of the end effector as perceived through vi-
sion. ]

These movements and learning events during motor
babbling are not goal-oriented. The babbled movements
are endogenously activated and the learning events cor-
relate spatial and motor representations that are coacti-
vated by the babbled movements. During subsequent
goal-oriented reaching movements, the target is not typ-
ically the end effector, so the information coded at TPV,
and at PPV is not the same. The DIRECT model is de-
signed such that after motor babbling ends, when a target
other than the end effector activates TPV, the difference
between present position of the end effector at PPV;y,
and the target position at TPV, is computed at DV, and
the arm is steered toward the target by activating an
appropriate series of DV, vectors to move the arm in
the desired direction. If visual feedback of the end effec-
tor is not available during the reach, then the motor
pathway PPV, — PPM, — PPV, is used to estimate end
effector position rather than the visual pathway PPV, —
PPV, In particular, after learning, the DIRECT model
uses gating signals to direct the flow of visual information
to the PPV, block if the visually attended spatial position
corresponds to the end effector, or to the TPV, block if
the visually attended spatial position corresponds to a
goal-oriented movement target. This requires the devel-
oping system to incorporate some mechanism for differ-
entiating between self-generated movements of the hand
and other potential targets of visual attention (moving or
stationary) in the visual field. A possible mechanism for
providing this “self " vs. “other” distinction is outlined in
Figure S. Another developmentally important constraint
incorporated in the model is that visual information
about end effector position takes precedence over motor
corollary discharges, when both types of information are
available at the PPV, stage.

Before characterizing the DIRECT model processing
stages computationally, we summarize computer simu-
lations that illustrate the types of motor equivalent move-
ments that the DIRECT model is capable of controlling
after it learns its circular reaction.

3. COMPUTER SIMULATIONS OF
REACHING BEHAVIORS

The simulations use a three joint arm in two dimensions.
The origin of the spherical coordinate frame used in the
simulations lies in the same plane as the shoulder (cor-
responding to a 2-D subject whose shoulder and ego-
center lie in the same plane). Thus, for reasons clarified
in Section 4.1, spherical coordinates R, ¢, and 4, with
6 = 0, are used to represent target and end effector
positions. The wrist is treated simply as an extra degree
of freedom with properties similar to those of the elbow
and shoulder. The claim is not made that wrist move-
ments are equivalent to elbow and shoulder movements.
Rather, the wrist is included here to provide redundancy;
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Figure 5. Possible gating mechanisms for distinguishing self-gener-
ated arm movements from other visually perceived movements. This
model gating mechanism directs visual signals to 7PV, or PPV, It
enables an infant network to distinguish visual input corresponding
1o its arm (“self ") from visual input corresponding to other targets
("other™). If not, visual information corresponding to targets other
than the arm would erode the map learning that occurs when the
visual input does correspond to the armi. One way to distinguish
berween “self” and “other” is to compare movement speed in the
visual pathway with internal arm movement velocity commands. A
march between the temporal paterns of these speeds, as in (a). indi-
cates with high probability that the object being visually attended to
is the infant network’s arm. The comparator output can then be used
as an inhibitory end effector gating signal; that is, a zero value of this
signal allows visual information to flow to the PPV, block, and a
nonzero value blocks this flow, thereby preventing erosion of the
learned motor-to-spatial map in Figure 4.

it forces the model to coordinate three DOFs to move
the end effector in a 2-D plane. Appendix A provides the
kinematic equations for the simulated arm model. A
fourth-order Runge-Kutta method was used for integra-
tion with a time step of 0.4. Each training trial consisted
of 50 time steps.

3.1. Training

The mode!’s feedforward and feedback mappings were-
trained by instating randomly chosen initial joint config-
urations, then generating random DV, activities and
using visual feedback to register end effector position
and movement direction. Training was always done with
visual feedback and without tools, clamped joints, or
visual shifts. The steps in training were

Volume 5, Number 4



1. Initialize all weights to 0.

2. For the first trial and every tenth subsequent trial,
randomly generate a new initial arm configuration.

3. For each trial (a) endogenously generate a DV,, and
move the arm based on this command. This corresponds
to infant “motor babbling”; (b) update activities of all
stages based on the equations given in Section 4 on
Formal Specification of the DIRECT Model; and (c) adjust
PDMys — DV, adaptive weights and PPMy, — PPV,
adaptive weights according to Eqs. (14) and (21), re-
spectively, below.

4. If more trials remain, go back to Step 2.

Typical training sessions included generation of 40,000
DVes, which consumed approximately 18 min of CPU
time on a Silicon Graphics Iris 4D/240GTX.

3.2. Performance

After training, the DIRECT model is capable of reaching
to arbitrary positions in the workspace. To do this, a
target position is first loaded into the TPV block in the
model as illustrated by the boldface lines in Figure 6a.
As the focus of visual auention, the target position is
neurally represented within a coordinate frame that ap-
proximates the 3-D spherical coordinates (R, ¢, §) with
6 = 0. As in Figure 5, a volitional gating signal indicating
that a movement target is being attended directs this
visual information to the TPV, block, where it remains
stored throughout the reach. Figure 6b and 6¢ shows the
flow of information for reaches with and without visual
guidance, respectively. In Figure 6b, the visual represen-
tation of end effector position is gated to the PPV, block.
When available, visual information dominates over pro-
prioceptive or corollary discharge information concern-

ing end effector spatial position at the PPV, block. The
visual representation of end effector position is com-
pared to the stored target position at the DV block in
Figure G6b; DV, thus represents the desired movement
direction. The pathway DV; = PDMm; — DV, performs
the learned direction-to-rotation transformation, and in-
tegration of the DVy, activities at the PPV, stage produces
movement of the arm in the desired direction. Current
position of the end effector is constantly updated at the
PPV, stage so that DV, always represents the direction
from the end effector to the target. In Figure 6c, visual
information of end effector position is unavailable, so
end effector spatial position at PPV, is estimated using
the learned motor-to-spatial transformation of pathway
PPVy, = PPMy — PPV, This estimate is compared to
the stored target position at the DV stage, and movement
in the desired direction is carried out as in the visually
guided case.

3.3. Simulation I—Normal Reaching

In simulation I, the model performs visually guided
reaches to the target positions with no clamped joints or
tool extensions. The results of this simulation provide a
baseline for comparison to later simulations, which show
more challenging properties of the model. The trajec-
tories of the end effector produced by the model depend
on the feedforward PDM. = DV, mapping. These tra-
jectories closely match the trajectories in Figure 7b that
were produced by linear interpolation in the spherical
coordinate frame. One of these simulated trajectories is
shown in Figure 8a. Thus the surface structure of the
motor behavior gives little hint of the internal coordinate
transformation. The Figure 8a trajectories of the end
effector, wrist, and elbow roughly approximate those of

Figure 6. (a) Loading a visu-

ally perceived movement tar-

get. (b) Flow of information Target (a)
for performing a visually ./

guided reach. (¢) Flow of in-
formation for performing a

blind reach.
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Figure 7. (a) Trajectories from Hollerbach et al. (1986). Units are nillimeters, with the shoulder located near (0,0). Trajectories are shown for
shoulder, elbow (shown as two trajectories), wrist, and fingertip. (b) Simulation of the Hollerbach et al. (1986) fingertip trajectories using linear

interpolation in spherical coordinate space.

human subjects in the Hollerbach, Moore, and Atkeson
(1986) experiments, as in panel C of Figure 7a. See
Section 4.1 for further discussion of these data.

