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A real-time neural network model. called the vector-integration-to-endpoint (VITE) model is devel-
oped and used to simulate quantitatively behavioral and neural data about planned and passive arm
movements. Invariants of arm movements emerge through network interactions rather than through
an explicitly precomputed trajectory. Motor planning occurs in the form of a targei position com-
mand (TPC). which specifies "'here the arm intends to move. and an independently controlled GO
command. ,,'hich specifies the movement'soverall speed. Automatic processes convert this informa-
tion into an arm trajectory with invariant properties. These automatic processes include computa-
tion of a present position command (PPC) and a difference vector (DV). The DV is the difference
bet\\'een the PPC and the TPC at any time. The PPC is gradually updated by integrating the DV
through time. The GO signal multiplies the DV before it is integrated by the PPC. The PPC generates
an outflow movement command to its target muscle groups. Opponent interactions regulate the
PPCs to agonist and antagonist muscle groups. This system generates synchronous movements
across synergetic muscles by automatically compensating for the different total contractions that
each muscle group must undergo. Quantitative simulations are provided of\\'oodworth.s law. of the
speed-accuracy trade-off known as Fitts's law. of isotonic arm-movement properties belore and after
deafferentation. of synchronous and compensatory "central-error-correction' properties of isomet-
ric contractions. of velocity amplification during target sy,'itching. of velocity profile invariance and
asymmetry. of the changes in velocity profile asymmetry at higher movement speeds. of the auto-
matic compensation for staggered onset times of synergetic qluscles. of vector cell properties in
precentral motor cortex.. of the inverse relation between movement duration and peak velocity. and
of peak acceleration as a function of movement amplitude and duration. It is shown that TPC. PPC.
and DV computations are needed to actively modulate. or gate. the learning of associative maps
between TPCs of different modalities. such as bet"een the eye-head system and the hand-arm
system. By using such an associative map. looking at an objel.'t can activate a TPC of the hand-arm
system. as Piaget noted. Then a VITE circuit can translate this TPC into an invariant movement
trajectory. An auxiliary circuit. called the P:lSsive Update of Position (PUP) model is described for
using inflow signals to update the PPC during passive arm movements o\\.ing to external forces.
Other uses of outflow and inflow signals are also noted. such as for adaptive linearization of a nonlin-
ear muscle plant. and sequential readout ofTPCs during a serial plan. as in reaching and grasping.
Comparisons are made with other models of motor control. such as the mass-spring and minimum-
jerk models.

The subjective ease with which we carry out simple action
plans-rotating a wristwatch into view. lifting a coffee cup. or
making a downstroke while writing-masks the enormously
complex integrative apparatus needed to achieve and maintain
coordination among the thousands of sensors. neurons. and
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skeleto-motor units that contribute to any act's planning and
execution. Moreover. recent studies of the kinematics of
planned arm movements (Abend. Bizzi. & Morasso. 1982: At-
keson & Hollerbach. 1985: Howarth & Beggs. 1981) have shown
that the integrative action of all these separate contributors pro-
duces velocity profiles whose global shape is remarkably invari-
ant over a wide range of movement sizes and speeds. This raises
a fundamental question for the theory of sensorimotor control
and for the neurosciences in general: How can the integrated
activity of thousands of separate elements produce globally in-
variant properties?

Two broad species ofans"'ers to this question can be contem-
plated. The first includes theories that posit th~ existence of a
high-level stage involving explicit computation and internal
representation of the invariant. in this case the velocity profile.
as a whole. This representation is then used as a basis for per-

.!q



50 DANIEL BULLOCK AND STEPHEN GROSSBERG

poulos. Kalaska. Caminiti. & Massey. 1982: Georgopoulos. Ka-
laska. Crutcher. Caminiti. & Massey. 1984: Kalaska. Caminiti.
& Georgopoulos, 1983: Tanji & Evarts, 1976): the inverse rela-
tion between movement duration and peak velocity (Lestienne.
1979); and peak acceleration as a function of movement ampli-
tude and time (Bizzi et at.. 1984). In addition, the work reported
here extends a broader program of research on adaptive sensori-
motor control (Grossberg, 1978, 1986, 1987b. 1987c: Gross-
berg & Kuperstein, 1986), which enables functional and mech-
anistic comparisons to be made between the neural systems
governing arm and eye movements. suggests how eye-hand co-
ordination is accomplished. and provides a foundation for work
on mechanisms of trajectory realization that compensate for
the mechanical effects generated by variable loads and move-
ment velocities (Bullock & Grossberg. 1987).

I. Rexible Organization of Muscle Groups
Into Synergies

To move a part of the body. whether an eye. head. arm. or
leg, many muscles must work together. For example. muscles
controlling several different joints-shoulder. elbow, wrist. and
fingers-may contract or relax cooperatively to perform a
reaching movement. When groups of muscles cooperate in this
way, they are said to form a s.\'nergy (Bernstein. 1967: Kelso.
1982).

Muscle groups may be incorporated into synergies in a flexi-
ble and dynamic fashion. Whereas muscles controlling shoul-
der. elbow. wrist. and fingers may all contract or relax synergeti-
cally to produce a reaching movement. muscles of the fingers
and wrist may form a synergy to perform a grasping movement.
Thus one synergy may activate shoulder. elbow. ~iist. and finger
muscles to reach toward an object. and another synergy may
then activate only finger and wrist muscles to grasp the object
while maintaining postural control over the shoulder and elbow
muscles. Groups of fingers may move together synergetically to
playa chord on the piano. or separate fingers may be succes-
sively activated to play arpeggios.

One of the basic problems of motor control is to understand
how neural control structures quickly and flexibly reorganize
the set of muscle groups needed to cooperate synergetically in
the next movement sequence. Once one squarely faces the prob-
lem that many behaviorally important synergies are not hard-
wired, but are dynamically coupled and decoupled through
time in ways that depend on the actor's experience and training,
the prospect that the trajectories of all synergists are explicitly
preplanned seems remote at best. In support of a dynamic con-
ception of synergy formation. Buchanan. Almdale. Lewis. and
Rymer (1986) concluded from their experiments on isometric
contractions of human elbow muscles that "the complexity of
these patterns raises the possibility that synergies are deter-
mined by the tasks and may have no independent existence" (p.
1225).

forming the desired action. Such theories have been favored re-
cently by many \vorkers in the field of robotics. and at least one
theory of this type has already been partially formulated to ac-
commodate kinematic data on human movements: the mini-
mi=ed Cartesian jerk tileor.,' (Rash & Hogan, 1985: Hogan.
1984). \vhich is a special case of global optimization analysis,
The second species of answers includes theories in which no
need arises for explicit computation and representation of the
invariant trajectory as a whole (Sections 6 and 15), In models
associated with such theories, a trajectory with globally invari-
ant properties emerges in real time as the result of events dis-
tributed across many interacting sensory, neural, and muscular
loci.

In this article we describe a theory of arm trajectory invari-
ants that conforms to the latter ideal (Bullock & Grossberg,
1986), Our analysis suggests that trajectory invariants are best
understood not by focusing on velocity profiles as such. but by
pursuing more fundamental questions: What principles of
adaptive behavioral organization constrain the system design
that governs planned arm movements? What mechanisms are
needed to realize these principles as a real-time neural network?
Our development of this topic proceeds via analyses of learned
eye-hand coordination. synchronization among synergists, in-
termediate position control during movement. and variable ve-
locity control. These analyses disclose a neural network design
\\hose qualitative and quantitative operating characteristics
match those observed in a wide range of experiments on human
movement. Because velocity profile invariance. as ",'ell as
speed-dependent changes in velocity profile asymmetry ignored
by prior models (Section II), are among the neural network's
emergent operating characteristics, our work shows that neither
an explicit trajectory nor a kinematic invariant need be explic-
itly represented within a motor-control system at any time,
Thus our work supports a critical insight of workers in the mass-
spring modeling tradition that movement kinematics need not
be explicitly preprogrammed. By the same token, our results
reject a mass-spring model in its customary form and argue
against models based on optimization theory. Instead we show
ho\\' a movement-control system may be adaptive without nec-
essarily optimizing an explicit cost function.

To support these conclusions further. we use the neural model
to simulate quantitatively Woodworth's law and Fitts's law, the
empirically derived speed-accuracy trade-off function relating
error magnitudes. movement distances. and movement dura-
tions: isotonic arm-movement properties before and after
deafferentation (Bizzi. Accornero. Chapple, & Hogan. 1982,
1984: Evarts & Fromm, 1978: Polit & Bizzi. 1978): synchro-
nous and compensatory central-error-correction properties of
isometric contractions (Freund & Biidingen, 1978: Ghez & Vi-
cario. 1978: Gordon & Ghez. 1984, 1987a, 1987b): velocity
amplification during target switching (Georgopoulos, Kalaska,
& Massey. 1981): velocity profile invariance and asymmetry
(Abend et ai.. 1982: Atkeson & Hollerbach, 1985: Beggs &
Howarth. 197~: Georgopoulos et ai.. 1981: Morasso, 1981:
Soechting & Lacquaniti, 1981): the changes in velocity profile
asymmetry at higher movement speeds (Beggs & Howarth,
1972: Zelaznik. Schmidt, & Gielen, 1986): vector cell proper-
ties in precentral motor cortex (Evarts & Tanji. 1974: Georgo-

2. Synchronous Movement of Synergies

When neural commands organize a group of muscles into a
synergy. the action of these muscles often occurs synchronously
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Fig/I'" I. Consequences oft~.o motor-control schemes. (Dashed lines
represent movement paths generated ~.hen a synergist producing verti-
.:al motion and a synergist producing horizontal motion contract in par-
allel and at equal rates to effect movements !rom \arious bt:ginning
points [8s) to the common endpoint E. Solid lines represent movement
paths generated ~hen the synergists' contraction rates are adjusted 10
compensate for differences in the lengths of the vertical and horizontal
components of the movement.)

1981). and experimental studies (Freund & Budingen. 1978)
have shown that contraction rates are made unequal in a ~-ay
that compensates for inequalities of distance.

What types of adaptive problems are solved by synchroniza-
tion of synergists? Figure I provides some insight into this issue.

.Without synchronization. the direction of the first part of the
movement path may change abruptly several times before the
direction of the last part of the movement path is generated
(Figure I). This creates a problem because transporting an ob-
ject from one place to another with the arm may destabilize the
body unless one can predict. and anticipatorily compensate for.
the arm movement's destabilizing effects, which are always di-
rectional. In the same way. many actions require that forces be
applied to surfaces in particular directions. The first control
scheme makes the direction in ~'hich force is applied difficult
to predict and control. Both of these problems are eliminated
by the approximately straight-line movement paths that be-
come possible when synergists contract synchronously. Finally.
if the various motions composing a movement failed to end syn-
chronously. it would become difficult to ensure smooth transi-
tions between sequentially ordered movements.

In summary. the untoward effects of asynchrony place strong
constraints on the mechanisms of movement control: Across
the set of muscles whose synergistic action produces a multi-
joint movement. contraction durations must be roughly equal.
and because contraction distances are typically unequal. con-
traction rates must be made unequal in a way that compensates
for inequalities of distance.

through time, It is partly for this reason that the complexity of
the neural commands controlling many movements often goes
unnoticed. These movements seem to occur in a single gesture.
rather than as the sum of many asynchronous components,

To understand the type of control problem that must be
sol\'ed to generate synchronous movement. consider a typical
arm movement of reaching fof\vard and across the body mid-
line ,,'ith the right hand in a plane parallel to the ground, Sup-
pose. lor simplicity. that the synergist acting at the shoulder is
responsible for across-midline motion. that the synergist acting
at the elbow is responsible for torward motion. and that the
hand is to be moved from Points 8 I. 82. or 83 to Point E. Fig-
ure 1 illustrates the effects of two distinct control schemes that
might be used to produce these three movements. In the first
scheme. the two synergists begin their contractions synchro-
nously. contract at the same rate. and cease contracting when
their respective motion component is complete. This typically
results in asynchronous contraction terminations and in bent-
line movements because the synergist responsible for the longer
motion component takes more time to complete its contribu-
tion. With this scheme. approximately straight-line motions
and synchronous contraction terminations occur only in cases
like the 82-E movement. for which the component motions
happen to be of equal length, In the second scheme. the two
synergists contract. not at equal rates. but at rates that have
been adjusted to compensate for any differences in length of the
component motions. This results in synchronous contraction
terminations. ;-Jormal arm-movement paths are similar to
those implied by the second control scheme (e.g.. Morasso.

3. Factoring Target Position and Velocity Control

Inequalities of distance are translated into neural commands
as differences in the total amounts of contraction by the muscles
forming the synergy and. thereby. into mechanical terms as the
total amounts of change in the angles between joints (Holler-
bach. Moore. & Atkeson. 1986). To compensate for differences
in contraction. information must be available that is sufficient
to compute the total amounts of contraction that are required.
Thus a representation of the initial contraction level of each
muscle must be compared with a representation of the target.
expected. or final contraction level of the muscle. A primary
goal of this article is to specify how this comparison is made.
Although information about target position and initial position
are both needed to control the total contraction of a muscle
group. these two t~-pes of information are computed and up-
dated in different ways. a fact that we believe has caused much
confusion about whether only target position needs to be coded
(Section 6). In particular. y,'e reject the common assumption
(Adams. 1971) that the representation of initial contraction
used in the comparison is based on afferent feedback from the
limbs. We propose instead that it is based primarily on feedback
from an outflow-command integrator located along the pathwa~'
between the precentral motor cortex and the spinal motorneu-
rons.

Another source of confusion has arisen because target-posi-
tion information is needed to form a trajectory. This is the type
of information that invites concepts of motor planning and ex-
pectation. However tempting it may be to so infer. conceDts of
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motor planning and expectation do not imply that the whole
trajectory is explicitly planned.

A second aspect of planning enters into trajectory formation
that also does not imply the existence of explicit trajectory plan-
ning. This aspect is noticed by considering that the hand-arm
system can be moved between fixed initial and target positions
at many different velocities. When. as a result of a changed ve-
locity. the overall movement duration changes. the component
motions occurring around the various joints must nonetheless
remain synchronous. Because fixed differences in initial and
target positions can be converted into synchronous motions at
a wide range of velocities, there must exist an independently
controlled velocity. or GO signal (Section 10). The independent
control of target-position commands (TPCs) and velocity com-
mands (GO signals) is a special case of a general neural design
that has been called the .factori=ation Qf pattern and energ) ,

(Grossberg. 1978. 1982).

ioral and neural constraints. This issue can be better under-
stood by considering the following gedanken example. When
each of two fingers is moved separately through different dis-
tances. each finger may separately obey Fitts's law. Then the
finger that moves a longer distance should take more time to
move. other things being equal. In contrast, when the two fingers
move the aforementioned distances as part of a single synergy,
then each finger should complete its movement in the same time
in order to guarantee synergetic synchrony. Thus either one of
the fingers must violate Fitts's law, or it must reach its target
with a different level of accuracy. Kelso, Southard. and Good-
man (1979) and Marteniuk and MacKenzie (1980) have experi-
mentally studied this type of synchronous behavior in experi-
ments on one- or two-handed movements and have documented
within-synergy violations of Fitts's law.

Such examples suggest that Fitts's law holds for the aggregate
behavior of the largest collection of motor units that form a
synergy during a given time interval. Fitts's law need not hold
for all subsets of the motor units that compose a synergy. These
subsets may, in principle, violate Fitts's law by traveling vari-
able distances in equal time to achieve synchrony of the aggre-
gate movement. To understand how Fitts's law can be recon-
ciled with movement synchrony thus requires an analysis of the
neural control mechanisms that flexibly bind muscle groups.
such as those controlling different fingers. into a single motor
synergy. If such a binding action does not involve explicit plan-
ning of a complete trajector)'. yet does require activation of a
target position command and a GO command. then neural ma-
chinery must exist that is capable of automatically converting
such commands into complete trajectories with synchronous
and invariant properties. One of the primary tasks of this article
is to describe the circuit design of this neural machinery and to
explain how it works.

4. Synchrony Versus Fitts's Law: The Need for a Neural
Analysis of Synergy Formation

Our discussion of synchronous performance of synergies has
thus far emphasized that different muscles of the hand-arm sys-
tem may need to contract by different amounts in equal time
in order to move a hand through a fixed distance. When move-
ment of a hand over different distances is considered. a striking
Contrast between behavioral and neural properties of move-
ment becomes evident. This difference emphasizes that syner-
gies are assembled and disassembled through time in a flexible
and dynamic way.

Fitts's law (Fitts. 1954: Fitts & Peterson. 1964) states that
movement time ("\IT) of the arm is related to distance moved
(D) and to width of target (Ul by the equation

5. Some General Issues in Sensorimotor Planning:
Multiple Uses of Outflow Versus Inflow Signals

Before beginning a mechanistic analysis of these circuits. we
summarize several general issues about motor planning to place
the model developed in this article within a broader conceptual
framework. In Sections 7 through 12 and 16 through 18. a num-
ber of key experiments are reviewed to constrain more sharply
the theoretical analysis. In Sections 11 through 18, computer
simulations of these data properties are reported.

Neural circuitry automates the production of skilled move-
ments in several mechanistically distinct ways. Perhaps the
most general observation is that animals and humans perform
marvelously dexterous acts in a world governed by Newton's
laws, yet they can go through life without ever learning New-
ton's laws and. indeed. may have a great deal of difficulty learn-
ing them when they try. The phenomenal world of movements
is a world governed by motor plans and intentions. rather than
by kinematic and inertial laws. A major challenge to theories of
biological movement control is to explain how people move so
well within a world whose laws they may so poorly understand.

The computation of a hand's or arm's present position illus-
trates the complexity of this problem. Two general types ofpres-
ent-position signals have been identified in discussions of motor

where a and b are empirically derived constants. Keele ( 1981 )
has reviewed a variety of experiments showing that Fitts's law
is remarkably ""ell obeyed despite its simplicity. For example.
the law describes movement time for linear arm movements
(Fitts. 1954). rotary movements of the wrist (Knight & Dagnall.
( 1967). back-and.forth movements like dart throwing (Kerr &
Langolf. 1977). head movements (Jagacinski & Monk. 1985).
movements of young and old people (Welford. Norris. &
Schock. 1969). and movements of monkeys as well as humans
(Brooks. 1979).

Equation 1 asserts that movement time (111IT) increases as the
logarithm of distance moved (D), other things being equal. The
width parameter (W) in Equation I is interpreted as a measure
of movement accuracy (Section 27). Although movement dis-
tance and time may covary on the behavioral level that describes
the aggregate effect of many muscle contractions. such a rela-
tion does not necessarily hold on the neural level. where individ-
ual muscles may contract by variable amounts. or distances. to
achieve synchronous contraction within a constant movement
time.

A fundamental issue is raised by this comparison of behav-
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control: o"~floll' signals and ilif/oll'signals. Figure 2 schematizes
the difference between these signal sources. An outflow signal
carries a movement command from the brain to a muscle (Fig-
ure 2a). Signals that branch off from the efferent brain-to-
muscle pathway to register present-position signals are called
C/lrll//ar.I' di.~char.~es (von Helmholtz. 1866: yon Holst &
\1ittelstaedt. 1950). An inflow signal carries present-position
information from a muscle to the brain (Figure 2b). A primary
difference between outflow and inflow is that a change in out-

flow signals is triggered only when an observer's brain generates
a new movement command. A new inflow signal can. in con-
trast. be generated by passive movements of the limb. Evidence
for influences of both outflow (Helmholtz, 1866) and inflow
(Ruffini. 1898: Sherrington. 1894) has accumulated over the
past century. Disentangling the different roles played by outflow
and inflow signals has remained one of the major problems in
motor control. This is a confusing issue because both outflow
and inflow signals are used in multiple ways to provide different
types of information about present position. The following
summary itemizes some of the ways in which these signals are
used in our theory.

Although one role of an outflow signal is to move a limb by
contracting its target muscles. the operating characteristics of
the muscle plant are not known a priori to the outflow source,
It is therefore not known a priori how much the muscle will
actually contract in response to an outflow signal of prescribed
size. It is also not known how much the limb will move in re-
sponse to a prescribed muscle contraction. In addition. even if
the outflow system somehow possessed this information at one
time. it might turn out to be the wrong information at a later
time. inasmuch as muscle plant characteristics can change
through time because of development. aging. exercise. changes
in blood supply. or minor tears. Thus the relation between the
size of an outflow movement command and the amount ofmus-
cle contraction is. in principle. undeterminable without addi-
tional information that characterizes the muscle plant's actual
response to outflow signals.

To establish a satisfactory correspondence between outflow
movement signals and actual muscle contractions. the motor
system needs to compute reliable present-position signals that
represent where the outflow command tells the muscle to move.
as well as reliable present-position signals that represent the
state of contraction of the muscle. Corollary discharges and in-
flow signals can provide these different types of information.
Grossberg and Kuperstein ( 1986) have shown how a compari-
son. or match. between corollary discharges and inflow signals
can be used to modify. through an automatic learning process.
the total outflow signal to the muscle in a way that effectively
compensates for changes in the muscle plant. Such automatic
gain control produces a linear correspondence between an out-
flow movement command and the amount of muscle contrac-
tion even if the muscle plant is nonlinear. The process that
matches outflow and inflow signals to linearize the muscle plant
response through learning is called adaptive lineari=ation of the
muscle plant. The cerebellum is implicated by both the theoret-
ically derived circuit and experimental e,'idence as the site of
learning (Albus. 1971: Brindley. 1964: Fujita. 1982a. 1982b:
Grossberg. 1969. 1972: Ito. 1974. 1982. 1984: Marr, 1969: Mc-
Cormick & Thompson. 1984: Optican & Robinson. 1980: Ron
& Robinson. 1973: Villis & Hore. 1986: Vilis. Snow. & Hore.
1983).

Given that corollary discharges are matched with inflow sig-
nals to linearize the relation between muscle plant contraction
and outflow signal size. outflow signals can also be used in yet
other ways to provide information about present position. In
Sections 16 through 22. we show how outflow signals are
matched with target-position signals to generate a trajectory

Fi,!(lIre -" Both outflow and inflow signals contribute to the brains esti-
mate of the limb's present position. but in different ways.
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to compensate for the e.xpected mass of the object. This type of
automatic gain control can. moreover, be flexibly switched on
and off using signal pathways that can be activated by visual
recognition of a familiar object. Inflow signals are used in the
learning process, enabling such automatic gain-control signals
to be activated in an anticipatory fashion in response to familiar
objects (Bullock & Grossberg. 1987).

This listing of multiple uses for outflow and inflow signals
invites comparison between how the arm movement system
and other movement systems use outflow and inflow signals.
Grossberg and Kuperstein (1986) have identified and suggested
neural circuit solutions to analogous problems ofsensorimotor
control within the specialized domain of the saccadic eye-move-
ment system. Several of the problems to which we will suggest
circuit solutions in our articles on arm movements have analogs
with the saccadic circuits developed by Grossberg and Kup-
erstein ( 1986). Together these investigations suggest that several
movement systems contain neural circuits that solve similar
general problems. Differences between these circuits can be
traced to functional specializations in the way these movement
systems solve their shared movement problems.

For example. whereas saccades are ballistic movements. arm
movements can be made under both continuous and ballistic
control. Whereas the eyes normally come to rest in a head-cen-
tered position. the arms can come to rest in any of infinitely
many positions. Whereas the eyes are typically not subjected to
unexpected or variable external loads. the arms are routinely
subjected to such loads. Whereas the eyes typically generate a
stereotyped velocity profile between a fixed pair of initial and
target positions. the arms can move with a continuum ofveloc-
ity profiles between a fixed pair of initial and target positions.
Our analyses show how the arm system is specialized to cope
with all of these differences between its behaviors and those of
the saccadic eye-movement system.

6. Neural Control of Arm-Position Changes: Beyond
the Spring-to-Endpoint Model

A number of further specialized constraints on the mecha-
nisms controlling planned arm movements can be clarified by
summarizing shortcomings of the simplest example of a .'mass-
spring" model of movement generation, which we will call the
spring-to-endpoint (STE) model, to distinguish it from other
members of the potentially large family of models that exploit
mass-spring properties of biological limbs (e.g., Bizzi, 1980:
Cooke. 1980: Feldman. 1974. 1986: Humphrey & Reed. 1983:
Kelso & Holt, 1980: Sakitt, 1980). As Nichols (1985) and Feld-
man ( 1986) have recently noted, past discussions of mass-spring
properties have mistakenly lumped together quite different pro-
posals regarding how much properties might be exploited dur-
ing trajectory formation. Our treatment in this section is meant
to serve a pedagogical function, and our criticisms pertain only
to the STE model explicitly specified in this section. In particu-
lar, no part of our critique denies that the peripheral motor sys-
tem has mass-spring properties that may be critical to overall
motor function. Indeed. in Bullock and Grossberg (1987), we
analyzed neural command circuits that exploit mass-spring
muscle properties to generate well-controlled movements.

\,.ith synchronous and invariant properties. Thus outflow sig-
nals are used in at least three ways. and all of these ways are
automatically registered: They send movement signals to target
muscles: they generate corollary discharges that are matched
with inflow signals to guarantee linear muscle contractions even
if the muscle plant is nonlinear: and they generate corollary dis-
charges that are matched with target-position signals to gener-
ate synchronous trajectories with invariant properties.

Inflow signals are also used in several ways. One way has al-
ready been itemized. A second use of inflow signals is suggested
by the following gedanken example. When you are sitting in
an armchair. let your hands drop passively toward your sides.
Depending on a multitude of accidental factors. your hands and
arms can end up in any of infinitely many final positions. If you
are then called on to make a precise movement with your arm-
hand system. this can be done with the usual exquisite accuracy.
Thus the fact that your hands and arms start this movement
from an initial position that was not reached under active con-
trol by an outflow signal does not impair the accuracy of the
movement.

A wealth of evidence suggests. however. that comparison be-
t\veen target-position and present-position information is used
to move the arms. Moreover. as will be shown later. this present-
position information is computed from outflow signals. In con-
trast. during the passive fall of an arm under the influence of
gravity. changes in outflow signal commands are not responsible
for the changes in position of the limb. This observation identi-
fies the key issue: How is the outflow signal updated because of
passive movement of a limb so that the next active movement
can accurately be made? Inasmuch as the final position of a
passively falling limb cannot be predicted in advance. it is clear
that inflow signals must be used to update present position
when an arm is moved passively by an external force.

This conclusion calls attention to a closely related issue that
must be dealt with to understand the neural bases of skilled
movement: How does the motor system know that the arm is
being moved passively because of an external force. and not ac-
tively because of a changing outflow command? Such a distinc-
tion is needed to prevent inflow information from contaminat-
ing outflow commands when the arm is being actively moved.
The motor system must use internally generated signals to make
the distinction between active movement and passive move-
ment. or postural. conditions. Computational gates must be
open and shut on the basis of whether these internally generated
signals are on or off(Grossberg & Kuperstein. 1986).

A third role for inflow signals is needed because arms can
move at variable velocities while carrying variable loads. Be-
cause an arm is a mechanical system embedded in a NeWtonian
world. an arm can generate unexpected amounts of inertia and
acceleration when it tries to move novel loads at novel velocities.
During such a novel motion. the commanded outflow position
of the arm and its actual position may significantly diverge. In-
flow signals are needed to compute mismatches leading to par-
tial compensation for this uncontrolled component of the
movement.

Such novel movements differ from our movements when we
pick up a familiar fountain pen or briefcase. When the object
is familiar. we can predictively adjust the gain of the movement
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overall state of balance. At such times, it is often adaptive to
freeze quickly and maintain the current arm position. Freezing
could then be quickly achieved by preventing further changes
in the currently commanded position. In an STE model, this
simple freeze strategy is unavailable because a large discrepancy
exists between present arm position and the target-position
command throughout much of the trajectory. To implement a
freezing response using the STE model, the system would some-
how have to determine quickly and instate a new target-position
command capable of maintaining the arm's present position.
But this is precisely the type of information whose relevance is
denied by the STE model.

7. Gradual Updating of Present-Position Commands
During Trajectory Formation

Several lines of experimental evidence point to deficiencies
of the STE model. One line of evidence. attributable to Bizzi
and his colleagues. demonstrates that a type of gradual updating
of the movement command occurs that is inconsistent with the
STE model. Earlier studies from the Bizzi lab partially sup-
ported the STE model.

In their experiments. Polit and Bizzi (1978) studied monkeys
trained to move their forearms. \\;.ithout visual feedback of hand
position. from a canonical starting position to the position of
one of several lights. The monkeys' arm movements were stud-
ied both before and after a dorsal rhizotomy was performed to
remove all sensory feedback from the arm. Before deafferenta-
tion. the monkey could move its hand to the target's position
without visual feedback. even if its accustomed position with
respect to the arm apparatus was changed. After deafferenta-
tion. so long as the spatial conditions of training were main-
tained-in particular the canonical starting orientation and po-
sition with respect to the known target array-the animal re-
mained able to move its hand to the target position. However. if
the initial position of the upper arm and elbow of the deaffer-
ented arm was passively shifted from the position used through-
out training. then the animal's forearm movements terminated
at a position shifted by an equal amount away from the target
position. Thus the movement of the forearm did not compen-
sate for the change in initial position of the upper arm. Instead
the same final synergy of forearm-controlling muscles \\;.as gen-
erated in both cases.

The fact that deafferented monkeys moved to shifted posi-
tions emphasized the critical role of the target position com-
mand in setting up the movement trajectory. The fact that nor-
mal monkeys could compensate for rotation in a way that
deafferented monkeys could not indicated an additional role for
inflow signals when the arm is moved passively by an external
force (Section 29).

Bizzi et al.'s (1982. 1984) later experiments included an addi-
tional manipulation. The results of these experiments are in-
consistent with the STE assumption that the arm's motion is
governed exclusively by the springlike contraction of its muscles
toward the position specified by a new target-position com-
mand. In these experiments. the monkey was again deprived of
visual and inflow feedback and was placed in its canonical start-
ing position. In addition. its deafferented arm was surreoti-

The components of the STE model for movement control can
be summarized as lollows. Imagine that the eye fixates some
object that lies within reach. To touch the object. it is necessary
to move the tip of the index finger from its current position to
the target position on the object's nearest surface. The STE
mode! suggests that this is accomplished by simply repl.acing the
arm-position command that specifies the arm's present posture
with a new arm-position command that specifies the posture
the arm would have to assume for the index finger to touch the
chosen object surface.

Instatement of the new arm-position command is suggested
to generate the desired movement as follows. The arm is held in
any position by balancing the muscular and other forces (e.g..
gra,'ity) currently acting on the limb. Instatement ofa new com-
mand changes the pattern of outflow signals that contract the
arm muscles. A step change in the pattern of contraction creates
a lorce imbalance that causes the limb to spring in the direction
of the larger force at a rate proportional to the force difference.
The limb comes to rest when all the forces acting on it are once
again balanced. Despite its elegance. the STE model exhibits
several deficiencies that highlight properties that an adequate
control system needs to have. We briefly summarize two funda-
mental problems: (a) confounding of speed and distance control
and (b) inability to terminate quickly movement at an interme-
diate position.