3.4. Simulation II—Reaching with a Tool

For simulation 11, a tool was added to the hand of the
model during performance trials, but there was no re-
training with the tool. Reaches were performed under
visual guidance, with the visual data for end effector
position computed from the tool end rather than the
hand. The tool used in the simulation was 150 mm long
and was attached to the hand at an angle of 160°. Similar
results were achieved with tools of many lengths attached
at many different angles with respect to the hand. One
simulated reach and the relative length of the tool are
shown in Figure 8b. Compare the trajectories formed
with the tool in Figure 8b to the reaches without a tool
in Figure 8a.

3.5. Simulation III—Clamped Joint

For this simulation, the elbow joint of the model was
clamped at an angle of 140° during performance trials,
but there was no retraining with the clamped joint. As
shown in Figure 8¢, the model successfully performs
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reaches to targets despite this joint blockage. To achieve
the effect of clamping the joint at a single angle, the PPV,
activity components corresponding to the elbow angle
command were fixed throughout the movement. Thus
the internal feedback of joint angle remained accurate
throughout the movement, and correct PDM,,, cells con-
tinued to be activated as the movement evolved. The
same net result could be achieved with externat clamping
even if PPV, cells associated with elbow angle control
continued to integrate their inputs, provided that pro-
prioceptive feedback from the clamped joint could cor-
rect the internal command feedback prior to the PDAL,..
stage. Bullock and Grossberg (1988a) have described
how arm inflow signals can correct PPV, commands
under conditions where external forces prevent the arm
from obeying outflow movement commands.

3.6. Simulation IV—Blind Reaching

Simulation IV was run to test the learned feedback map-
ping from limb configuration to spatial position of the
end effector; that is, the mapping that allows corollary
discharge information from the PPV, stage to replace
visual information about limb spatial position in defining
desired direction of movement. Turning off visual input
to the PPV, stage forced use of corollary discharge
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Figure 8. Trajectories formed by the model for one of the target
positions of Hollerbach, Moore, and Atkeson (1986; see panel C of
Figure 7a). The small square represents the target position that the
model is auempting to reach. (a) Trajectory formed by the model
during an unconstrained reach. (b) Trajectory formed by the model
using a pointer for reaching. (¢) Trajectory formed by the model
with the elbow clamped at 140°. (d) Trajectory formed by the model
using corollary discharge information of end effector position in
place of visual information (i.e., blind reaching). (e) Trajectory
formed by the model under continuous inspection of the end effec-
tor after a visual shift causes a mismatch between perceived move-
ment direction and actual movement direction. (f) Trajectory formed
by the model with nonlinear muscle plant activities.

information, which is routed through the PPM,, stage, to
update the end effector position.

A resulting trajectory is shown in Figure 8d. The tra-
jectory in this figure is nearly identical to the visually
guided reach shown in Figure 8a. This verifies the cor-
rectness of the learned internal feedback mapping be-
tween limb configuration, as represented by the vector
of joint angle settings, and spatial position of the end
effector. This mapping is useful for blind reaches and for
very fast reaches, which might suffer oscillations if visual
information (which &2 vivo is delayed due o slow arm
mechanics) were used to update the end effector posi-
tion estimate used at the DV, stage. Visually guided

reaches are more accurate than blind reaches, as also
occurs in vivo (e.g., Bock & Eckmiller, 1986; Ott & Eck-
miller, 1988; Soechting & Flanders, 1989). In the model,
this is due to the coarseness of the coding of joint space
by cells in the PPMy map. That is, each cell in PPM,,
codes a small region of joint space, and the projected
activity to PPV from PPM,, is constant within this joint
space region. Because of this, all joint configurations
within the small region of joint space that includes the
target position will be treated equally, and movement
stops as soon as the arm enters this region. A more finely
grained PPM,, representation could control correspond-
ingly more accurate blind reaches.

3.7. Simulation V—Visual Shift

Simulation V verifies performance under a visual shift,
as might be produced by prism goggles. A shift in either
horizontal or vertical angle of the target due to prism
goggles does not change the movement direction per-
ceived by the subject, since both target position and
current end effector position are both shifted by an equal
amount in spherical coordinates. However, had spatial
directions been specified in some other coordinate
frame, such as Cartesian coordinates, a mismatch would
occur between perceived and actual movement direction
to the target. To simulate this situation, perceived motion
direction was directly shifted by 30° from actual motion
direction to target in the simulation. That is, the DV,
stage output was rotated by 30° before being sent to the
PDM s stage.

A resulting simulated trajectory is shown in Figure 8e.
Under continuous visual guidance, the model success-
fully completes the trajectories using shifted visual infor-
mation from the end effector. This outcome depends on
the STD map from spatial directions to joint angle rota-
tions and would not be produced by an STP map from
target positions to joint angles. An STP system would
need a two-or-more-step “correction” mode, as men-
tioned in Section 1.2. Had only the shifted visual target
position 7PV, been stored and the reach performed using
motor feedback PPMq, about end effector position, the
reach would not have been accurate.

3.8. Simulation VI—Nonlinear Rotation
Commands

In this simulation, the PPV, stage integration of the DV,
is replaced in both the training and performance phases
with a nonlinear integration process that is described in
Section 4.5. The resulting model approximates a system
with a nonlinear relationship between joint rotation com-
mands and the actual rotation achieved. Nonlinear mus-
cle properties often require larger command increments
to produce a given joint angle increment at more ex-
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treme joint angles. Although compensatory cerebellar
learning tends to linearize muscle response (Grossberg
& Kuperstein, 1986, 1989), the present simulation shows
that residual nonlinearities may be compensated by the
DIRECT controller. As shown in Figure 8f, the altered
model produces trajectories quite similar to those ob-
served in the previous simulations.

Figures 9, 10, and 11 show the DIRECT trajectories
that are generated under conditions (1}<(VI) above with
targets at different locations in the workspace.

4. FORMAL SPECIFICATION OF THE
DIRECT MODEL

We now specify the DIRECT model computationally. The
first task is to summarize how a 3-D body-centered spatial
representation that approximates spherical coordinates
is self-organized by the model.
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Figure 9. Simulated trajectories to a different target location under

the conditions of Figure 8.
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Figure 10. Simulated trajectories to a different target location under
the conditions of Figure 8.