The first problem. the speed-distance confound. follows
from the dependence of movement rate on the force difference.
which in turn depends on the distance between the starting and
final positions. At first this might seem to be a desirable prop-
erty. because it appears to compensate for different distances
in the manner needed to ensure synchronization of synergists
(Section 2). However. consider also the need to vary the speed
of a fixed movement. An actor seeking to perform the same
movement at a laster speed would have to follow a two-part
movement plan: Early in the movement. instate a virtual target
position that is well beyond the desired endpoint and along a
line drawn from the initial through the true target position. This
command will create a very large initial force imbalance and
launch the limb at a high speed. Then. at some point during the
movement. instate the true target-position command and let the
arm coast to the final position. This example illustrates that
the STE mode! requires a complex and neurally implausible
scheme lor achieving variable speed contro! for movements of
fixed length.

Cooke (1980) suggested that variable speed control by an
STE model can be achieved by abruptly changing the stiffness
of agonist and antagonist muscles to achieve differences in dis-
tance and speed. This model has not yet been shown to produce
velocity profiles with the parameteric properties of the data
(Section II). In addition. Houk and Rymer ( 1981 ) and Feldman
(1986) have shown that the stiffness of individual muscles is typ-
ically maintained at a nearly constant level.

A second problem with the STE model concerns the critical
need to abort quickly an evolving movement and stabilize cur-
rent arm position. Such a need arises. for example. when an
animal wishes to freeze upon detection of a predator who uses
motion cues to locate prey. It also arises when an action. such
as transporting a large mass. begins to destabilize an animal's
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Fi.;:rlre 3. Curves for subjects' approach to various targeted force levels.
(Targeted. or peak. levels are reached at nearly the same time. indicating
duration in variance across different force "distances:' Only the initial
part of each curve represents active movement. Postpeak portions rep-
resent passive relaxation back to baseline. Reprinted with permission
from Freund and Biidingen. 1978.)

we practice movements to "learn the basic torque profiles:' In
contrast. we suggest that the readout of the TPC is learned. but
that the gradual updating of the PPC is automatic. A number
of auxiliary learning processes are also needed to update the
PPC after passive movements because of an external force (Sec-
tion 29). to linearize adaptively the response of a nonlinear
muscle plant (Grossberg & Kuperstein. 1986). and to compen-
sate adaptively for the inertial effects of variable loads and ve-
locities (Bullock & Grossberg. 1987). These additional learning
processes enable the automatic updating of the PPC to generate
controllable movements without requiring that the entire tra-
jectory be learned.

tiously held at the target position. then released at variable in-
ter"als after acti,'ation of ~he target light. Under these circum-
stances. the arm traveled back toward the canonical starting
position. belore reversing direction and proceeding to the tar-
get. The arm traveled lurther backward toward the starting po-
sition the sooner it was released after target activation. More-
over. when the arm was moved to the target position and then
released in the absence of any target presentation. it sprang back
to its canonical starting position. Bizzi et al. (1984. p. 2742)
concluded that "the CNS had programmed a slow, gradual shift
of the equilibrium point. a fact ~'hich is not consistent with the
'final position control' [read STE] hypothesis:'

The Bizzi et al. ( 1984) description of their results as a "grad-
ual shift of the equilibrium point" carries the language of the
STE model into a context where it may cause confusion. From
a mathematical perspective. the intermediate positions of a
movement trajectory are not, by definition. equilibrium points.
To explicate the Bizzi et al. (1984) data. we show how three
quantities are computed and updated through time: a TPC that
is switched on once and for all before the movement: an outflow
movement command, called the present-position command
(PPC). ,vhich is continuously updated until it matches the TPC:
and the arm position that closely corresponds to the PPC. We
use these concepts to explain data from the Bizzi lab in both
normal and dealferented conditions.

Vv.e call a movement for which a single TPC is switched on
before the movement begins an elemenlar)' movement. Once it
is seen how a single TPC can cause gradual updating of the PPC.
movements can also be analyzed during ~'hich a sequence of
TPCs is switched on, either under the control of visual feedback
or from a movement-planning network that can store and re-
lease sequences of TPCs from memory with the proper order
and timing (Grossberg & Kuperstein. 1986).

Our analysis of how the PPC is gradually updated during an
elementary movement partially supports the Bizzi et al. ( 1984)
description of a "gradual shift of the equilibrium point" by
showing that the arm remains in approximate equilibrium with
respect to the PPC. even though none of these intermediate arm
positions is an equilibrium point of the system. The only equi-
librium point of the system is reached when both the neural
control circuit and the arm itself reach equilibrium. That hap-
pens when the PPC matches the TPC. thereby preventing fur-
ther changes in the PPC and allowing the arm to come to rest.

These conclusions refine, rather than totally contradict. the
main insight of the STE model. Instead of concluding that the
arm springs to the position coded by the TPC, we suggest that
the springlike arm tracks the series of positions specified by the
PPC as it approaches the TPC. This conception of trajectory
formation contrasts sharply with that suggested by Brooks
(1986, p. 138) in response to the Bizzi et al. data. Brooks in-
ferred that

animals learn not only the end points and their stiffness. but also a
series of intermediate equilibrium positions. In other words, they
learn an internal "reference" trajectory that determines the path
to be followed and generates torques appropriately to reduce mis-
match between the intended and actual events.

8. Duration Invariance During Isotonic Movements
and Isometric Contractions

Further information concerning the gradual updating pro-
cess whereby PPCs match a TPC can be inferred from the de-
tailed spatiotemporal properties of arm trajectory formation.
Freund and Biidingen ( 1978) have studied

the relationship between the speed of the fastest possible \'oluntary
contractions and their amplitudes for several hand and forearm
muscles under both isotonic and isometric conditions. These ex-
periments showed the larger the amplitude. the faster the contrac-
tion. The increase of the rate of rise of isometric tension or of the
velocity of isotonic movements with rising amplitude was linear.
The slope of this relationship was the same for three different hand
and forearm muscles examined. ..the skeleto-motor speed con-
trol system operates by adjusting the velocity of a contraction to its
amplitude in such a way that the contraction time remains approxi-
mately constant. ..this type of speed control is a necessary re-
quirement for the synchrony of synergistic muscle contractions
(p.I).

This study raises two main issues. First. it must be explained
why, "comparing isotonic movements and isometric contrac-
tions. the time from onset to peak was similar in the two condi-
tions" (p. 7). Figure 3 shows the fastest voluntary isometric con-In a similar fashion, Hollerbach (1982, p. 192) suggested that
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distance was too high early in a movement. the trajectory was
"corrected" by shortening the rise time. Had this compensation
not occurred. the high acceleration could have produced a peak
force appropriate for a larger target distance.

Gordon and Ghez (1987b) assumed that trajectories are pre-
planned and that their peak accelerations are a signature indi-
cating which trajectory has been preplanned. It is from this per-
spective that they interpreted the compensatory effect shown in
Figure 5 as an error-correction process. In contrast, we suggest
in Sections 12 and 20 that this compensatory effect is one of the
automatic properties whereby PPCs are gradually updated. We
hereby provide an explanation of the compensatory effect that
avoids invoking a special mechanism of error correction for a
movement that does not generate an error in achieving its tar-
get. In addition. this explanation pro\1des a unified analysis of
the Rizzi et al. ( 1984) data on isotonic movements and the Gor-
don and Ghez (1987b) data on isometric contractions.

Fi,~/Ir(' 4. O\ershooting (gray curve\. hitting (black curve). and under-
shooting (dashed line) a force-level target (horizontal line) in an isomet-
ric task. (Reprinted with permission from Gordon & Ghez. 1987b.)

tractions of the extensor indices muscle. Second. it must be ex-
plained \vh:---e force develops gradually in time with the shapes
depicted in Figure 3. Below it is sho~'n that both duration in-
variance and the force development through time are emergent
properties of the PPC updating process (see Section 21).

10. Target-Switching Experiments: Velocity
Amplification. GO Signal. and Fitts's Law

Our explanation of the Freund and Biidingen (1978) and
Gordon and Ghez (1987a) data considers how a single GO sig-
nal. which initiates and drives all mo"ements to completion.
ensures duration in,'ariance ,\'hen applied to all components of
the synergy defined by a TPC. Georgopoulos et al. ( 1981) have
collected data that provide further evidence pertinent to the hy-
pothesized interaction of a GO signal with the process that in-
states a TPC and thereby updates the PPC. In their experi-
ments. monkeys were trained to move a lever from a start posi-
tion to one of eight target positions radially situated on a planar
surface. Then the original target position was switched to a new
target position at variable delays after presentation of the first
target.
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9. Compensatory Properties of
the PPC Updating Process

Ghez and his colleagues (Ghez & Vicario. 1978: Gordon &
Ghez. 1984. 1987a. 1987b) have confirmed the duration invari-
ance reported by Freund and Biidingen (1978) in an isometric
paradigm that also disclosed finer properties of the PPC updat-
ing process. These authors have suggested that "compensatory
adjustments add to preprogrammed specification of rapid force
impulses to achieve more accurately targeted responses" (Gor-
don & Ghez. 1987b. p. 267).

In their isometric task. subjects were instructed to maintain
superposition of two lines on a CRT screen. The experimenter
could cause one of the lines to jump to any of three positions.
Subjects could exert force on an immobile lever to move the
other line toward the target line. Equal increments of force pro-
duced equal displacements of the line. Thus more isometric
force was needed to move the line over a larger distance to the
target line.

Figure 4 defines the major variables of their analysis. The
force target is represented by the solid black horizontal line. If
the subject performs errorlessly-that is. reaches target without
overshoot-the value of the peak force will equal the value of
the force target. as in the black curve. Overshoots and under-
shoots in force are represented by the gray and dashed curves.
respectively. Figure 5 plots Gordon and Ghez's (1987b) data in
a way that illustrates duration invariance. The horizontal line
through the data points shows that force rise time is essentiallv
independent of peak force acceleration (d~F/dl~) for all the ta~-
get distances.

Gordon and Ghez (1987b) separately analyzed the data for
each of the three target distances and thereby derived the three
oblique lines in Figure 5. They interpreted these lines as evi-
dence for an "error-correction process because a negative cor-
relation exists between peak acceleration and the force rise
time. or duration. Thus. if the acceleration for a small target

ZO 40 60 80 100

PE~K d'F"/dt' (KN/s')

Fi,~!/re -' Duration in\'ariance across three force-target levels. (Oblique
lines indicate an inverse relation between rise time-duration-and
peak acceleration across trials with the same force target level. These
trends overlay a direct relation bet""een target level and peak accelera-
tion. Reprinted with permission from Gordon & Ghez. 1987b.)
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have noted. Our mechanistic analysis of synergetic binding via
instatement of a TPC and of subsequent PPC updating ener-
gized by a previously activated GO signal provides an explana-
tion of this Fitts's law violation as well as of Fitts's law itself
(Section 27).

Our model also suggests an explanation of why the position
of maximal curvature and the time of minimal velocity are cor-
related during two-part arm movements (Abend et al., 1982:
Fetters & Todd, 1987: Viviani & Terzuo10, 1980). This correla-
tion arises in the model if the second TPC is switched on only
after the PPC approaches the first TPC. In the Georgopoulos et
al. (1981) experiment, in contrast, the second TPC is switched
on because of the second light before the arm reaches the first
target. An unanswered question of considerable interest is
whether a second GO signal is switched on gradually with the
second TPC in the Abend et al. ( 1982) paradigm. or whether
the reduction in velocity at the turning point is due entirely to
nulling of the difference between the PPC and the first TPC
while the GO signal maintains an approximately constant
value. These alternatives can be tested by measuring the veloci-
ties and accelerations subsequent to the position of the turning
point.

"""':.:::""",.

+ +
Figure 6 Monkeys seamlessly transformed a movement initiated to-
ward the:! o'clock target into a movement toward the 10 o'clock target
when the latter target was substituted 50 or 100 msafter activation of the
2 o.clock target light. (Reprinted with permission from Georgopoulos.
Kalaska. & Massey. 1981.)

Part of the data confirms the fact that

the aimed motor command is emitted in a continuous. ongoing
fashion as a real-time process that can be interrupted at any time
by the substitution of the original target by the new one. The effects
of this change on the ensuing movement appear promptly. without
delays beyond the usual reaction time (p. 725).

Figure 6 depicts movement paths found during the target-
switching condition. We explain these data in terms of how in-
statement of a second TPC can rapidly modify the future updat-
ing of the PPC.

In addition. Georgopoulos et al. (1981) found a remarkable
amplification of peak velocity during the switched component
of the movement:

The peak velocity attained on the way to the second target was gen-
erally much higher (up to threefold) than that of the control. ..
these high velocities cannot be accounted lor exclusively by a
mechanism that adjusts peak \"elocity to the amplitude of move-
ments. ...The cause of this phenomenon is unclear (pp.
i3:!- 733).

II. Velocity Profile lnvariance and Asymmetry

Many investigators have noted that the velocity profiles of
simple arm movements are approximately bell shaped I Abend
et aI.. 1982: Atkeson & Hollerbach. 1985: Beggs & Ho\varth.
1972: Georgopoulos et aI.. 1981: Howarth & Beggs. 1971: :-.1or-
asso. 1981: Soechting & Lacquaniti. 1981). Moreover. the shape
of the bell. if rescaled appropriately. is approximately preserved
for movements that vary in duration. distance. or peak velocity.
Figure 7 shows rescaled velocity profiles from Atkeson and Hol-
lerbach's (1985) experiment. These velocity profiles were gener-
ated over a fixed distance at several different velocities. Thus
both the duration scale and the velocity scale were modified to
superimpose the curves shown in Figure 7.

On the other hand. Beggs and Howarth (1972) showed that
"at high speeds the approach curves of the practiced subjects
are more symmetrical than at low speeds" (p. 451). and Zelaz-
nik et al. (1986) have shown that at very high speeds the direc-
tion of asymmetry actually reverses. Thus the trend docu-
mented by Beggs and Howarth continues beyond the range of
speeds they sampled. Because velocity profiles associated with
slow movements are more asymmetric than those associated
with fast movements. they cannot be exactly superimposed. All
the velocity profiles shown in Figure 7 are taken from slow (I
to 1.6 s) movements and exhibit the sort of more gradual decel-
eration than acceleration that Beggs and Howarth (197~) re-
ported for such movements.

Asymmetry. its degree. and changes in its direction are of ma-
jor theoretical importance. For example. Hogan's (1984) mini-
mum-jerk model predicts symmetric velocity profiles. More
generally. superimposability of velocity profiles after time-axis
rescaling is a defining characteristic of generalized motor-pro-
gram models (Hogan. 1984: Meyer. Smith. & Wright. 1982:
Schmidt. Zelaznik. & Frank. 1978), which therefore cannot ex-
plain how the degree of velocity profile asymmetry varies with

In Section 24. ",'e explain this phenomenon in terms of the inde-
pendent control. or factorization. of the GO mechanism and
the TPC-switching mechanism described in Section 3. In par-
ticular. the GO signal builds up continuously in time. When the
TPC is switched to a new target. the PPC can be updated much
more quickly because the GO signal that drives it is already
large. The more rapid updating of the PPC translates into
higher velocities.

These target-switching data call attention to a more subtle
property of how a GO signal energizes PPC updating. indeed. a
property that has tended to mask the very existence of the GO
signal: How can a GO signal that was activated with a previous
TPC interact with a later TPC without causing errors in the
ability of the PPC to track the later TPC? How does the energiz-
ing effect of a GO signal transfer to any TPC? A solution to this
problem is suggested in Section 17.

The fact that peak velocity is amplified without affecting
movement accuracy during target switching implies a violation
of Fitts's law. as Massey. Schwartz. and Georgopoulos (1986)
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target. The approach to such a new TPC would take more time.
on the average. than the final approach to the previously tracked
TPC. thereby causing greater velocity profile asymmetry. In our
simulation results, velocity profiles become more symmetric as
movement speed increases and eventually exhibit a symmetry
reversal even in the absence of newly instated TPCs. Thus the
greater symmetry of velocity profiles at higher speeds may be
due to the combined effects of PPC updating properties as the
GO signal is parametrically increased. and to the consequent
elimination of corrective TPCs as the target is rapidly ap-
proached. In support of this analysis. Jeannerod (1984. p. 252)
noted that

the low velocity phase is still observed in the absence of visual feed-
back. and even in the no-vision situation. This finding. however.
does not preclude that visual feedback. when present. will be incor-
porated. ...In the present study. movement duration and low-
velocity phase duration were found to be increased in the \isual
feedback situation.
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In summary. our explanation of these data sho\\"s how a cir-
cuit capable of flexibly binding muscle groups into synchronous
synergies automatically implies the trends observed in data on
velocity profile asymmetry. Thus \\"e suggest an explanation of
movement invariants. such as duration invariance and syn-
chrony. using a control circuit that ne\'er computes an explicit
trajectory and \\"hose outputs exhibit a type of speed-dependent
asymmetry that other models have not been able to explain.
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overall movement speed. In contrast. our model shows how the
gradual updating of the PPC can generate velocity profiles that
exhibit the type of speed-dependent asymmetry that is found in
the data (Section 22).

Both the existence of asymmetry in velocity profiles and the
dependence of degree and direction of asymmetry on move-
ment speed indicate the need for an analysis of the neural dy-
namics whereby a trajectory unfolds in real time. In contrast.
the Hogan ( 1984) model's global optimization criterion forces
strict superimposability of rescaled velocity profiles because it
does not represent a process of temporal unfolding. Beggs and
Ho\l.'arth (197~) suggested that the asymmetry reflects a learned
strategy of approaching the target as quickly as possible before
making corrective movements near the target. For example.
these corrective movements could be made under visual guid-
ance by instating a corrected TPC as the arm approached the

12. Vector Ce;lls in Motor Cortex

Before quantitatively developing our model. we need to indi-
cate how the PPC is gradually updated until it matches a fixed
TPC. Sections 14 through 17 motivate this mechanism through
an analysis of the types of information that can be used by a
developing system to learn TPCs. The summary here is merely
descriptive and is made to link these introductory remarks to
supportive neural data.

When a new TPC is switched on. its relation to the current
PPC can be arbitrary. Any realizable pair of positions can be
coded by the TPC and the PPC. To track the TPC. the PPC
needs to change in a direction determined by the difference be-
tween the TPC and the PPC. In addition. the amollnr of re-
quired change is also determined by this difference. An array
that measures both the direction and the distance between a
pair of arrays. TPC and PPC. is called a difference I'ecror (DV).
At any given time. the DV between the TPC and the PPC-
namely. D V = TPC -PPC -is computed at a match interface

(Figure 8).
How does such a DV update the current PPC'? Clearly the

PPC must be updated in the direction specified by the DV.
Hence we assume that the PPC cumulatively adds. or integrates.
through time all the DVs that arise at the match interface. Be-
cause of this arrangement. the PPC gradually approaches the
TPC. At a time when the PPC equals the TPC. the DV equals
zero; hence. although the PPC may continue to integrate DVs.
it will not change further until either the switching on of a new
TPC creates a nonzero DV or the PPC is updated by inflow
information during a passive movement (Section 29). To sum-

I ,> '~~~

FigitrE' 7 Velocity profiles from movements of similar duration are ap-

proximately superimposable following velocity and time axis rescaling.
(Reprinted with permission Irom Atkeson & Hollerbach. 1985.)
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marize these relations. we call our model the vector-integration-
to-endpoint (VITE) model.

Georgopoulos and his colleagues (Georgopoulos et al., 1982:
Georgopoulos et ai.. 1984) have found cell populations in the
motor cortex whose collective properties mirror those of the
vector-computing nodes at the match interface of our model
(Figure 8). The activity of each such node models the average
potential of a population of neural cells with similar receptive-
field properties. Figure 9 shows a histogram of the average num-
ber of spikes per unit time recorded from a single such neuron.
This temporal behavior closely matches that of a DV cell popu-
lation in the model (Figure 18). The vector cells in motor cor-
tex, just like the DV cell populations in the model, are very

broadly tuned to direction (Figure lOa): that is, there exists a
broad range of directions in which a given component of the
model DV is positive.

Figure II further explicates these properties. Figure II a clar-
ifies why cells ~t the DV stage may be called vector cells at all.
For simple movements, at increasing times 10 < II < 12 < ...,
the relative sizes of the activities across the DV populations do
not change. Hence these populations code a vector direction,
even though their individual absolute activities sweep out an
approximately bell-shaped curve through time. Figure II b il-
lustrates that as movement direction is parametrically changed,
the relative activations of an agonist-antagonist pair ofDV pop-
ulations change systematically in such a way that individual
populations may remain active over a broad range of directions,
as in Figure lOa. Figure II b also schematizes the fact that
different agonist muscles may remain active over different
ranges of direction. depending on the movement in questIon.
Although Figure II a schematizes a formal DV. this DV may
have many components because it controls many muscle
groups. In contrast. the three-dimensional vector that repre-
sents the direction of the arm's movement in Euclidean space
has only three components. One of the major outstanding prob-
lems in arm-movement control is to relate the geometr)" of the
high-dimensional muscle space with the geometry of Euclidean
space.

Because of the importance of explaining why each DV popu-
lation is sensitive to a broad range of directions. we will com-
ment on this property further. The PPC outflow channels must
control several different muscle groups at each joint and several
different joints in each arm. Because of the opponent organiza-
tion of the muscles (Figure lib). up to one half of the cellular
components composing the DV stage will have positive activi-
ties during a given movement.

Each initial positive-valued component, Df.j(O) = TPC,(O)-
PPCj(O) > O. of the DV corresponds to an expected change in
length of one of the many muscle groups whose shortening con-
tributes a motion component to the overall limb movement. If
there were only one active agonist-antagonist muscle pair driv-
ing the movement. the movement would always tend to follow
a preferred direction. Where more than one agonist-antagonist
pair guides the movement. however. a muscle can facilitate mo-
tion along directions other than its preferred direction. In this
case. the net direction of limb motion depends on the relative
sizes Df."j(O) > 0 of the cooperating agonists. so that each Dv"j
population can be active across a broad range of movement di-
rections. as in Figure II b. Because the net movement direction
shifts continuously with the relative sizes DVi(O) of the cooper-
ating agonists. it should be possible to predict the direction ofa
forthcoming limb movement.

Both of these conclusions have been supported by Georgo-
poulos et al. (1984) and Georgopoulos. Schwartz. and Kettner
( 1986). Figure lOa illustrates that vector cells in motor cortex
are, indeed. broadly tuned to direction. Figure lOb illustrates
that the aggregate activity of a large sample of active vector cells
(read. cells from different Dr-'; populations) can be used to pre-
dict accurately the direction of the forthcoming movement.

Figure 12 plots data from a vector cell population in vivo
alongside the velocity profile of the corresponding movement.

I

COMMAND
Fi~lre 8. A match interface within the motor command channel contin-
uously computes the difference between the target position and present
position and adds the difference to the present-position command.
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Fi.~lIre 9. Quick buildup and gradual decline of activity in motor-cortical vector cells.
(Reprinted with permission from Georgopoulos. Kalaska.Caminiti. & Massey. 1982.)
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Note that the asymmetry in the velocity profile is in the same
direction as the asymmetry in the vector-cell population profile.
This correspondence suggests that the \'elocity asymmetry is re-
lated to the neural control circuit. as our model also suggests.

Georgopoulos et al. ( 1984. p. 510) also noted the following:

~o ob\'ious in variance in cell discharge was observed when the
final position ~~s the same. , .these results show that. at the level
of motor corte:\. it is the direction of movement and not its end-
point that is the principle determinant of cell discharge during the
initiation and e:\ecution of movement. Therefore. if the hypothesis
be true that the endpoint of the movement is the controlled spatial
variable (Polit & Bizzi. 1979) then the motor cortex seems to be
distal to that end-point specifying process.

In other words. if one accepts the STE model. these data suggest
that the TPC cells occOr closer to the periphery than the DV
cells. On the other hand. if one accepts our model. these data
imply that the PPC cells occur closer to the periphery than the
DV cells. but that the TPC cells occur more central than the
DV cells. A combination of anatomical and physiological ex-
periments can be used to test this prediction. Also note. how-
ever. that the STE model on which the conclusion of Georgo-
poulos ct al. (1984) is based is inconsistent with the very exis-

tence of vector cells because the springiike properties of the
muscles themselves. rather than a neural computation of vec-
tors. determine the direction and length of movement in the
STE model.

Several additional properties of cells in precentral motor cor-
tex. documented by Evarts and Tanji (1974: Tanji & Evarts.
1976). lend support to identifying them with the vector cells in
our model. In their experi ments. monkeys were trained to either
push or pull a lever. During each trial (schematized in Figure
13a) animals first held the lever in a medial position for :1 to 4

s. Then either a green or a red priming signal ''''as illuminated.
If green. the forthcoming movement required for reward was a
push; if red. a pull. Finally. 0.6 to 1.2 s after the priming signal.
the release signal occurred. This release signal took the form
of an externally imposed push or pull on the lever held by the
monkey. It both cued movement onset and perturbed the posi-
tion of the lever so as to increase or decrease its initial distance
from target.

Figure 13b summarizes operating characteristics of two cells.
The first cell increased its activity after a "push" priming signal.
but was inhibited by a "pull" priming signal: the second cell
showed the opposite response. From these data alone. it would
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Fi.~!lre 10. (A) Directional tuning curve for a motor-cortical cell exhibiting peak activity during a O' (center-
to-right) arm movement. (Dotted line indicates control period discharge rate. Thus this cell is inhibited
when movement direction falls outside the 180. hemisphere of movements to which it can contribute a
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Figure II (A) As the movement unfolds through times 10. II. 12.. ...the present position command (PPC)
approaches the target position command (TPC) in such a way that the difference vector (DV) does not
change direction as its length approaches zero. (8) Over a full range of movement directions. DV cells
associated with opposi ng muscles (AG I vs. ANT AG I or AG2 vs. ANT AG2) show reciprocal patterns of activation
and inhibition. (The zero crossings can occur at different points along the direction scale for different oppo-
nent pairs-AG, -ANTAGI vs. AG2 -ANTAGz-)
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formation is learned from the parameters of the hand-arm sys-
tem to the parameters of the eye-head system. A reverse trans-
formation is also learned from parameters of the eye-head sys-
tem to parameters of the hand-arm system. This reverse

transformation enables an observer intentionally to move its
hand to a visually fixated position.

How do these two sensorimotor systems know what parame-
ters are the correct ones to map on each other? This Question
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We focus our discussion of learning \J;'ithin the arm-move-
ment system on the basic problem of how. when an observer
looks at an object, the observer's hand knows where to move in
order to touch the object, We discuss this issue from the per-
spective of eye-hand coordination in a mammal, but the issues
that are raised, as well as the conclusions that are drawn, gener-
alize to many other species and sensorimotor systems. Why
learning processes are needed to solve this problem is illus-
trated by the following example.

The movement command that guides the hand to a visual
target at a fixed position relative to the body is not invariant
under growth. If a young arm. with relatively short limb seg-
ments, and an old arm, with relatively long limb segments, react
to the same command-that is, assume equal angles at analo-
gous joints-then the tips of the two arm's fingers will be at
different loci with respect to the body frame, In short. any ani-
mal that grows over an extended period \J;'ill need to modify
adaptively movement commands even if its only ambition is to
perform the same act earlier and later in its life cycle. Put the
other \J;'ay, that animals do remain able to reach desired targets
throughout periods of limb growth implies plasticity in their
sensorimotor commands. Because such growth is slow relative
to the rate of learning. failures of sensorimotor coordination
are rarely noticeable. In humans. exceptions occur during the
first few months of life. prior to e.xperiential tuning of the in-
fant's initially coarse sensorimotor mapping (Fetters & Todd,
1987: von Hofsten, 1979. 1982).

not be clear whether these cells' activities code DVs or TPCs.
Ho\\'e\"er. further characteristics confirm their status as DV
cells. The second bracket for each cell in Figure l3b indicates
that their acti\'ities decline as movement proceeds in their pre-
ferred direction. This decline rules out the TPC interpretation.
In the model. it occurs because the movement progressively
cancels the difference with which DV cell activity is correlated.

The third bracket for each cell indicates that the initial posi-
tion perturbations also have the effect they must have if the DV
interpretation is correct: Perturbations that make the starting
point closer to target subtract from activity levels. whereas con-
trary perturbations add to activity levels. This occurs automati-
cally in the model because PPCs. and thus the corresponding
DVs. are updated by sensory feedback during passive move-
ments (Section 29),

Although the foregoing considerations argue strongly for the
existence of DV cells in precentral motor cortex. it might be
argued that the DVs could be measuring force rather than posi-
tional \"alues. Indeed. E\"arts interpreted his early experimental
data (E\"arts. 1968) as suggestive of force coding. The data of
Schmidt. Jost. and Davis (1975). however. appear to rule out
this alternative interpretation. After varying position and force
independently. they concluded that "motor cortex cell firing
patterns appear to be unrelated to the large values of rate of
change of force seen in this experiment" (p. 213).

The data summarized in Sections 6 through 12 weigh heavily
against the STE model and models based on optimization prin-
ciples. So. too, do the formal shortcomings of these models
noted in Sections 6 and 11. We now show that the VITE model
overcomes these formal shortcomings and provides a parsimo-
nious quantitative explanation of all the behavioral and neural
data summarized above and in the subsequent sections.

13. Learning Constraints Mold Arm Control Circuits

Rejecting the STE model does not entail rejecting all depen-
dence on endpoint commands. An analysis of sensorimotor
learning during eye-hand coordination enables us to identify
processes that supplement endpoint. or target-position. com-
mands to overcome the shortcomings of the STE model (Gross-
berg. 1978). The central role of learning constraints in the de-
sign of sensorimotor systems has been developed elsewhere for
the case of the saccadic eye-movement system (Grossberg &
Kuperstein. 1986).

14. Comparing Target Position With Present Position
to Gate Intermodality Learning

Thus. as the arm grows. the motor commands that move it to
a fixed position in space \'-;th respect to the body must also
change through learning. Many arm movements are activated
in response to visually seen objects that the individual wishes
to grasp. We therefore formulate this learning process as fol-
lows: How is a transformation learned and adaptively modified
between the parameters of the eye-head system and the hand-
arm system so that an observer can touch a visually fixated ob-
ject?