4.1. Self-Organizing a Body-Centered
Representation of 3-D Target Position

A self-organizing body-centered representation of 3-D
space was modeled in Bullock, Greve, Grossberg, and
Guenther (1992), Greve et al. (1992), Grossberg et al.
(1992), and Guenther et al. (1992). These articles de-
scribe how several kinds of information may be com-
bined to form a body-centered 3-D spatial representation.
The retinal positions in both eyes that are excited by a
visually perceived target, the positions of both eyes in
the head, and the position of the head in the body are
combined by the model via a self-organizing learning
process to form an internal 3-D spatial representation of
target position in body-centered coordinates. The term
target here denotes the object of visual attention. This is
not necessarily the same as the target of a reaching
movement. In particular, the end effector is often the
target of visual attention in the DIRECT model.

This spatial representation exploits the bilateral sym-
metry of the body, notably the opponent organization of
many muscles into agonist-antagonist pairs. The first part
of the model shows how a head-centered representation
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Figure 11. Simulated trajectories to a different target location under
the conditions of Figure 8.

of 3-D target position is formed when the target is fov-
eated by both eyes (Bullock, Greve, Grossberg, and
Guenther, 1992; Greve et al.,, 1992). This model network
combines corollary discharges from the outflow move-
ment commands to the extraocular muscles of both eyes.
Two successive opponent processing stages convert
these corollary discharges into a head-centered cyclo-
pean representation of the foveated target’s 3-D position.
The origin of this cyclopean representation lies between
the eyes. Its coordinates estimate the horizontal polar
angle 4, vertical polar angle ¢, and the binocular ver-
gence y of the foveated target with respect to this cyclo-
pean origin in the head. Psychophysical daia are
discussed to support the biological relevance of this
model.

The second part of the model shows how to learn a
head-centered representation of 3-D target position, even
if a target is initially registered at nonfoveated retinal
positions (Grossberg et al.,, 1992). This representation
can be used to generate a movement signal whereby the
eyes can saccade to foveate a target, and sets the stage
for learning a body-centered representation for reaching

toward a target. The head-centered representation com-
bines the opponent motor representation of where the
eye is looking, with retinal information concerning the
binocular location of the target with respect to the pres-
ent gaze position. Learning uses a vector associative map,
or VAM, which had previously also been used to learn
parameters for arm trajectory control as well as a simpler
type of head-centered target representation (Gaudiano
& Grossberg, 1991). The final part of the model shows
how a body-centered representation can be learned by
combining the head-centered representation with signals
from the neck concerning the position of the head in
the body (Guenther et al., 1992). Again VAM learning is
used.

All of these representations build upon the cyclopean
head-centered representation (v, ¢, 08). Due to the close
relationship between the vergence -y and the radial dis-
tance R (Greve, et al,, 1992), the lauer variable is used
in the present simulations. Thus, the internal represen-
tation is a vector of six neuron (or neuron population)
activities, grouped into three agonist-antagonist pairs,
that represent the three body-centered spherical coor-
dinates. The origin of the coordinate frame lies directly
between the two eyes when the head is pointed straight
ahead, and it remains fixed with respect to the torso
when the head angles (horizontal or vertical) are
changed. The angle 8 represents the horizontal angle of
a target with respect to straight ahead of the body, and
the angle ¢ represents the vertical angle of the 1arget
with respect to straight ahead of the body. The coordinate
R represents the distance from the origin to the target.
Specifically, this internal representation approximates the
following equations:

v+ =1 3
0= —-90° + 180° X 1 (4)
3+ vs=1 (5)
$ = —90° + 180° X vy (6)
vs + s =1 @)
R=wuws + B (8)

where the ¢; are cell activity levels forming the visual
representation vector v, and « and B provide a linear fit
for R in terms of s throughout the workspace. For sim-
plicity, the current simulations were done in two dimen-
sions using the above equations for R and ¢ only,
corresponding to movements in a plane where 8 remains
fixed.

An internal representation based on spherical coor-
dinates has several advantages. First, as noted above, this
coordinate frame relates closely to the anatomy of the
eve muscles. The anatomy of the arm also relates more
closely to a spherical coordinate frame than to a Cartesian
frame, since arm movements due to shoulder rotation
correspond to changes primarily in the spherical angles
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6 and ¢, whereas bending of the elbow relates primarily
to the spherical coordinate R. This property proves useful
for transformation from spatial coordinates to arm tra-
jectories.

Figure 7a from Hollerbach et al. (1986) shows mea-
sured trajectories for the fingertip, wrist, elbow (shown
as two trajectories), and shoulder during free reaches by
human subjects in the sagittal plane through the shoul-
der, with the shoulder located near (0,0). Figure 7b
shows simulated trajectories formed berween the end-
points of the fingertip paths of Figure 7a using linear
interpolation in the body-centered spherical coordinate
space of Egs. (3)~(8). Although interpreted by Holler-
bach et al. (1986) as being a result of joint space inter-
polation, Figure 7b indicates that the Figure 7a
trajectories are also consistent with spherical space in-
terpolation, thus providing evidence of similarities be-
tween the two coordinate frames. Finally, as shown in
Guenther et al. (1992), spherical coordinates allow a
transformation to be learned from a head-centered to a
body-centered internal representation using corollary
discharges from neck position commands. How such a
transformation would be achieved in Cartesian frames is
not readily apparent. It should be noted, however, that a
spherically based coordinate frame is not a necessary
condition for satisfactory performance by the DIRECT
network. Other vector representations of external spuce,
including Cartesian, could also be used.

4.2. Computation of the Spatial Difference
Vector

Both target position and end effector position are rep-
resented in the body-centered coordinate system
specified above in terms of the v;. Henceforth, let £ =
(er2, . . ., €6) be the visual representation of end effect-
or position (PPV; in Fig. 4), M = (mymy, . . ., nig) the
multimodal representation of end effector position
(PPViy, in Fig. 4), and T = (122, - . . , &) the visual
representation of target position (TPV; in Fig. 4). The
spatial difference vector DV; is denoted by D = (d, 4.,
..., ds), where

di =1t — my )

i =1,...,6. During training, the magnitude of the DV,
is small and represents the movement direction of end
effector position, formed by taking the difference be-
tween current end effector position and end effector
position one time step earlier (corresponding to the
additional one synapse delay in the PPV, — PPV, —
DV, pathway as compared to the TPV, — DV, pathway).
During performance of a visually guided reach, the tar-
get's position may initially be quite far from the end
effector’s position. The magnitude of the DV; can there-
fore be quite large during performance. However, since
cells in the position-direction map (PDM,,, in Fig. 4) are
sensitive to DVs; movement direction and insensitive to
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DV amplitude, the larger DV, values encountered during
performance are transformed into the appropriate motor
vector DV, that was learned for movement in the desired
direction.

4.3. The Position-Direction Map

The PDM,,s stage of Figure 4 contains a map of cells,
each of which is maximally sensitive to a particular spatial
direction in a particular position of joint space. The ac-
tivity level c. of a cell in this map is 1 if the DV, codes
that cell's preferred spatial direction and the PPM,, codes
the same cell’s preferred limb configuration. Cell activity
falls off to 0 as DV, and PPM,, signals deviate from pre-
ferred.

This kind of selective cellular receptivity can be
achieved by adaptive filter networks such as self-organiz-
ing feature maps. However, for these simulations it suf-
ficed to create a population of cells with suitable
preformed receptive fields. The number of cells was
determined by the need to restrict each cell’s receptive
field to a sufficiently small region of possible spatial
directions and joint configurations. Dividing spatial di-
rections into 30 angular zones (each representing 12° of
direction in a plane) and the range of each joint into 7
angular zones yielded 30 X 7 X 7 X 7, or 10,290 cells
at the PDAS,,. stage.

More precisely, to simulate the three DOF planiar arm
reaching to targets in a 2-D space, we let d = (d)d>)
represent the desired motion direction specified by the
DV, stage. Coordinates d, and d: correspond to the de-
sired direction components in the two spatial coordi-
nates of the 2.D movement plane. Similarly, let a =
(aa:as) represent the current joint configuration, with
coordinates a4, and as defining the three joint angles.
Then a cell & responds selectively if its input is

Ib=id,"+iaf (10)
where - j_]
= {d,. i <d<d’
0 otherwise (11)
and

L._{a, ifaf"<aj<af+

4 =10 otherwise (12

The df” and d}* denote minimum and maximum values
of d; specific to cell c., respectively, and @~ and &'*
denote minimum and maximum values of a; specific to
cell ¢.. The parameters di~, di*, @, and &'* were
chosen such that one and only one cell received the
maximal input for a given motion direction and joint
configuration.

It would be sufficient to allow only that unique cell
with the maximal input at any moment to learn the
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current pattern at the DV, stage. Fewer training trials are
needed if partially activated cells with neighboring re-
ceptive fields are also allowed to learn. In addition, learn-
ing signals generated by PDMm cells should not be so
large as to drive learning to equilibrium on a single trial.
These properties can be achieved if the PDMqs stage
contrast enhances and normalizes the activity distribution
defined by the /.. Use of a large neighborhood early in
training results in quick learning of an approximate map-
ping from PDM s cells to DV, cells, and slow reduction
of this neighborhood size as training proceeds increases
map accuracy through time. Grossberg (1986, Section
23) has described how neighborhood size may be made
10 automatically shrink during adaptive wning of a suit-
ably defined self-organizing feature map.

To reduce the length of time needed to simulate the
system on a serial computer, the parallel network inter-
actions described above were typically approximated. In
particular, [, was computed only for cells with @ > 0
for all j. Among those cells, the seven most active were
allowed to generate positive learning signals ¢; for the
first 50% of learning trials. Learning was then further
restricted to the three most active cells for the final 50%
of learning trials. Moreover, the maximal ¢, was always
given a value of 1.0, while the maximum of the remaining
positive ¢ ranged from 0.5 early in learning to 0.2 late
in learning. The same qualitative results hold for any
similar scheme, and no attempt was made to optimize
parameters used in this portion of the simulation.

4.4. Learning the Direction-to-Rotation
Transform

The neural populations that represent the joint rotation
vector DV, code a set of joint rotation commands to be
integrated by populations at the PPV, stage, as in Figure
4. These DV, populations receive inputs from two
sources: ERG cells and PDMy,, cells. During training, the
ERG activates DV, cells with random values x; for a brief
period during the action—perception cycle. During per-
formance, the ERG is off, and the signals ¢,z from the
active PDM s sites k alone activate the DV, populations.
Thus, the DV,, activities r; may be approximated by the
following equation:

r1=x1+ Eckzki (13)
s

where x; is the ERG activation and zi is the adaptive
weight, or [TM trace, from population & in PDMns to
population 7 in DV,,,. Equation (13) is an algebraic equa-
tion, rather than a differential equation, because r; is
assumed to track its inputs at a fast integration rate.
The 7, activities are organized into antagonistic pairs,
with each antagonistic pair corresponding to movements
about a single joint. The notation rf and 7} will be used
to denote excitatory and inhibitory members of an an-

tagonistic pair corresponding to joint angle ,, with each
member in the pair given a separate subscript in Eq.
(13). For example, a nonzero activity »; results in an
increase in joint angle 6,, and a non-zero activity 7}
results in a decrease in joint angle 8;; see Egs. (15) and
(16). During each training cycle, ERG activation x; of one
DV, cell of each antagonistic pair is chosen from a uni-
form distribution between 0 and 1, and ERG activation
of the other cell in the pair is set to 0 for that training
cycle. All x, = 0 when the ERG is off, and the cezi
activation is small early in training. Thus x; dominates r,
during training and Z.ckzw; dominates r; during perfor-
mance.

The adaptive weights, or LTM traces, z.; between
PDM.,s cell £ and DV, population ¢ were initialized at
zero and modified according to the following learning
equation:

d—;;—' = yCu(—0zp + 11) (14)
where 7y is a small learning rate parameter, and 8 is a
decay rate parameter. The parameter values y = 1 and
8 = 0.2 were used in the simulations. Equation (14) is
an example of outstar learning (Grossberg, 1968). During
outstar learning, activating ¢, opens a learning gate which
allows the LTM trace zi to approach, or track, r; via
steepest descent. Qutstar learning improves on Hebbian
learning by allowing synaptic weights to either increase
or decrecase during learning. Proofs exist for determin-
istic convergence to a weight vector proportional to a
single postsynaptic vector or centroid of vectors (Gross-
berg, 1968, 1969, 1982) or for stochastic convergence to
the centroid of a set of postsynaptic vectors (Clark &
Ravishankar, 1990a, 1990b). An important condition for
convergence is that the postsynaptic activities r; and adap-
tive weights 2zr; are bounded. The r; remain bounded
provided that the differential equation whose equilib-
rium behavior is approximated by Eq. (13) is a mem-
brane, or shunting, equation (Grossberg, 1973, 19706).
Then Eq. (14) guarantees that the z, are bounded within
the same range. )

4.5. Linear and Nonlinear Integration of
Joint Rotation Vectors

The PPV,, populations integrate signals from correspond-
ing DV, populations to produce an outflow command
specifying a set of joint angles (Fig. 4). Each PPV, cell
codes the angle of a particular joint and receives input
from two DV, cells: an excitatory input from a DV, cell
coding increments to that joint angle, and an inhibitory
input from a DV,, cell coding angle decrements (Bullock
& Grossberg, 1988a; Gaudiano & Grossberg, 1991). Thus,
the net input integrated by the PPV, cell is the difference
between the activities of the two corresponding DV,
cells. Two versions of this integration process are used
in the simulations. The first version integrates the net
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DV, value, with equal changes occurring in joint angle
for a given net DV, activity regardless of where the joint
is in its range of motion, until the joint reaches the end
of its range of motion. In the second version, a given net
DV, activity causes smaller changes to the PPV, com-
ponent when the joint nears the extremes of its range.
The latter version is used to illustrate the ability of the
model to operate correctly with a nonlinear relationship
between joint rotation commands and the actual joint
angle changes that result. Although formulated as a non-
linear relationship between DV, activities and changes
in PPV,, activities, this version is functionally equivalent
to a system with a nonlinear relationship between PPV,
commands and the actual limb configuration.