Following Piaget's (1963) analysis of circular reactions. imag-
ine that an infant's hand makes a series of unconditional move-
ments, which the infant's eyes unconditionally tollow. As the
hand occupies a variety of positions that the eye fixates, a trans-

positive motion component. Reprinted with permission from Kalaska. Caminiti. & Georgopoulos. i 983.)
(B) Each dotted arrow in the central graphic indicates the direction of a radial (center-out) movement and
points to a representation of the cellular activities observed during that movement. (In each plot of cellular
activities. the direcrjon of each solid black line corresponds to the direction of movement for which a given
cell fired maximally. whereas the lengrh of each solid black line corresponds to the firing rate of the same
cell during the indicated mo\'ement. The single dashed line with arrowhead in each plot represents the
vector sum of all the neural vectors-solid block lines-generated during the indicated movement. Note
the correspondence between the direction of the vector sum-dashed line ",ith arrowhead-and the direc-
tion of the actual movement-indicated by the dotted arrow in the central graphic. All cells were related
to muscle groups acting at the shoulder. a ball-and-socket joint. Figures reprinted \\ith permission from
Georgopoulos. Kalaska. Crutcher. Caminiti. & Massey. 1984.)
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adaptive sensorimotor systems compute a representation of tar-
get position (also called expected position or intended position).
Thus the importance of endpoint computations is confirmed.
This representation is the TPC. (b) All such adaptive sensori-
motor systems also compute a representation of present posi-
tion. This representation is the PPC. (c) During movement, tar-
get position is matched against present position. Intermodal
map learning is prevented except when target position approxi-
mately matches present position (Figure 14). A gating, or mod-
ulator, signal is thus controlled by the network at which target
position is matched with present position. This gating signal
enables learning to occur when a good match occurs and pre-
vents learning from occurring when a bad match occurs. This
matching process takes place at the match interface that was
described in Section 12. The DV controls the gating signal. (d)
Finally. to compare target positions with present positions. both
types of data must be computed in the same coordinate system.
Present eye position is computed with respect to head coordi-
nates. Thus there is an evolutionary pressure to encode target
position in head coordinates.

0
.0

I

-~ -0

.J.

T M

Fi.~II'e 1-'. A comparison of the population vector of ~41 directionally
tuned cells (upper figure) with the velocity vector of the hand (lower
figurel. each measured at ~O-ms intervals during the reaction time and
during movement. (Note the asymmetry-longer right tail-in both.
Reprinted with permission from Georgopoulos. Kalaska. Crutcher.
Caminiti. & Massey. 1984. I

I
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raises the fundamental problem that many neural signals. al-
though large. are unsuitable for being incorporated into behav-
ioral maps and commands. They are "functional noise" to the
motor learning process. The learning process needs to be ac-
tively modulated. or gated. against learning during inappropri-
ate circumstances.

In the present instance. not all positions that the eye-head
system or the hand-arm system assume are the correct posi-
tions to associate through learning. For example. suppose that
the hand briefly remains at a given position and that the eye
mo\'es to foveate the hand. An infinite number of positions are
assumed by the eye as it moves to foveate the hand. Only the
final. intended. or expected. position of the eye-head system is
a correct position to associate with the position of the hand-
arm system.

Learning of an intermodal motor map must thus be pre-
vented except when the eye-he:ld system and the hand-arm sys-
iem :lre near their intended positions. Otherwise. all possible
positions of the two systems could be associated with one an-
other. \vhich would lead to behaviorally chaotic consequences.
Four important conclusions follow from this observation
(Grossberg. 1978: Grossberg & Kuperstein. 1986): (a) All such

15. Trajectory Formation Using DVs: Automatic
Compensation for Present Position

The foregoing discussion of how inrermodality sensorimotor
transformations are learned also sheds light on how intramodal-
ity movement trajectories are formed. Intermodality transfor-
mations associate TPCs because only such transformations can
avoid the multiple confusions that could arise through associat.
ing arbitrary positions along a movement trajectory. TPCs are
not. however. sufficient to generate intramodality movement
trajectories. In response to the same TPC. an eye. arm. or leg
must move different distances and directions depending on its
present position when the target position is registered.

PPCs can be used to convert a single TPC into many different
movement trajectories. Computation of the difference between
target position and present position at the match interface in
Figure 8 generates a DV that can be used to automatically com-
pensate for present position. Such automatic compensation ac-
complishes a tremendous reduction in the memory load that is
placed on an adaptive sensorimotor system. Instead of having
to learn whole movement trajectories. the system only has to
learn intermodality maps between TPCs. As shall be shown
later. DVs computed from target positions and present posi-
tions at the match interface can be used to update automatically
and continuously the PPC movement commands from which
the trajectory is formed. In summary, consideration of the types
of information that can be used to learn intermodality com-
mands during motor development leads to general conclusions
about the quantities from which intra modality movement tra-
jectories are formed. and thus about the way in which other
neural systems. such as sensory. cognitive. and motivational
systems. can influence the planning of such trajectories.

Computation of TPCs. PPCs. and DVs is a qualitatively
different approach to generating a trajectory than are tradi-
tional computations based on a Newtonian analysis of move-
ment kinematics. In a Newtonian analysis. every position
within the trajectory is assumed to be explicitly controlled (At-
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Fi.l:llre /3. (AI The time course of each trial in the push-or-pull task used by Evarts and Tanji (1974). (B)
Operating characteristics of two motor-cortical cells. (Solid arrows indicate increases-upward arrow-or
decreases-downward arrow-in cell discharge rates. Hollow arrows indicate a push- [up\o.-ard arrow] or
pull- [downward arrow] related event: either the push/pull priming signal. a push/pull movement. or the
push/pull perturbation that also served as the release signal.)
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FigZ/rt' 1-1 Learning in sensorimotor pathways is gated by a difference
vector (DV) process that matches the target position command (TPC)
",'ith the present-position command (PPC) to prevent incorrect associa-
tions from forming between eye-head TPCs and hand-arm TPCs.

keson & Hollerbach. 1985: Brody & Paul. 1984: Hogan. 1984:
Hollerbach. 1984). Such computations lead to a combinatorial
explosion that is hard to reconcile with the rapidity of biological
movement generation in real time. In a vector computation. the
entire trajectory is never explicitly planned. Instead. a TPC is
computed that determines where the movement expects. or in-
tends. to terminate. The subtraction of the PPC is an automatic
process that compensates for the variability of the starting posi-
tion. The DV that is hereby computed can be used to generate
an accurate movement without ever explicitly computing a
planned sequence of trajectory positions for the whole move-
ment. In arm movements. a continuous comparison is made
between a fixed TPC and all the PPCs computed during the
movement. All of these compensations for changes in present
position are automatically registered and therefore place no fur-
ther burden on the computation of planned movement parame-
ters. In addition. such automatic compensations for present po-
sition spontaneously generate the major invariants of arm
movements that have been discovered to date (Sections 21-28).
Thus the general problem of how DVs are computed is central
to understanding trajectory formation in several movement sys-
tems.

a movement trajectory. Each PPC generates a pattern of outflow
movement signals to arm system muscles (Figure 8). Each such
outflow pattern acts to move the arm system toward the present
positions that it encodes. Thus, were only a single PPC to be
activated, the arm system would come to rest at a single physical
position. A complete movement trajectory can be generated in
the form of a temporal succession of PPCs. Such a movement
trajectory can be generated in response to a single TPC that
remains active throughout the movement. Although a TPC ex-
plicitly encodes only the endpoint of the movement, the process
whereby present positions are automatically and continuously
updated possesses properties that are much more powerful than
those of an STE model.

This process of continuous updating proceeds as follows. At
every moment, a DV is computed from the fixed TPC and the
PPC (Figure 8). This DV encodes the difference between the
TPC and the PPC. In particular, the DV is computed by sub-
tracting the PPC from the TPC at the match interface.

Because a DV computes the difference between the TPC and
the PPC, the PPC equals the TPC only when all components of
the DV equal zero. Thus if the arm system's commands are
calibrated so that the arm attains the physical position in space
that is coded by its PPC. then the arm system will approach the
desired target position in space as the DVs computed during its
trajectory approach zero. This is accomplished as follows.

At each time, the DV computes the direction and amplitude
that must still be moved to match the PPC with the TPC. Thus
the DV computes an error signal of a very special kind. These
error signals are used continuously to update the PPC in such
a way that the changing PPC approaches the fixed TPC by pro-
gressively reducing the vector error to zero. In particular. the
match interface at which DVs are computed sends excitatory
signals to the stage where PPCs are computed. This stage inte-
grates, or adds up. these vector signals through time. The PPC
is thus a cumulative record of all past DVs, and each DV brings
the PPC a little closer to the TPC.

In so doing, the DV is itself updated through negative feed-
back from the new PPC to the match interface (Figure 8). This
process of updating present positions through vector integra-
tion and negative feedback continues until the PPC equals the
TPC. Several important cenclusions follow from this analysis
of the trajectory formation process.

Two processes within the arm-control system do double duty:
A PPC generates feed-forward. or outflow, movement signals
and negative feedback signals that are used to compute a DV.
A DV is used to update intramodality trajectory information
and to gate intermodality learning of associative transforma-
tions between TPCs. Thus the match interface continuously up-
dates the PPC when the arm is moving and disinhibits the inter-
modality map learning process when the arm comes to rest.

Within the circuit depicted in Figure 8. position and direc-
tion information are coded separately. Positional information
is coded within the PPC. and directional information is coded
by the DV at the match interface. On the other hand. the com-
p~tations that give rise to positional and directional informa-
tion are not independent. because DVs are integrated to com-
pute PPCs, and PPCs are subtracted from TPCs to com-
pute DVs.

16. Matching and Vector Integration
During Trajectory Formation

We now specify in greater detail a model of how TPCs. PPCs.
and DVs interact with one another through time to synthesize
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In Figure 8. the PPC is computed using outflow information.
but not inflow information. This property emphasizes the need
to mechanize concepts about how present position is computed.
The use of an outflow-based PPC clarifies how targets can be
reached when sources of inflow information are eliminated
(Polit & Bizzi, 1978) without being forced into the erroneous
conclusion that no information about present position is
needed to form a trajectory. In addition. although the PPC inte-
grates outflow DV signals during active movements, inflow sig-
nals are used to update the PPC during passive movements
(Section 29). thereby clarifying the data of Polit and Bizzi
(1978) concerning failure of monkeys to compensate for passive
shifts of their initial upper arm position in the deafferented
state. The PPC feedback shown in Figure 8 is an "efference
copy" of a premotor command (von Holst & Mittelsteadt.
1950). The VITE model's use of efferent feedback distinguishes
it from an alternative class of models. which pr~se that pres-
ent-position information is derived from afferent feedback from
sensory receptors in the limb. In particular. the far-reaching
consequences of its use of efferent. as opposed to afferent. feed-
back make the VITE model fundamentally different from the
classical closed-loop servo recommended by Adams (1971.
1977) as a mode! of human motor performance. Further differ-

ences are introduced by the VITE model's use of the time-vary-
ing multiplicative GO signal introduced in Section 10 and elab-
orated below.

processing stages for continuous formation of a trajectory en-
ables the GO signal to act without destroying the accuracy of
the trajectory.

The detailed computational properties of the GO signal are
derived from two other constraints. First, the absence of a GO
signal must prevent the movement from occurring. This con-
straint suggests that the GO signal multiplies, or shunts. each
output pathway from the match interface. A zero GO signal
multiples every output to zero and, hence, prevents the PPC
from being updated. Second, the GO signal must not change
the direction of movement that is encoded by a DV. The direc-
tion of movement is encoded by the relative sizes of all the out-
put signals generated by the vector. This constraint reaffirms
that the GO signal multiplies vector outputs. It also implies that
the GO signal is nonspecific: The same GO signal multiplies

17. Intentionality and the GO Signal: Motor Priming
Without Movement

The circuit depicted in Figure 8 embodies the concept of in-
tention. or expectation, through its computation of a TPC. The
complete movement circuit embodies intentionality in yet an-
other sense. which leads to a circuit capable of variable speed
control. The need for such an additional process can also be
motivated through a consideration of eye-hand coordination
(Grossberg, 1978, 1982).

When a human looks at a nearby object, several movement
options for touching the object are available. The object could
be grasped with the left hand or the right hand. The object could
even be touched with one's nose or one's toes! We assume that
the eye-head system can simultaneously activate TPCs in sev-
eral motor systems via the intermodality associative transfor-
mations that are learned to these systems. An additional act of
will. or GO signal. is required to convert one or more of these
TPCs into overt movement trajectories within only the selected
motor systems.

There is only one way to implement such a GO signal within
the circuit depicted in Figure 8. This implementation is de-
scribed in Figure 15. The GO signal must act at a stage interme-
diate between the stages that compute DVs and PPCs: The GO
signal must act after the match interface so that it does not dis-
rupt the process whereby DVs become zero as PPCs approach
the TPC. The GO signal must act before the stage that computes
PPCs so that changes in the GO signal cannot cause further
movement after the PPC matches the TPC. Thus. although the
GO signal changes the outputs from the match interface before
they reach the present-position stage. the very existence of such
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can be achieved by completely inhibiting the GO signal at any
point in the trajectory. The fact that target position may be very
different from present position when the GO sign~1 is with-
drawn does not interfere with freezing, as it would using a STE
model, because the arm position closely tracks the PPC, which
stops changing as soon as the signal shuts off.

Grossberg (1978. Section 54: reprinted in Grossberg, 1982)
suggested an alternative scheme whereby actively moving mus-
cles could be opposed by properly scaled antagonist co-contrac-
tions in response to a sudden unexpected event. In this scheme,
agonist-antagonist motor commands are organized as gated di-
pole opponent processes. and the unexpected event triggers a
burst of nonspecific arousal to all the command sources. Each
gated dipole opponent process reacts to such a nonspecific
arousal burst by causing an antagonistic rebound whose size
is scaled to that of the dipole's prior on-response. The rate of
antagonist contraction generated by such a scheme is thus
matched to the size of the just-preyious rate of agonist contrac-
tion. Both types of mechanism-inhibition of GO signal and
onset of arousal burst to opponent motor controls-are worthy
of further neurophysiological testing. Another role for the oppo-
nent organization of motor commands is summarized in the
next section.

each output signal from the matching interface so as not to
change the direction encoded by the vector.

In summary. the GO signal takes a particularly simple form.
When it equals iCro. the present-position signal is not updated.
Hence no overt movement is generated. On the other hand, a
zero GO signal does not prevent a TPC from being activated, or
a DV from being computed. Thus a motor system can become
ready. or primed. for movement before its GO signal turns on.
When the GO signal does turn on. the movement can be rapidly
initiated. The size of the GO signal regulates overall movement
speed, Larger GO signals cause faster movements. other things
being equal. by speeding up the process whereby directional in-
formation from the match interface is integrated into new
PPCs. In models of cognitive processing. the functional analog
of the GO signal is an attentional gain control signal (Carpenter
& Grossberg. 1987. in press: Grossberg. 1987a. 1987b: Gross-
berg & Stone. 1986).

Georgopoulos et al,. (1986) have reported data consistent
\vith this scheme. In their experiment. a monkey \I.'as trained to
withhold movement tor 0.5 to 3 s until a lighted target dimmed,
They reported that cells \I.'ith properties akin to DV cells com-
puted a direction congruent with that of the upcoming move-
ment during the waiting period. These data support the predic-
tion that the neural stage where the GO signal is registered lies
bet\l.'een the DV stage arid the PPC stage.

19, Opponent Processing of Movement Commands

Mammalian motor systems are organized into pairs of ago-
nist and antagonist muscles, \\'e now note a ne\v functional role
for such an opponent organization: An opponent organization
is needed to convert DVs into PPCs that can eventually match
an arbitrary TPC. Figure 16 depicts how opponent organization
isjoined to the system's other processing constraints,

The need for opponent signals can be seen from the follo\ving
examples. If a target-position signal is larger than the corre-
sponding present-position signal. then a positive output signal
is generated by the corresponding component of the DV. Such
positive output signals increase the present-position signal until
it matches the target-position signal. Increasing the present-po-
sition signal causes the target muscle group to contract, The
opponent muscle group must also simultaneously relax. Inhibi-
tory signals to the present-position node of the opponent muscle
instate this latter property. W.hen these inhibitory signals are
integrated by the present-position node of the opponent muscle.
the output signal to the opponent muscle decreases, thereby re-
laxing the muscle.