The updating rule used for the first version (linear
integration) is:

(15)

% a;=¢€(ri —ri)
where a = (a,a.a3) is the PPV, vector, a; is the angle
command for joint 7, i and r/ are the corresponding
excitatory and inhibitory DVy, cell activities, respectively,
and € is an integration rate parameter. In the simulations,
a; specified the joint angle 8, in degrees, and an integra-
tion rate parameter € = 0.25 was used. For the second
version (nonlinear integration), the updating rule was:

d : ,

E a; = €(rf - r{) I_llbmux - lbrcmll - NJI - d’rcsnl] (16)
where ¥; is the angle of the joint corresponding to a,
Wmax i the maximum angle of this joint, and .. is
assumed t0 be (Wmax — WYnin)/2.

4.6. Mapping from Limb Configuration to
Multimodal Representation of End Effector
Position

Section 2.3 described the value of having an internal
pathway from the PPV,, for updating the multimodal
spatial coordinate representation PPV, of end effector
position. Figure 12 shows a blowup of the stages that
were used to learn this feedback mapping. As shown,
outputs of the limb configuration vector at PPV, are sent
to the PPM., stage where these vectors are classified into
different map locations, e.g., via a self-organizing feature
map. Because such self-organization was not our focus,
we once again sought an efficient approximation suffi-
cient for demonstrating DIRECT properties. To assure
sufficient resolution for the blind reaching simulation,
we divided the range of each joint into 25 angular zones
and created 25 X 25 X 25 cells at the PPAM,, stage to
cover the entire space of configurations possible for the
3-joint limb. Thus the activation function for sites £ in
PDM;, was :

.={1
=14
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Figure 12. Scheme for learning a motor-to-spatial mapping that al-
lows corollary discharge information from PPV, 10 specify end effec-
tor spatial position at PPV,,, when visual feedback of end effector
position is unavailable.

and the non-overlapping ranges (a4 *] were smaller
than the ranges used in Eq. (12). Each PPA1, stage cell
therefore responded maximally to a small neighborhood
of limb configuration vectors PPV,,. All cells at the PP,
stage project, in turn, to the stage PPV, via modifable
SYnapses.

These modifiable synapses learn the activities instated
at the PPV, stage by outputs of the PPV, stage. After
learning, the internal feedback pathway PPV, —
PPM,, — PPV, can substitute for the external visual
pathway PPV,,, — End Effector Position — PPV, — PPV,
As shown in Section 3.6, this jeads to the ability to per-
form blind reaches specified in spatial coordinates even
if visual feedback is unavailable.

The six cell population activities m;, £ = 1, ..., 6, of
the vector M that represents end effector position at
PPV, are assumed to form three antagonistic pairs. At
equilibrium, they obey the equation

Lef + g Sl

(18)

m; =
Ueite)+ %jk(zbi + Zwr)

where { is a large gain constant for visual end effector
daa E = (ey, ey . . ., €6), Jx is the activity of the kth cell
in the PPM,, stage, Zp is the weight of the adaptive
connection between j. and »7, and the subscript 7 de-
notes the index of the cell antagonistically paired with
cell i. This equation ensures normalization of total activity
distributed between each opponent pair. It is the type of
normalization exhibited by feedforward on-center off-
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surround shunting networks (Grossberg, 1973, 1982).
The use of a high gain pathway to ensure dominance of
a visual input over another input to a normalized net
was also used in Grossberg and Kuperstein (1986, 1989).
In the present simulations, it is assumed that the gain
constant { is large enough that the following approxi-
mations are valid. With visual feedback,

€; ,
= — =7 < 1
m; p n el, 1 H 6 ( 9)
In the absence of visual feedback,
> JeZui
m; o 1=i<6 (20)

g Jl(Zei + Zur)

The adaptive connections between the PPM,, stage and
the PPV, stage were initialized at zero and modified
according to the outstar learning law:

Az .
=H Nl —KZe + m,)

at 21

where 7 is a learning rate parameter, and « is a memory
decay rate parameter. Parameter values 7 = 1 and « =
0.2 were used in the simulations.

5. COMPARISONS WITH
NEUROBIOLOGICAL DATA

Data from several recent neurophysiological studies of
primate single cell properties in motor cortex and re-
lated areas are consistent with the approach to inverse
kinematics used in the DIRECT model. A number of
investigators have described cells in several motor areas,
including the motor cortex (MC), supplementary motor
area (SMA), and putamen, whose activity levels are de-
pendent on movement direction (Georgopoulos et al.,
1984; Kettner, Schwartz, & Georgopoulos, 1988; Kalaska,
Cohen, Hyde, & Prudhomme, 1989; Alexander &
Crutcher, 1990; Caminiti, Johnson, & Urbano, 1990). That
these cells were indeed sensitive to movement direction
rather than target positions was demonstrated by Kettner
et al. (1988) who showed that changes in cell activity did
not differ statistically for parallel movements from dif-
ferent origins. Evidence that some of these cells code
external space direction rather than direction in joint or
muscle space is found in Alexander and Crutcher (1990).
In that study, monkeys were trained to move a mouse
with their hand to cause a cursor to move to a target
location on a monitor. On some trials the cursor moved
in the same direction as the hand, while on other trials
cursor movement was in the opposite direction than the
hand movement. In addition to cells that fired prefer-
entially for limb movements in a given direction, many
cells were found which fired for a given direction of
cursor movement independent of the limb movement

direction that achieved this cursor movement. This result
indicates that such cells are sensitive to movement di-
rection in external space rather than joint space because
they fire in concert with a movement direction in exter-
nal space regardless of the movement direction in joint
space. Cells whose activity was related to limb movement
direction independent of cursor movement direction
may have coded direction in either joint space or exter-
nal space. Both possibilities are consistent with a system
that maps spatial direction to joint angle increments.
Caminiti et al. (1990) studied movements in many
directions within three distinct regions of the workspace,
covering a much larger range of the workspace than that
studied by Kettner et al. (1988). The regions were chosen
such that a movement in a given spatial direction had to
be carried out with different joint space movement di-
rections in each of the three workspace regions. Motor
cortical cells that were primarily related 1o shoulder
movement were studied. Results showed that the pre-
ferred spatial direction of a given cell was different in
different parts of the workspace. The changes in pre-
ferred directions when moving from one workspace re-
gion to another were orderly, with the rotation in
preferred direction closely following the rotation of the
shoulder joint between the two regions. The authors
suggested that each of the studied cells commanded a
synergy of muscle activity, and that the cell’s preferred
direction in different parts of the workspace corre-
sponded to the direction of movement caused by instat-
ing this synergy. This is equivalent to defining preferred
direction of the cell as a fixed direction in joint space.
Different interpretations of neurophysiological data
lead to different alternatives for the direction-to-rotation
mapping in the current model. Figure 13 illustrates three
possible schemes for learning this mapping, with fixed
weight connections indicated by arrows and adaptive
weight connections indicated by semicircles. Figure 13a
illustrates the mapping scheme used in the above sim-
ulations. In this scheme, cells sensitive to a particular
motion direction and joint configuration (PDMq; cells in
Fig. 4) each learns a “synergy” of joirit angle increments
that is effective in producing this motion direction when
the arm is in the appropriate joint configuration. In Fig-
ure 13b, learning occurs between PDMq.s cells and
prewired “microsynergies” spanning several joints.
Movement is specified by change in a PPV, command
resulting from integration of all active microsynergy in-
puts. In this scheme, a “synergy” for a given movement
can be thought of as the summed effect of all microsy-
nergies active during that movement. Simulations using
this scheme have also proven successful in controlling
planar movements by a three joint arm. Figure 13¢ shows
a third possibility based on a model developed by Bur-
nod et al. (1990) to explain data from the Caminiti et al.
(1990) study described above. In this scheme, motor
cortical cells with hard-wired, weighted connections to
many muscles, akin to the microsynergies in Figure 13b
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Figure 13. Three schemes for mapping between motion direction
and muscle length or joint angle commands. Arrows indicate fixed-
weight connections, and semicircles indicate adaptable connections.