The need for opponent processing can also be seen by consid-
ering the case in which the target-position signal is smaller than
the present-position signal. Then the corresponding component
of the DV is negative. Because only nonnegative activities can
generate output signals. no output signal is generated by this
component of the DV to its corresponding present-position
node. How. then, is this present-position signal decreased until
it matches the target-position signal? The answer is now obvi-
ous. because we have just considered the same problem from
a slightly different perspective: If a negative vector component
corresponds to an antagonist muscle group. a positive vector
component corresponds to its opponent agonist muscle group.
This positive vector component generates inhibitory signals to

18. Synchrony. Variable Speed Control. and Fast Freeze

The circuit in Figure 15 is now easily seen to possess qualita-
tive properties of synchronous synergetic movement. variable
speed control. and fast freeze-and-abort. We apply the circuit
properties that each muscle synergist's motor command is up-
dated at a rate that is proportional both to the synergist's dis-
tance from its target position and to a variable-magnitude GO
signal. which is broadcast to all members of the synergy to initi-
ate and sustain the parallel updating process.

To fix ideas. consider a simple numerical e.xample. Suppose
that prior to movement initiation. Muscle Synergist A is 4 dis-
tance units from its target position and Muscle Synergist B is 2
distance units from its target position. In that case. if the mean
rates at \vhich PPCs are updated for the two synergists are in
the same proportion as the distance (i.e.. 2: I). then the updating
of Synergist A will take 4/2 time units ",'hile the updating of
Synergist B \vill take 2/1 time units. Thus both processes will
consume approximately 2 time units. Although the PPC updat-
ing process occurs at different rates for different synergists. it
consumes equal times for all synergists. The result is a synchro-
nous movement despite large rate variations among the compo-
nent motions.

Changing the magnitude of the GO signal governs variable
speed control. Because both of the updating rates in the exam-
ple (2 and I) are multiplied by the same GO signal. the compo-
nent motions \\'ill remain synchronous. though of shorter or
longer duration. depending on whether the GO signal multiplier
is made larger or smaller. respectively. In general. the GO sig-
nal's magnitude varies inversely with duration and directly with
speed. Finally. if the value of the GO signal remains at zero. no
updating and no motion will occur. Thus very rapid Ireezing
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agonist's PPC population, G(t) is the GO signal, df,'/dt is the
rate of change of V, and dP/dt is the rate of change of P.

Equation 2 says that the activity V(t) averages the difference
of the input signals T(t) and P(t) at a rate a through time. The
TPC input T(t) excites V(t), whereas the PPC input P(t) inhib-
its V(t) as part of the negative feedback loop between Vlt)
and P(t).

Equation 3 says that P(t) cumulatively adds, or integrates, the
product G[V]+, where

[V]+ = { V if v> 0

0 if V.s; o.
(4)

Fi.l!ure /6 Opponent interactions among channels controlling agonists
and their antagonists enable coordinated. automatic updating of their
present-position commands (PPCs). (DV = difference vector.)

the PPC of the antagonist muscle. thereby relaxing the antago-
nist muscle until its PPC equals its TPC.

20. System Equations

A quantitative analysis of movement invariants requires the
development of a rigorous real-time mathematical model of the
constraints summarized in the preceding sections. Qualitative
algebraic analysis is insufficient because the trajectory is an
emergent property of a nonlinear integration and feedback pro-
cess under variable gain control. Our model defines the simplest
system that is consistent with these constraints. To fix ideas.
we explicitly study how the TPC to an agonist muscle group
generates a trajectory ofPPC signals to that muscle group. Gen-
eralizations to synergetic movement of multiple agonist-antag-
onist muscle groups follow directly from this analysis. Figure
17 locates the mathematical variables that are defined below.
The network dep'icted in Figure 17 obeys the following system
of differential equations:

In other words. the DV population elicits an output signal [V]+
to the PPC population only if the activity r' exceeds the output
threshold O. The output signal is a linear function of J' at supra-
threshold values. The output signal [rl+ is multiplied, or gated.
by the GO signal G(t) on its way to the PPC stage. The activity
P(t) at the PPC stage integrates the gated signal through time.

In particular. G(t) = 0 implies (dP/dt)(t) = O. In other words.
if the GO signal is shut off within a given time interval. the P(t)
is constant throughout that time interval. Fast freeze can hereby
be rapidly obtained by simply switching G(t) quickly to zero no
matter how far P(t) may be trom T(t) at that time. In addition.
this circuit generates compensatory. or error-correcting. trajec-
tories. as described in Section 9. For example. suppose that the
GO signal starts out larger than usual or that there is a slight
delay in instatement of the TPC relative to onset of the GO
signal. In either case. P(t) can initially increase faster than
usual. As a result. T -P(t) can rapidly become smaller than
usual. Consequently. updating of P(t) terminates earlier than
usual.

This compensatory process illustrates two critical features of
the VITE model: (a) Trajectories are not pre-formed. (b) Be-
cause the GO signal feeds in between the DV stage and the PPC
stage and because the DV is continuously inhibited by feedback
from the PPC stage. accuracy is largely insulated from random
variations in the size or onset time of the GO signal. variations
in the onset time of the TPC. or momentary perturbations of
the PPC owing to internal noise or inflow signals.

The system of Equations 2 through 4 is explicitly sol".ed for
a particular choice of GO signal in Appendix A. In Sections 21
through 28. we display the results of computer simulations that
demonstrate that this simple model provides a quantitative ex-
planation of all the data thus far summarized. In most of these
simulations. we write the GO signal in the form

(5)G(r) = Gog(r).
dJl"

dt
= a(-J,'+ T- P) (2) Constant Go is called the GO amplitude. and function g(t) is

called the GO onsetfimction. The GO amplitude parameterizes
how large the GO signal can become. The GO onset function
describes the transient buildup of the GO signal after it is
switched on. In our simulations. we systematically studied the
influence of choosing different GO amplitudes Go and onset
functions from the family

and

(3)

In Equations 2 and 3, T(/) is a target position input, 1'(/) is the
activity of the agonist's DI'population. P(/) is the activity of the
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if t~ o.
{ in g(i) = ~n + rin

(6)
if t < O.

In Equation 6, we chose {j and i' equal to I or O. If (j = 0 and
i' = I, then g(t) is a step function that switches from 0 to I at
time t = O. If (3 = I and i' = I, then g(t) is a siower-than-linear
.function of time if n = I and a sigmoid, or S-shaped, function
of time if n > I. In both of these cases, function g(t) increases
from g(O) = 0 to a maximum of I and attains the value 1/2 at
time t = ,8. If.8 = I and i' = 0, then g(t) is a linear function of
time if n = I and a faster-than-linear function of time if n > I.
We will soon demonstrate that an onset function that is a faster-
than-linear or a sigmoid function of time generates a PPC pro-
file through time that is in quantitative accord with data about
the arm's velocity profile through time. On the other hand, if
muscle and arm properties attenuate the increase in velocity at
the beginning of a movement. then linear, or even slower-than-
linear, onset functions could also quantitatively fit the data. Di-
rect physiological measurements of the GO signal and PPC up-
dating processes would enable a more definitive selection of the
onset function to be made.

21. Computer Simulation of Movement Synchrony
and Duration lnvariance

In simulations of synchronous contraction. the same GO sig-
nal G(t) is switched on at time t = 0 across all VITE circuit
channels. We consider only agonist channels whose muscles
contract to perform the synergy. Antagonist channels are con-
trolled by opponent signals. as described in Section 19. We as-
sume that all agonist channels start out at equilibrium before
their TPCs are switched to new. sustained target values at time
t = O. In all agonist muscles, 1'(0) > P(O). Consequently. ~:'(t) in
Equation 2 increases. thereby increasing P(t) in Equation 3 and
causing the target muscle to contract. Different muscles may be
commanded to contract by different amounts. Then the size of
1'(0) -P(O) will differ across the VITE channels inputting to
different muscles. Thus Equations 2 through 4 describe a ge-
neric component of a TPC (T" T2. Tn). a DV (~'I. f2.
..., f-'n)' and a PPC (PI. Pz, ..., P n). Rather than introduce
subscripts I, 2 n needlessly. we merely note that our mathe-
matical task is to show ho~. the VITE circuit in Equations 2
through 4 behaves in response to a single GO function G(t) if
the initial value T(O) -P(O) is varied. The variation of T(O) -
P(O) can be interpreted as the choice of a different setting for
each of the components Tj(O) -Pj(O), i = 1,2, ..., n. Alterna-
tively it can be interpreted as the reaction of the same compo-
nent to different target- and initial-position values on successive
performance trials.

Figure 18 depicts a typical response to a faster-than-linear G(t)
when T(O) > P(O). Although T(t) is switched on suddenly to a
new value T, f-'(t) gradually increases then decreases. while P(t)
gradually approaches its new equilibrium value, which equals T.
The rate of change dP/dt of P provides a measure of the velocity
with which the muscle group that quickly tracks P(t) will con-
tract. Note that dP/dt also gradually increases then decreases

Fi,l,'Ilre J 7, Network variables used in computer
simulations. (See Equations 2 and 3 in text.)
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higher mo\'ement velocities, In these simulations. the initial
difference T(O) -PIG) bet\\'een TPC and PPC was held fixed.
and the GO amplitude Go was increased. Figure 20a. 20b. and
20c shows that the profile of dPjdt becomes more symmetric as
Go is increased. At still larger Go values. the direction of asym-
metry reversed: that is. the symmetry ratio exceeded ,5. as in
the data oflelaznik et al. (1986), Figure 20d shows that if both
the time axis t and the velocity axis dPjdt are rescaled. then
curves corresponding to movements of the same size at different
speeds can approximately be superimposed. except for the mis-
match of their decelerative portions. as in the data summarized
in Section II.

\vith a bell-shaped curve whose decelerative portion (d2P/dI2 <
0) is slightly longer than its accelerative portion (d2P/dI2 > 0). as
in the data described in Sections 7.8. II. and 12.

Figure 19 demonstrates movement synchrony and duration
invariance. This figure shows that the V curves and the dP/dl
cur\'es generated by widely different nO) -P(O) values and the
same GO signal G(/) are perfectly synchronous through time.
This property is proved mathematically in Appendix B. The
simulated curves mirror the data summarized in Sections II
and 12. These results demonstrate that the PPC output vector
[Pj(/). P~(t).. ...P n(/)] from a VITE circuit dynamically defines
a synergy that controls a synchronous trajectory in response to
any fixed choice (T.. T2 Tn) ofTPC. any initial positions
[Pj(O). P~(O) Pn(O)]. and any GO signal G(/).

22. Computer Simulation of Changing Velocity Profile
Asymmetry at Higher Movement Speeds

The next simulations reproduce the data reviewed in Section
II concerning the greater symmetry of velocity profiles at

23. Why Faster- Than-Linear. or Sigmoid.
Onset Functions?

The parametric analysis of velocity profiles in response to
different values of T(O) -P(O) and Go led to the choice of a
faster-than-linear. or sigmoid. onset function g(t). In fact. the
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faster-than-linear onset function should be interpreted as
the portion of a sigmoid onset function whose slower-than-
linear part occurs at times after P(t) has already come very close
to T.

Figure 21 shows what happens when a slower-than-linear
g(t) = l(fJ + I)-lor a linear g(t) = t is used. At slow velocities

(small Go), the velocity profile dP/dt becomes increasingly
asymmetric when a siower-than-linear g(t) is used. At a fixed
slow velocity. the degree of asymmetry increases as the slower-
than-linear g(t) is chosen to approximate more closely a step
function. A linear g(t) leads to an intermediate degree ofasym-
metry. A faster-than-1inear. or sigmoid, g(t) leads to slight asym-
metry at small values of Go as well as greater symmetry at large
values of Go. A sigmoid g(t) can be generated from a sudden

onset of GO signal if at least two cell stages average the GO
signal before it gates [r']+ in Equation 3. A sigmoid g(t) con-
tains a faster-than-linear part at small values of t and an approx-
imately linear part at intermediate values of t. Thus a sigmoid
g(t) can generate different degrees of asymmetry depending on
how much of the total movement time occurs within each of
these ranges.

We have also simulated a VITE circuit using sigmoid GO
signals whose rate of growth increases with the size of the GO
amplitude. Such covariation of growth rate with amplitude is a
basic property of neurons that obey membrane. or shunting,
equations (Grossberg. 1970, 1973, 1982; Sperling & Sondhi,
1968). Such a sigmoid GO signal G(t) can simply be defined as
the output of the second neuron population in a chain ofshunt-

: 

iI' \
I ~ .\. ..
0.00 0.24 0.48 0.71 0.95 1.19

Fi.~lre J 9 With equal GO signals. movements of different size have equal durations and perfectly superim-
posable velocity profiles after velocity axis rescaling. (For A and B. respectively. GO signals and velocity
profiles are for 20- and 60-unit movements lasting 560 ms. Parameters for Equations 2. 3. and 6: a = 30.
n = 1.4. i3 = I. and"y = 0.)
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ing equations perturbed by a step function input with ampli-
tude Go. Thus. let

signal G(l) can be set equal to Gz(l). as we did. or even to a
sigmoid signal_([G~(t)] ofGz(t). A typical result is shown in Fig-
ure :?:?. In the series of simulations exemplified by Figure :?:?.
the range of symmetry ratios. namely .44 to .50. was similar to
that found in Figure 19 using a faster-than-linear signal func-
tion. Final choice of a best-fitting G(t) awaits a more direct ex-
perimental determination of the PPC profile through time.

if t ~ 0

if t <0.
(7)

(8)

and
d-d G.. = -AG.. + (B -GVG1o

t -~ (9)

24. Computer Simulation of Velocity Amplification
During Target Switching

Velocity amplification by up to a factor of 3 can be obtained
by switching to a new value of T while a previously activatedThen G~(l) is a sigmoid function of the desired shape. The GO

01/. .,~,
0.00 0.22 0.44 0.65 0.87 , .09

TIME

I
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25. Reconciling Staggered Onset Times With
Synchronous Termination Times

GO signal is still on. Figure 23 demonstrates this effect by com-
paring two computer simulations. In the first simulation. onset
of T(t) and g(t) were both synchronous at time t = 0 (Figure
23a). In the second simulation. onset of g(t) preceded onset of
T(t) by a time equivalent to about 300 ms (Figure 23b). Note
the much higher peak velocity (235 vs. 102) attained in Figure
23b. The effect. which matches the "anomalous" velocity multi-
plication observed in the target-switching experiments of
Georgopoulos et al. (1981), is due to the prior buildup of the
GO signal during response execution.

In the ensuing sections. computer simulations will be com-
pared with a variety of data that were not reviewed in the pre.
ceding sections.

Within the context of a target-switching experiment, velocity
amplification may appear to be a paradoxical property. On the
other hand, such a property has an adaptive function in the
many situations where a hand will fail to reach a moving target
unless it both changes direction and speeds up. In addition, we
now show that the same mechanism can generate synchronous
termination times of synergetic muscle components that may
individually start to move at staggered onset times.

The need for this latter property has recently been empha-
sized in a study by Hollerbach et al. (1986), who showed that
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of each block. a different DV component ''''as read out at succes-
sively longer delays with respect to the onset time of the GO
signal. Because of duration invariance (Appendix B). the results
are independent of the initial sizes of the T(O) -P(O) values of
these components.

The four blocks (I. II. III. and IV) correspond to four increas-
ing values of the GO amplitude Go (10. 20, 40. and 80). The
approximate in,'ariance of termination times across compo-
nents with different onset delays is indicated by the nearly equal
heights reached by all the bars within the block. The different
lengths of bars within each block show that less time is needed
to update those components whose onset times are most de-
layed. Thus. in Block I. all the components terminate almost
synchronously even though their onset times are staggered by
as much as 26% of the total movement time. In Block II. almost-
synchronous terminations occur even though onset times are
staggered by as much as 39CfO of the total movement time. At
very large choices of Go (Blocks III and IV). synchrony begins
gently to break down because the earliest components have exe-

nearly straight movement paths can result from muscle-coordi-
nate planning if the onset times of muscles acting at different
joints are appropriately staggered and if all the muscles reach
their final positions synchronously. Their study did not. how-
ever. explain how a neural mechanism could generate synchro-
nous muscle offsets despite staggered muscle onsets.

We now show that the posited interaction of a growing GO
signal \\'ith components of a DV that may be switched on at
different times automatically generates synchronous offsets as
an emergent property of the VITE circuit. Thus the interaction
ofa GO signal with a DV both helps to linearize the paths gen-
erated by individual TPCs and. as in the target-switching exper-
iments. enables the hand to track efficiently a moving target by
quickly reacting to readout of an updated TPC.

Figure 24 depicts the results of four blocks. labeled I. II. III.
and IV. of computer simulations. Each block represents the on-
set time. offset time. and duration of three simulations. In the
leftmost simulations of each block. onset of a DV component
and a GO signal \\'ere synchronous. I n the other two simulations
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cuted more than 50C'o of their trajectories before later compo-
nents even begin to move. These and other results in the article
suggest the critical importance of experimentally testing the ex-
istence and predicted properties ofGO-DV interactions. nota-
bly the predicted correlations between the temporal evolution
of the GO signal and the DV.

ries traversed the same distance. The duration of each move-
ment was computed by measuring the interval between velocity
profile zero crossings. The different curves in Figure :?5a used
different values of the distance parameter T(O) -P(O).

These curves mirror the data of lestienne (1979) summa-
rized in Figure 25b. Figure :?5b plots agonist burst duration
against peak velocity. The overall shapes of the plots of simu-
lated durations (Figure :?5a) and agonist burst durations (Fig-
ure 25b) as a function of peak velocity are similar. This similar-
ity reinforces the postulate that the VITE circuit operates in
agonist-antagonist muscle coordinates (Sections:? and 19). It
also suggests that the relation between VITE circuit outputs.
motoneuron inputs. and actual muscle activities might be rela-
tively simple (Bullock & Grossberg, 1987).

26. Computer Simulation of the Inverse Relation
Between Duration and Peak Velocity

Each curve depicted in Figure 25a summarizes a series of
simulations in which T(O) -P(O) was held constant while Go
was varied. In this way. a series of velocity profiles were gener-
ated whose peak velocities differed even though their trajecto-

Fi.lJure -'3 (A) The control condition. in which T and the GO signal gro\l.1h process are activated synchro-
nously. (B) Same T as in (A). but here T was activated after G(I) had been growing for 300 ms. (A much
higher peak velocity is predicted by the model whenever a target is activated after the GO signal has already
had time to grow. Parameters for Equations~. 3. and 6: a = 30. n = 1.4. i3 = 1. and I = 0.)
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1. SYNERGIST BEGINS CONTRACTION

t SYNERGIST ENDS CONTRACTION
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Fi.~lre 14. Simulation results showing automatic VITE circuit compensation for contraction-onset-time
staggering across components of a synergy. (Each block-I. II. III. and IV -shows results for a different
\alue-IO. ~O. 40. and 80. respectively-of the GO signal scalar. Go. Parameters for Equations 2.3. and 6:
a = 30. n = 1.4. J = I. and 'Y = 0.)

~evertheless. two caveats deserve mention. First. were Figure
25a a plot of movement duration (.\IT) against mean velocity
(1-:). it would necessarily have the shape shown. because by
definition.

correlated in these VITE trajectories owing to the duration in-
variance described in Section 21.

The second caveat acknowledges that the VITE circuit coop-
erates with several other circuits to generate a controllable
trajectory in response to unexpected loads and to variable ve-
locities (Bullock & Grossberg, 1987). For example, during me-
dium- anQ high-speed movement, the duration of the initial ag-
onist burst may be only one fourth the duration of the corre-
sponding movement. If we assume that the PPC updating
process consumes most of the movement time, then these short
duration electromyograph (EMG) bursts are further evidence
that the PPC stage must not be identified with-and must be

D
,VT=-=. (10)

V

y,'here D denotes the distance. Multiplying by different values
of D generates a family of curves similar in shape to those
shown in Figure 25a. The VITE model generates the curve in
Figure 25a because mean velocity and peak velocity are strongly
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higher in the outflow channel than-the spinal motorneurons
whose suprathreshold activities are directly reflected in the
EMG bursts.

This conclusion is consonant with a-railable data on the gene-
sis of EMG burst patterns. In vivo. EMG activities are often
sculpted into multiphasic burst patterns by several subnetworks
that converge on and embed the spinal motorneurons. In par-
ticular. during high-speed movements. muscle changes lag be-
hind neural changes early in response development. This leads
to registration of lag errors at model regulatory circuits (Bul-
lock & Grossberg. 1987: Feldman. 1986: Ghez & Martin. 1982;
Grossberg & Kuperstein. 1986). including the stretch reflex and
cerebellar circuits. which translate these error signals into large
agonist activations and antagonist inhibitions. If the large ago-
nist activations accelerate the limb so much that it begins to
overshoot the intended position. this overshoot is registered as
an error opposite in sign to the initial lag error. and the result is
a large antagonist-braking activity in concert with agonist inhi-
bition. Such braking may slow the movement enough that a
smaller lag error is once again registered. Although this results
in a second agonist burst and transient antagonist inhibition.
this last phasic modulation fades quickly and gives way to the
tonic E~IG pattern required to hold the arm at the final pos-
tural position. A similar anal.ysis may be given for isometric
contractions.

notes that for a fixed movement time. error grows in proportion
to amplitude. This component of the law was discovered by
Woodworth (1899). Table 1 presents simulation results based
on the same parameter choices used in Figure 18. The results
show that in a parameter range where model overshoot errors
occur, the model's error also grows in proportion to amplitude.
In these simulations, Go was held fixed, and T(O) -P(O) was
varied.

The second way of reading the law notes that to maintain a
fixed absolute-error size. or to fall within a target zone of fixed
width, while increasing movement distance. it is necessary to
allow more time for completing the movement. In particular.
every doubling of distance will add a constant amount, b. to the
time needed to perform the movement with the same level of
accuracy. Allo",'ing less than b more time for a movement of
twice the distance will lead to a less accurate movement.

Table 2 presents the results of a simulation (parameters as in
Figure 18) in which the rate parameter a was small enough that
modest error resulted even at the smallest distance. or initial
value of T(O) -P(O). that was tested. namely a distance of two
units. Then the distance T(O) -P(O) was repeatedly doubled.
and the value of Go progressively decreased. such that the error
level was held approximately constant. As can be seen. move-
ment time increased approximately linearly with each doubling
of distance. as required by a logarithmic relation between
movement time and distance moved. :-.Iote that the "errors"
shown in Tables I and 2 are defined relative to a mathematical
point. that is a target having zero width along the direction of
motion. If subjects adjust their GO signal so that expected error
is no greater than the width of a physical target. then by choos-
ing a TPC corresponding to the near side of the target. they can
produce the "errorless" movements required in the Fitts task.
The model's striking replication of the laws ofWood",'orth and
Fitts. together with its other successes in experimental results.
increases our confidence that the VITE model captures some of
the basic neural design principles that underly trajectory gener-
ation in vivo.

Woodworth's la"" is a consequence of duration invariance in
the model. This can be seen from the mathematical analysis
provided in Appendix B. There it is proved that the PPC value
P(£) can be written in the form

P(t) = P(Q) + [T(Q) -P(Q)]q(r), (11 )

given any continuous GO signal G(l). In Equation II. T(O) -
P(O) represents the amount of contraction. or "distance" to be
moved. that is mandated by the TPC value T(O) and the initial
PPC value P(O). Function q(l) is independent of P(O) and T(O).
By Equation II. P(l) approaches T(O) as q(l) approaches I. and
P(t) overshoots or undershoots if q(l) approaches a value greater
or less than I ~ respectively. Because q(l) is multiplied by T(O) -
P(O). the amount of error (undershoot or overshoot). is propor-
tional to distance. as in Woodworth's law.

Whereas the proof of Woodworth's law is a general conse-
quence of duration invariance in the model. Fitts's law has been
mathematically proved in only one case as of the present time
(Appendix A). although our computer simulations demonstrate
that it occurs with greater generality. In this case. the GO signal

27. Speed-Accuracy Trade-off: Woodworth's Law
and Fitts's Law

The VITE model circuit predicts a speed-accuracy trade-off
that quantitatively fits the la",.s of Woodworth ( 1899) and Fitts
( 1954). The existence of a speed-accuracy trade-off per se can
be understood by considering the role of the rate parameter a
in Equation I. The case of an overshoot error is considered for
definiteness.

Given any finite value of the averaging rate a in Equation 2.
'"(i) takes some time to react to changes in P(i)" In particular.

e\en if PIt) = T at a given time i = to. J"(i) will typically require
some extra time after i = io to decrease to the value O. and by

Equation 3. PIt) will continue to increase during this extra
time. If a is very large. V(i) can approach 0 quickly. Conse-
quently. by Equation 3. J"(t) will not allow P(i) to overshoot the
target value Tby a large amount. On the other hand. given any
choice of a. the relative amount whereby P(i) overshoots the
target T depends on the size of the GO amplitude Go. This is
true because a larger value of Go causes P(i) to increase faster.
because of Equation 3. and thus P{[) can approach T faster. In
contrast. IIi) can respond only to the rapidly changing values
of T -P{[) at the constant rate a. As a result. I(i) tends to be
larger at a time i = io when P{[o) = T if Go is large than if Go is
small. It therefore takes J'(t) longer to equal 0 after i = io if

Go is large. Thus PIt) overshoots T more if Go is large. This
covariation of amount of overshoot with overall movement ve-
locity is a speed-accuracy trade-off.

Fitts's law. as described in Equation I. relates movement
time. distance. and target width. The target width may be
thought of as setting the criterion for what counts as an error.
The law may be given t""o complementary readings. The first
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Table 2
For Fi.\"ed Error Lel'el, Dl/rarion GrOI\'S Linearly
"'irh Distance Dol/bling

Table I
!-t)r Fi.\"('(/ DllrClliclll, Errc)r (irml's ill Prc)[1C)rtiCJ11 tv Di.l"lQllct!

ErrorDistance~1o\"ement time
Error Distance Movement time

10
20
40
80

.084

.170

.349

.700

.56

.56

.56

.56

.059

.057

.058

.059

.057

.059

2
4
8

16
32
64

.39

.49

.59

.70

.80

.91

G(t) switches on from value 0 at times l < 0 to the constant
\Oalue Go > 0 at times l ~ 00 In addition. Go is chosen sufficiently
large to generate overshoot errors. In particular. when 4Go > a.

.\IT = ~ !Og( T(O) -P(O»

)a E
(12)

\vhere E is the amount of overshoot error in the VITE com-
mand.

These instances of Woodworth's law and Fitts's law are.gener-
ated by the VITE circuit itself. without the intervention of vi-
sual feedback. A number of authors have commented on the
applicability of these laws when visual feedback is inoperative.
For example. Keele (1982. pp. 152-153) has \vritten.

What is the underlying nature of the movement system that yields
Fitts' Law? ..One factor is the intrinsic accuracy of the motor
control system when ,.isualleedback is unavailable. When the eyes
are closed during a movement (or the lights are turned off). an
average movement will miss target by about 7"'" of the total distance
moved.

R. A. Schmidt (1982. pp. 253-254) summarized error func-
tions for sighted and blind movements across various move-
ment times from studies by Keele and Posner ( 1968) and Zelaz-
nik. Hawkins. and Kisselburgh (1983). A clear speed-accuracy
trade-off was observed. Meyer et al.. (1982. p. 450) have re-
viewed data comparing the initial impulse phase of a move-
ment. where visual feedback is unimportant. with the subse-
quent current-control phase. where visual feedback may be
used to improve accuracy. They noted that

and Fitts's law as emergent properties of the PPC updating pro-
cess satisfies this requirement.

It should be emphasized that the VITE circuit is also capable
of generating a PPC that approaches the TPC without error in
some parameter ranges (Appendix A). In these parameter
ranges, an undershoot error will occur if the GO signal is prema-
turely terminated or if the effects of small DV signals get lost in
ambient cellular noise. A range effect has also been reported
(Georgopoulos. 1986. p, 151) such that "subjects tended to
overshoot the target in small mo"ements (1.5 cm) and to under-
shoot in large movements (40 cm):' A number of factors may
influence this result. For example. during high-speed small
movements. auxiliary circuits for controlling the arm's inertial
effects may not have a sufficient opportunity to act (Grossberg
& Kuperstein, 1986. chapters 3 and 5). During large move-
ments. the distance to be moved may be visually underesti-
mated, thereby leading to instatement of an incorrect TPC. The
choice of GO signal amplitude as a function of target distance
may contribute to the range effect. The relative importance of
such factors will be easier to assess as new experiments and the
theory are progressively elaborated with the aid of the quantita-
tive VITE circuit analysis that is provided herein.

Even the definition of ",'hat constitutes a movement error
during ecologically useful motor behavior deserves further
commentary. For example. Carlton (1979) asked subjects to
keep their movement errors below 5C10, Subjects typically chose
a two-part movement strategy whose first velocity component
undershot the target and whose second velocity component
made the final approach to the target at a much lower speed.
Such results suggest that subjects found it easier to achieve
greater accuracy by breaking up the movement into parts than
by launching the movement ballistically over the full distance.
T~e first movement part. albeit strictly speaking an "under-
shoot error:' provides the occasion for updating TPCs and
choosing small GO signals during the final part of the move-
ment, thereby achieving high accuracy without too great an in-

the initial-impulse phase was found to contribute directly to the
speed-accuracy trade-off. Even when subjects had to perform with
their eyes closed and relied onjust this phase to execute their move-
ments. they still produced a trade-off. ..Models that attempt to
account for the speed-accuracy trade-off. ..must include mecha-
nisms that modulate the trade-off during the initial-impulse phase.
not just during the current-control phase.

The VITE circuit's ability to reproduce both Woodworth's law

Fi,~ure 2_~. (A) Simulation of movement duration (in seconds) as a function of peak velocity (degreefs) for a
30. (lower curve) and a 60. (upper curve) movement. (Parameters for Equations 2. 3. and 6: a = 30. n =

1.4. p = I. and 'Y = 0.) (8) Data on agonist burst duration (squares) and antagonist burst onset time (dots)
as a function of peak velocity (radiansfs) for a 60. movement. (Reprinted with permission from Lestienne.

1979.)
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pared with the existence of vector cells or with the manner in
which vector cell activities are integrated into outflow move.
ment commands (Section 12). We therefore believe that the
VITE model provides a better foundation for developing a
quantitative neurally based theory of arm movements than does
the minimum-jerk model. The VITE model. in addition to th~
model circuits developed in Grossberg and Kuperstein (1986),
also provides a mechanistic neural explanation of some of the
types of invariant behaviors for whose analysis the task-dy-
namic approach to motor control was developed (Saltzman &
Kelso, 1987).

Table 3
C(l/llpari.~(JI/ I.!' Thrc£' .\/o,/e/s' .4bilitie.s tv Predict Data
1.11/ Peak Accderati£1I/ (P)

10.
60.

.554

.692

20'
60'

:!O'
60'

376"
722"

.554

.692

'~ 4.~.
.692

394.
854.