are reciprocally connected with cells in a matching layer.
The matching layer cells fire if the arm is in a particular
configuration and either: (1) the “efference copy” input
from an associated motor cortical cell is active due to
spontaneous firing of that cell, or (2) input from cells
specifying a desired motion direction is present. Learning
of the mapping occurs by spontaneously activating a
microsynergy, which indirectly activates a spatial direc-
tion cell by causing a movement, and directly activates a
joint configuration cell through a reciprocal connection.
The connections between the active spatial direction and
joint configuration specific cells are then strengthened
by learning. In all three circuits, joint angle or muscle
velocity commands become associated with appropriate
combinations of spatial direction and joint configuration.

Consideration of the Caminiti et al. (1990) data limits
the cell types of Figure 13 that may be considered can-
didates for the observed motor cortical cells. These data
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showed cells that responded in many parts of joint space,
thus eliminating cells whose activation is dependent
upon a particular joint configuration. This leaves only
the DV, cells from scheme (a) and the MICROSYNER-
GIES cells from schemes (b) and (c) as candidates for
the motor cortex cells studied by Caminiti et al. (1990)
and by Georgopoulos et al. (1984). This conclusion is in
agreement with the interpretation of Bullock and Gross-
berg (1988a; see also 1991) and Mussa-Ivaldi (1988).

The primary difference between scheme (a) and
schemes (b) and (¢) concerns the action of the hypoth-
esized motor cortical cells on spinal motoneurons. Spe-
cifically, do individual motor cortical cells influence a
motoneuron pool innervating several muscles as in
schemes (b) and (c), or only a particular muscle as in
scheme (a)? The biological data concerning this issue
are inconclusive. Early experiments that relied on stim-
ulation of the cortical surface seemed to indicate that
local areas in motor cortex induce activity in several
muscles. By stimulating deep pyramidal cells directly,
however, Asanuma and Sakata (1967) showed that very
low stimulation currents resulted in activation of a single
muscle, whereas significantly higher currents, up to five
times as large as those required for single muscle activity,
were required to cause activity in more than one muscle.
Some recent investigators have nonetheless reported that
motor cortical cells might influence muscle combina-
tions. For example, Schwartz, Kettner, and Georgopoulos
(1988) stated that their evidence “suggests that motor
cortical cells might relate to weighted combinations of
muscles. . . . This arrangement would provide a rich
substrate for the motor cortical control of multidimen-
sional arm movements” (p. 2926). In any case, the success
of simulations using both schemes (a) and (b) indicates
that many anatomies along the continuum from strictly
single muscle activation to multijoint activation cells can
successfully self-organize and will possess the robustness
exhibited in these simulations.

The current model provides insight into another as-
pect of these neurophysiological data. Many neurophys-
iologists have reported that motor cortical cells seem to
be broadly tuned to desired direction of movement.
Thus, a motor cortical cell fires with maximal response
rate for movement in a particular preferred direction,
and at progressively lower rates for movement directions
farther away from the preferred direction. Schwartz et
al. (1988) fit their data with a directional tuning function
in which response rate is a linear function of the cosine
of the angle berween the cell’s preferred direction and
the actual direction of the movement. Two possible in-
terpretations of this phenomenon arise within the con-
text of the current model. In the first interpretation,
information specifying the desired movement direction
may be broadly tuned. Then, instead of only becoming
active for a small range of desired movement directions,
individual PDM,,, cells would be tuned to respond with
the broad tuning curve reported by Schwartz et al
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(1988). Computer simulations using this approach have,
however, invariably resulted in movement trajectories
that deviated greatly from the desired movement trajec-
tory. Though such results suggest the need for relatively
sharply tuned directional information for accurate per-
formance of a desired trajectory, we are exploring the
feasibility of relaxing this requirement.

A second interpretation of these data assumes that the
broadly tuned motor cortical cells correspond to the DV,
cells, as hypothesized above. Then, even if information
specifying movement direction is sharply tuned at the
PDM s stage, measurement of response rates at the DV,
cells will be broadly tuned to direction of movement. To
see this, note that each PDM,., cell projects to all of the
DVq, cells in a weighted combination or synergy. Con-
sider for simplicity only a small range of joint space.
Within this range, each DV, cell is represented in many
synergies corresponding to many motion directions. Ac-
tivation of a particular DV, cell will cause a particular
motion direction of the end effector, corresponding to
the DV, cell's preferred direction. The projection to this
DV,, cell from the corresponding PDM,, cells will be
large. The PDM,, cells that code nearby directions will
have slightly smaller projections to this DV, cell and
slightly larger projections to nearby DVy, cells. As move-
ment direction moves farther away from the preferred
direction of the DV, cell, the cell's contribution to the
synergy for the movement gradually grows smaller and
smaller. '

Figure 14 shows directional tuning curves of DV, cells
after training in the above simulations. Figure 14a plots
cell activity vs. the angular difference between movement
direction and the cell’s preferred direction for a typical
DV,, cell in one small area of joint space after training
was complete. This curve was generated by sweeping
through 360° of motion directions in thirty 12° incre-
ments near a single joint configuration, then calculating
the resulting DV, cell activation for each direction. De-
spite the fact that very sharp directional tuning was used
to specify motion direction, the directional tuning curves
of the DV,; cells show the broad tuning characteristic of
motor cortical cells. Indeed, the solid line in Figure 14b
indicates the average form of DV, tuning curves in the
model after training. This curve was generated by aver-
aging 500 curves as shown in Figure 14a. These 500
measurements were evenly distributed between the six
DV, cells at different joint configurations, by sampling
approximately 83 joint configurations per DV, cell. The
broken line in Figure 14b shows an averaged tuning
curve obtained from single cell measurements in primate
motor cortex by Kalaska et al. (1989). This curve is very
similar to the average curve measured for the model.
Because the simulations were done in two dimensions
with an arm whose geometry differs greatly from that of
a monkey moving in three dimensions, a more quanti-
tative analysis of these curves is not appropriate here.

The fact that sharp directional tuning at the PDM,,

stage was successfully used to produce accurate trajectory
performance leads to the following prediction: Broad
directional tuning of motor cortical cells may be due to
the distributed nature of the mapping from spatial direc-
tions to joint rotations, rather than to broad tuning of
spatial direction at higher levels of the sensorimotor
hierarchy. Further experimental analysis will be required
1o verify or refute this prediction.

6. COMPARISONS WITH OTHER
APPROACHES TO REDUNDANT
CONTROL

The process by which redundant DOFs are efficiently
handled by the motor system was termed sensorimotor
coordination by Bernstein (1967; see also Berkinblit,
Feldman, and Fukson, 1986; Saltzman, 1979). The DI-
RECT model utilizes redundant DOFs in parallel to solve
a task. If some of these DOFs are removed on a given
trial by environmental or internal constraints, the system
can automatically compensate without additional learn-
ing or recomputation by using the remaining DOFs to
produce the movement. Sensorimotor coordination is
attained by learning the effects of many possible actions
utilizing all available DOFs of the system, then applying
all or a subset of these actions in parallel to produce the
desired effect. Thus the DIRECT approach treats redun-
dancy as an advantage to be exploited on every reach.

A common alternative approach to controlling redun-
dant systems is to treat the problem as one of reducing
the redundant DOFs of the system by internally con-
straining the ways in which effectors can be used. This
could involve “freezing” joints or specifying functional
relationships berween joints (Salizman, 1979). For ex-
ample, Soechting and Lacquaniti (1981, p. 719) offered
the following interpretation of data showing that elbow
angular velocity (@) is linearly related to shoulder an-
gular velocity (8) in the latter stages of a reaching move-
ment: “we note that, by introducing such a constraint
(@ = &8 + ¢) the number of degrees of freedom of the
system is reduced from two to one in the terminal phase
of the movement, and thereby, the complexity of the
problem may be reduced . . . . We suggest that the most
economical solution to this control problem compatible
with the data would entail the existence of a planned
trajectory which would be subject to the constraint that
elbow and shoulder velocity be related to each other
linearly as the final position is approached.” Such con-
straints are closely related to the classical concept of a
symergy, or collection of joint motions controlled svn-
chronously as a single unit.

The primary difficulty with the classical notion of a
“synergy-based” approach is the lack of flexibility it af-
fords when external constraints are imposed. If efficiently
controlled, redundancy in a system provides the flexi-
bility to handle the loss of some DOFs due to environ-
mental constraints by using the remaining DOFs to solve
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Figure 14. (a) Typical direc-

tional tuning curve for a
DIRECT model DV, cell.

(b) Directional tuning curve
averaged over 500 measure-
ments of the different joint ve-
locity cells in different parts of
joint space for the simulated
model (solid line) and corre-
sponding data from Kalaska et
al. (1989) (broken line). Model
data have been scaled to cover
the same range as the Kalaska
et al. data.
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the task. Internal constraints, such as synergies that re-
duce the redundant system to a nonredundant system,
destroy this flexibility.

Greene (1982) described a system that might circum-
vent this problem by breaking the control system into
many control subsystems, each of which is proficient in
controlling a nonredundant “virtual arm” formed from
synergy-like constraints on movements of the actual arm.
The problem of dealing with external constraints then
becomes one of choosing a subsystem whose virtual arm
allows completion of the task within these constraints.
Although such a system is useful for many types of mo-
tions, it could prove cumbersome for reaches under
unexpected external constraints since (1) it requires
“mode switching” between subsystems when a chosen
subsystem is rendered ineffective by an unexpected en-
vironmental constraint, and (2) its repertoire of virtual
arms must be large enough to deal with a vast number
of possible environmentally imposed constraints. Al-
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though neither of these criticisms forces rejection of
Greene’s proposal, it seems desirable for a system or
subsystem to auromatically deal with external con-
straints whenever possible without the need for mode-
switching. Thus, although the existence of different
modes of operation with different controllers is not de-
nied here, the current approach attempts to provide
compensation for unexpected events at a low level when-
ever possible, leaving higher processing levels free to
perform other tasks.

Another common approach to controlling systems with
redundant DOFs involves minimizing an objective func-
tion using well-known optimization algorithms such as
steepest descent (as in backpropagation), Newton's
method, or conjugate gradient methods to determine
suitable parameter values for the controlling model; see
Shanno (1990) for a review. In a redundant system, an
objective function that deals only with the desired spatial
goal is typically insufficient because there is no unique
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set of model parameters that minimize this function.
Therefore, it is common practice to add additional con-
straints to the objective function to remove the redun-
dancy and allow for a unique solution. These additional
constraints are typically chosen to achieve desirable and/
or commonly observed properties of the controlling sys-
tem. For example, Jordan (1988) described a model in-
corporating a temporal smoothness constraint that helps
to ensure that temporally adjacent actions do not conflict
with each other. Kawato (1990) described a network that
finds solutions to the inverse dynamics problem which
satisfy a “minimum torque change” criterion. A model
system governed by this criterion has been shown to
accurately reproduce human reaching trajectories under
certain conditions (Uno, Kawato, & Suzuki, 1989).

The current approach differs from these optimization
approaches in that it seeks to maximize “on-line” com-
pensation for new or unexpected constraints imposed
by the environment. Consider for example the effect of
freezing a joint just before a reaching movement begins.
Although an optimization approach could be used to
produce an acceptable trajectory that takes this new con-
straint into consideration, such an approach would in-
volve relearning of system parameters. Like synergy-
based approaches, optimization approaches that use ad-
ditional constraints to do away with redundancy before
considering externally imposed constraints lose the flex-
ibility afforded by redundancy to handle these constraints
when they arise later during performance. In the DIRECT

model, by contrast, the solutions for unconstrained

reaches are formed without sacrificing the flexibility af-
forded by redundancy. Furthermore, the choice of a di-
rection-to-rotation mapping from 3-D space to joint space
allows the system to effectively use this redundancy to
deal with unexpected events in the environment, without
any relearning of model parameters. Such on-line com-
pensation without destruction of previous learning is
essential for biological systems, which must deal with a
variety of unexpected environmental conditions quickly
and flexibly.

Models of Hinton (1984) and Berkinblit, Gelfand, and
Feldman (1986) considered some concepts similar to
those in the current model. In Hinton (1984), however,
the difficult inverse kinematics problem for redundant
manipulators is not addressed because the joint angle
changes that move the arm are formulated simply by
calculating the torques and resulting angle changes that
would occur at each angle if the arm was “pulled” directly
toward the target. Nonetheless, this model contains two
interesting properties that are relevant to the current
model. First, Hinton demonstrated that two tasks (e.g.,
maintaining balance and reaching toward the target)
could be simultaneously performed by independently
inducing joint angle increments that work to complete
them, even if the tasks each require increments to the
same joints. This is done by weighted addition of the
increments that are specified by the different tasks to a

given joint. This result is pertinent to the DIRECT model
because it outlines a method for incorporating other
motor constraints, such as maintaining balance during a
reach, simultaneously with reaching movements. Hinton
(1984) also noted that the number of iterations to task
completion could be reduced if combinations of joint
increments whose side-effects cancel out, such as move-
ments in directions orthogonal to the desired movement
direction, are used in addition to increments to individ-
ual joints. This concept of synergies differs from the more
common treatment, in which synergies reduce the num-
ber of DOFs that need to be controlled. The synergies
in Hinton’s model increase efficiency rather than de-
crease the number of DOFs. The DIRECT model takes
this concept a step further by initiating orly appropriate
synergies, essentially eliminating unwanted side effects
under normal conditions. The model accomplishes this
by solving a fundamental problem not dealt with by
Hinton; namely, how does the system know which syn-
ergies to apply in a given situation, given that the use-
fulness of a given synergy is dependent on current joint
configuration and movement direction? The DIRECT
model learns which movement directions a synergy pro-
duces in different parts of the workspace under on-line
movement conditioning and later uses the synergies de-
rived from this learning. By experiencing a large enough
number of synergies, the system becomes capable of
choosing appropriate sets of synergies to produce de-
sired movement directions throughout the workspace.

Berkinblit et al. (1986b) described a model that con-
trols planar movements of a 3-joint limb. This model
solves the inverse kinematics problem for a redundant
manipulator by independently calculating joint angle in-
crements according to the following equation:

6, = k{D, W,] = k/ID[IIWisin a; (22)

i = 12,3, where §; is the angle of the ith joint, [D, W]
is the cross product of the desired movement vector D
and the joint's working vector Wy, k; is a constant, and
a; is the angle between D and W,. The working vector
of a joint is defined as the spatial vector between the
center of rotation of the joint and the endpoint of the
arm. This model displays robustness to “freezing” of a
joint as well as motor equivalence in the sense that it
can reach a target with many different final joint config-
urations. One significant drawback of this model, how-
ever, is that the trajectory produced by Eq. (22) does not
accurately move the end effector along the desired move-
ment vector toward the target. This is because the model
computes each &, independently; there is no mechanism
for controlling the combined effects of the 6, rotations
to move the arm in the desired direction. As a result, the
system does not have an accurate mapping between end
effector movement directions and the joint angle changes
that produce those movement directions. Instead, angle
increments are chosen that move the end effector in the
general direction of the target. The end effector will
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consequently approach the target, but its trajectory can-
not be controlled accurately. Most skilled motor tasks,
such as handwriting or tracing, do require accurate con-
trol over the direction of end effector motion, as pro-
vided by DIRECT.

The models of Hinton (1984) and Berkinblit, Gelfand,
and Feldman (1986) also do not address some important
issues concerning control of movement in biological
systems. Unlike these models, the DIRECT model sug-
gests how a neural controller can develop without
a priori knowledge of the relationship between joint
movements and the 3-D spatial results of such move-
ments, how sensory data indicative of end effector po-
sition can be combined from different modalities, how
this sensory information can drive and shape ongoing
movement, and how the system can continually retune
its transformations to deal with changes in effector prop-
erties. Moreover, all the inputs to the DIRECT model are
readily available in the sensorimotor environment. By
contrast, it is not clear how an organism would gain
access to information about the spatial coordinate work-
ing vector for each of its joints.

Mel (1990; pp. 17, 66-68) briefly described a scheme
for learning-a redundant mapping from motion direc-
tions to joint angle perturbations of a robotic arm that is
similar to the mapping scheme in the current work. As
this mapping was not the focus of Mel (1990), few im-
plementational details were given, and the motor equiv-
alent properties of this mapping were not explored. The
present work has investigated the properties of such a
mapping as they relate to motor equivalent human per-
formance, describes in detail how such a mapping can
naturally arise in biological systems, and compares
model cells to cell data from neurophysiological exper-
iments.

CONCLUDING REMARKS

The current approach may prove useful in the study of
motor equivalence and sensorimotor coordination in
other modalities. For example, eye-head coordination
has a natural interpretation within the framework of the
current model. Target specification in body-centered co-
ordinates results in a spatial DV, and this spatial DV maps
to both neck muscles and eye muscles whose activation
can zero the DV. If, for example, the neck muscles are
made ineffective by immobilizing the head using a bite-
bar, the eye muscles could still complete the movement
even though attempts to move the head are unsuccessful.
The current approach has also been extended to speech
production (Guenther, 1992).

Further development of the DIRECT miodel will inves-
tigate how the model can retain the kinematic properties
characteristic of human and monkey movement trajec-
tories that have elsewhere been explained using the VITE
model (Bullock & Grossberg, 1988a, 1988h, 1989, 1991).
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In the current, simplified implementation, activity at the
PDMn stage is all or none, so additional structure is
required to ensure that the magnitude of the DV, is
proportional to the magnitude of the DV, as in the VITE
model. One aspect of this synthesis has been explored
in the VITEWRITE model of Bullock, Grossberg, and
Mannes (1992), which shows how a motor program that
generates appropriately timed directional commands
such as those computed by DIRECT can produce fluent
handwriting that exhibits many properties of human psy-
chophysical data.

The present model instantiation indicates the types and
ordering of vector stages and map stages that are com-
petent to generate the motor equivalence properties
characteristic of flexible planned movements. Perhaps
most significantly, by explaining positionally accurate
tool use as a consequence of a general competence for
motor equivalent action, the model begins to clarify how
this important property of primate and human social
groups may have emerged during the evolutionary pro-
cess. :

APPENDIX A: KINEMATIC EQUATIONS

Figure 15 defines the different coordinate frames used
in the simulated model. For forward kinematics, joint
angle coordinates (4, &2, 6s) are first transformed into
Cartesian coordinates (X, V), then into the spherical co-
ordinanes (K, ¢ ) corresponding to the internal repre-
sentation of 3-D space described in Section 4.1. The
following equations define the transformation from joint
angles to Cartesian coordinates for the end effector:

+Y

+X 3 fa) -X

Figure 15. Coordinate definitions for the simulated model.
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Xee = LySiné, + Lysin (6, + 6, — )
+ Lysin (6 + 82 + 65) (23)

Yee = L| COS 01 + Lz COs (&] + ﬁz - 77')
+ L3cos (8, + 6, + 65) (24)

where L; is the length of arm segment /. For the simu-
lations, realistic lengths and angle ranges were chosen
for the arm: L, = L, = 280 mm, L3 = 160 mm, 30° <
ﬂ) < 2400, 300 < ﬂz < 1800, and 300 < 05 < 1900.

If a tool is added to the hand, end effector Cartesian
position becomes

xa.=L1 sin 01 + L, sin (€| + ﬂg - 77')
+ L3 sin (01 + 0}_ + 03)
+ Lot Sin (6 + 6 + 65
+ bioot — ﬂ') (25)

Yee = Ll COos 01 + [, cos (ﬂ] + ﬂz - ﬂ')
+ [3cos (6, + 6 + 65)
+ Lioot COS (8, + 6: + 65
+ ﬁuxyl - ﬂ') (26)

where Lioot and 8.0 are the length and angle of the tool,
respectively.

The transformation from-Cartesian to spherical coor-
dinates is defined by the following equations:

R= \/(-xec - -xcfrc)z + 0'00 - Jﬁz (27)
& = arctan G""” — 1’«-) (28)
‘ce — Xeve
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