~O'
60.

,-t.-:-..
.692

3960
11170

Bizzi. Accornero. Chapple,
& Hogan (1984)

(Experimental data)

Minimum-jerk model
(Simulation)

VITE model
(Simulation)

VITE. model
(Simulation)

.\ilt", VITE = Vector-integration-to-endpoint.

crease in total movement duration. Because GO signal adjust-
ments may also be necessary during the final components of
such composite movements. these components may also obey a
speed-accuracy tradeoff. as Carlton ( 1979) found.

29. Updating the PPC Using Inflow Signals
During Passive Movements

Despite these successes. the VITE model, as described. is far
from complete. In this section we outline a solution to one addi-
tional design problem. Bullock and Grossberg (1987) suggested
solutions to a number of the other design problems whereby
a VITE circuit can effectively move an arm of variable mass
subjected to unexpected perturbations at \'ariable velocities
through a :-.Jewtonian world.

In Section 5. we noted that inflow signals are needed to up-
date the PPC during a passive movement. For example. Gell-
mann, Gibson. and Houk (1985) have described cells in the cat
inferior olive that are sensitive to passive body displacement but
not to active movement. and Clark. Burgess. Chapin. and Lips-
comb (1985) have analyzed muscle proprioceptive contribu-
tions to position sense during passive finger movements in hu-
mans. Two basic problems motivate our model ofPPC updating
by inflow signals. First. the process of updating the PPC during
passive movements must continue until the PPC registers the
position coded by the inflow signals. Thus a difference vector of
inflow signals minus PPC outflow signals updates the PPC dur-
ing passive movements. We denote this difference vector by D J~
to distinguish it from the DV that compares TPCs ~'ith PPCs.
At times when DJ'p = 0, the PPC is fully updated. Although the
DJ"p is not the same as the DV that compares a TPC with a
PPC. the PPC is a source of inhibitory signals. as ~ill be seen
shortly. in computing both difference vectors.

Second. PPC outflow signals and inflow signals may. in prin-
ciple. be calibrated quite differently. We will sho~' ho~' corollary
discharges of the PPC outflow signals are adaptively recali-
brated until they are computed in the same numerical scale as
the inflow signals to which they are compared. We also show
that the adaptive recalibration mechanism automatically com-
putes aDJ.p that updates the PPC by just the correct amount.

Figure 26 schematizes a model circuit for adaptively comput-
ing this DJ 'p. We call this circuit the passive update of position
(PUP) model. In Figure 26, the PPC sends inhibitory corollary
discharge signals toward the outflow-inflow match stage where
the inflow signals are registered. It is assumed that this stage is
inhibited except when the movement command circuit is inac-
tive. A simple way to achieve this property is to assume that
the GO signal in the movement command circuit inhibits the
outflow-inflow match stage. as in Figure 26. Thus the mis-
matches of outflow and inflow signals that occur during every
active movement do not erroneously update the outflow-inflow

28. Computer Simulation of Peak Acceleration Data

Bizzi et alo (1984) measured the peak accelerations of me-
dium-speed forearm movements by mon~eys. They considered
movements around the elbow that swept out 20. and 60.0 In
Table 3. a computer simulation is compared with their data. To
make this comparison. we scaled I time unit in our simulation
to equal 10 ms. We then chose two values of the GO amplitude
parameter Go that generated trajectories of duration approxi-
mately equal to 554 ms and 692 ms. respectively. Because of
duration invariance (Section 21). the same durations obtain
given these choices of Go over a wide range of choices of the
distance measure T(O) -P(O). The fact that movements \\Oere
:'0. or 60. \\Oas translated into the constraint that the T(O) -
P(OJ value corresponding to the smaller choice of Go must be
chosen 3 times larger than the T(O) -P(O) value corresponding
to the larger choice of Go. Then we searched for values of
nO) -P(O) that gave the best fit to the peak acceleration data
subject to this constraint.

The result is compared in Table 3 with the data and with the
fit of Hogan's (1984) minimum-jerk model. The VITE model
fit these data substantially better than the minimum-jerk model.
The values associated with the VITE+ model indicate that a
perfect fit can be obtained (with Figure 18 parameters) if DV
readout to the shunting stage. rather than being instantaneous.
occurs over a brief interval whose length is proportional to the
size of the DV.

As noted in Section II, the minimum-jerk model also erro-
neously predicts a symmetric velocity profile, at least at the
le\'el of the central controller. Moreover. it is hard to see how
this model could explain the velocity amplification that occurs
during target switching (Section 10). Finally, the minimum-jerk
model does not contain any representation that may be com-
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cally. the PPC represents the same position as the inflow signals.
but perhaps in a different numerical scale. The learning laws
described in Appendix C define LTM traces that change until
the PPC multiplied by the LTM trace equals the inflow signal.
After a number of such learning trials during stable posture.
D V p = 0 and the PPC signals are rescaled by the L TM traces to
match correctly the inflow signals.

During a passive movement. the PPC does not change. but
the inflow signal may change. If the DVp becomes positive. it
causes an increase in the PPC until the D V p decreases to 0 and
the PPC is correctly updated by the inflow signals. If the D V p
becomes negative, then the D V p of the opponent muscle can
decrease the PPC until a match again occurs.

PASSIVE
MOVEMENT
UPDATE
SIGNAL

30. Concluding Remarks

The present article introduces a circuit for automatically
translating a target-position command into a complete move-
ment trajectory via a mechanism of continuous vector updating
and integration. A wide variety of behavioral and neural data
can be explained quantitatively by this mechanism. The model
also provides a foundation for clarifying some of the outstand-
ing classic issues in the motor-control literature. highlights the
relevance of learning constraints to the design of neural cir-
cuitry. and may be viewed as a specialized version of a more
general architecture for movement control.

The VITE circuit and the PUP circuit do not. however. ex-
haust the total neural machinery needed for the contro! of arm
movements. Mechanisms for properly timed sequential readout
of TPCs in a serial motor plan. such as during reaching and
grasping or during a dance (Grossberg & Kuperstein. 1986.
chapter 9). for adaptive linearization of a nonlinear muscle
plant (Grossberg & Kuperstein. 1986. chapter 5). and for auto-
matically or predictively adapting to the inertial properties gen-
erated by variable loads and velocities (Bullock & Grossberg.
1987) also form essential parts of the arm-control system.
When all of these systems are joined together. however. one can
begin to understand quantitatively how the arm system achieves
its remarkable flexibility and versatility and can begin to build
a new type of biologically inspired adaptive robot whose design
is qualitatively different from the algorithms offered by tradi-
tional approaches to artificial intelligence.

INFLOW
SIGNAL

Fi~urt' -'6 A passive update of position (PL!P) circuit. PPC = present-
position command. DV = difference vector. (An adaptive pathway

PPC -DI.p calibrates PPC-outflow signals in the same scale as inflow
signals during intervals of posture. During passive movements. output
from DV equals zero. Hence the passive difference vector DVp updates
the PPC until it equals the new position caused by any passive move-
ments that may occur because of the application of external forces.)
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Appendix A

Bell-Shaped Velocity Profile. Fitts's Law. and Staggered Onset Times.
This Appendix solves the system ofequations P(l) = P(O) + [T(O) -P(O») l' g(v)dv. (A 10)

Because dP/dt provides an estimate of the arm's velocity profile. Equa-
tion A9 illustrates the property of duration invariance in the special
case that G(t) is constant. Duration invariance is proved using a general
G(t) in Appendix B. Equation A9 also illustrates how the velocity profile
can respond to a sudden switch in the TPC with a gradual increase then
decrease in its shape, although g(t) assumes a different form if a> 4G.
a = 4G.ora <4G. When a > 4G,

!!. I" = a( -r' + T -P)
dl

d
-?=G[/l+dl

(AI)

(A2)

under the simplifying assumption that the GO signal G is a step func-
tion, Then the system can easily be integrated to demonstrate some ba-

sic properties,
In many situations. the system starts out in an equilibrium state such

that the pre~nt-position command (PPC) equals the target-position
command (TPC), Then a new TPC is s"'itched on. and the system ap-
proaches a ne\' equilibrium, Before the ne"' TPC is switched on. P = T
in Equation A I, Becau~ the system is at equilibrium. dl'jdt = O. Thus
by Equation A I. it also follows that I' = 0 under the~ circumstances,

Suppo~ that a new TPC value is s"'itched on at time t = O. If the

system repre~nts an agonist muscle. then T(O) > P(O) so that the PPC
increa~s \\hen T(O) turns on. thereby causing more contraction of its
target muscle group, Thus by Equation A I.

g(t) = ",-~G~~ e-QI~1 [ etl~~
Va- -4aG

-e-I/~~]. (All

.(0) = o. (A3)
and

(A4)

Consequentl~' '\1) ~ 0 for all times I such that 0 .s I .s T. where T is the
first positive time. possibl~' infinite. at which' I T) = O. While' II) ~ O.

it 10110,,"s by Equation A2 that

Term [ exp(~~)] -[ exp( -~~)] in Equation A II

increases exponentially from the \alue 0 at 1 = O. whereas term

exp[ -i l] decreases exponentially toy.ard the value 0 at a faster rate,

The net effect is a velocity function that increases then decreases y.ith
an approximately bell-shaped profile. In addition. ~([) 2: 0 and

17- g(l)dl = I. (AI2)

By Equations AID and AI?. P(l) increases toward Tas l increases. Thus
P(l) either approaches T(O) with an arbitrarily small error. or an under-
shoot error occurs if the GO signal is sy.'itched off prematurely.

If a = 4G. then

(A5)

To solve Equations A I and A5. we differentiate Equation A I at times
( ~ O. Then

d~. dJ. tiPdi1 J = a( -"d( -"di") .

g(t) = aGte-a/~l. (AI3)

Again. the velocity profile gradually increases then decreases. but it
starts to increase linearly before it decreases exponentially. The function
in Equation A 13 also satisfies Equation A 12. so that accurate mo'"ement
or undershoot occur. depending on the duration of the GO signal.

The case of a < 4G deserves special attention. In this case. the rate G
","ith which P is updated in Equation A2 exceeds the ability of the rate
,~ in Equation A I to keep up. As a result. an overshoot error can occur.

In particular.

(A6)

because T is constant. Substituting Equation A5 into Equation A6

yields
g(t) = ~~ e-"/2ISin(V~ )v4aG -a- 2 (

(AI4)
d2. d-d ,J+a- dt- t + aGJ'= O. (A7)

subject to the initial data in Equations A3 and A4.
This equation can be solved by standard methods. The solution takes

the form
~'(t) = [T(O) -P(O)]f(t), (AS)

where!(I) is independent of T(O) and PIa). Thus 1"(1) equals the initia!
difference between the new TPC and the initial PPC multiplied by a
function (I). which is independent of the new TPC and the initial PPC.
By Equation A~.

., .,
if 0 S I S .I.:T ,. When I exceeds '1.:1r ,. function gIll. and

V4aG -,,- v4aG -a-
thus ~C(/). becomes negative. By Equation A2. [~\II]+ = 0 when I ex-

.,
ceeds '1.:1r , .so that by Equation A2. P(t) stops moving at this

V4aG -a-
time. The movement time (MT) in this case thus satisfies

21T
.\!T='I. (A15)

V4aG -a-

Within this time frame. the velocity profile is the symmetric function

. (Y4aG-a~ ) I . I ' db hd . h . IisIn 2 I mu ttp Ie y t e ecaymg. ence asymmetric. un.c-

tion ('-aI2l. Greater overall symmetry of g(t) is achieved if the rate

(A9)

where!(I) = G(I). Integration of Equation A9 yields
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V*aG -,,:
., \\"ith \\"hich the sine junction changes is rapid relative to the

rate ~ \\ith \\"hich the exponential function changes: namely. if2G ~ a.

-.,'
Because PIt) stops changing at time t = ,,. ~ ,. the final PPC

v4aG -a-
value found from Equation A 10 is

E.P=G[/']+=O. (A22)dt

Thus P remains constant until I' becomes positive. If a new TPC is
switched on at time t = 0 to an agonist muscle that satisfies Equation
A21. then T(O) > Pia). By Equation AI, I' increases according to the
equation

( ., )P -11",

V4aG -a~

= P(Q) + [T(Q) -P(Q)](I + e-(aw/V4;G:;!». (AI6)

Thus an overshoot error occurs of size

E = [T(O) -P(O)]e-("~/'fi;;G:-;;5). (A 17)

In accordance with Woodworth.s law. the error is proportional to the
distance [T(Q) -P(O!). Fitts.s law can be derived by holding E constant
in Equation A 17 and varying [T(O) -PIa)] to test the effect on the MT
in Equation A 15. Substituting Equation A 15 into A 17 shows that

~ v + a V = a[T(O) -P(O)], (A23)

where a( T(O) -P(O)] is a positive constant. until the time I = I, at which
~III) = O. Thereafter [~1+ = ~. > 0 so that ~-' and P mutually influence

each other through Equations A I and AS.
Time I, is computed by integrating Equation AIO. We find

V(/) = J.'(O)e-OI + [T(O) -P(O)](I -e-O') (A24)

forO oS I oS [I. By Equation 21.

1\/) = -P(O) + T(O)(I -e-OI). (A25)
Thus

~

E = [T(O) -P(O)]e-a.\tTI2. (A18)

hich implies Fills.s la~'

-I ' [I (P(O»]-I A"6I. -~ n -T(O). ( -)

By Equation A26. (, is a function of the ratio of the initial PPC value to
the new TPC value.

For times ( ~ (I. Equations A 1 and A5 can be integrated just as they
were in the preceding case. Indeed.

1(/1) = 0 (A27)
.\IT = ~ 10g(I!Ql~~) .(A 19)

The initial condition 110) = 0 in Equation A3 obtains if the system
has acti,ely tracked a constant TPC until its PPC attains this TPC ,alue.
Under other circumstances. 110) may be negati,e. When this occurs.
(d/dtIP in Equation A2 may remain 0 during an initial inter,al. while
11 t) increases to nonnegative values. Thus P begins to change only alter
a staggered onset time. A derivation of some properties of staggered on-
set times follow.

A negative initial ,alue of 110) may obtain if a particular muscle
group has been passively moved to a new position either by an external
force or by the prior active contraction of other muscle groups. In such
a situation. PIt) may be changed by the passive update of position (PUP)
circuit (Section 29) even if T(t) = O. and 1"(11 may track PIt) via Equa-
tion .-\ I until a new equilibrium is reached. Under these circumstances.
Equation A 1 implies that

by th~definition of 1,. and

~'O(/.)=a[T(O)-P(O)] (A28)

by Equations A23 and A28. The initial data in Equations A27 and A28
are the same as the initial data in Equations A3 and A4 except for a shift
of 11 time units. Consequently if the GO signal onset time is also shifted
by II time units. then it follows from Equation A8 that at times 1 ~ 11.

,oct) = [T(O) -P(O)]f(/-/.). (A29)

An estimate of such a velocity profile is found by piecing together
Equations A24 and A29. Thus

d 0 for 0 oS I < II
-P = i (A30)
dl l G[T(O) -P(O)]f(1 -II) for II oS I

Equation A30 illustrates how a velocity profile with a staggered onset
time can occur if 1"(0) < O. As shown in Section 25. the vector-integra-
tion-to-endpoint (VITE) command to a muscle group can compensate
for a staggered onset time if its difference vector is multiplied by the
same GO signal as other muscles in the synerg): In this case. the GO
signal onset time is not shifted to match the onset time of each compo-
nent of the VITE command.

0 = ~ V = a( -V + 0 -P). (A20)

Ifwe assume that this equilibrium value obtains at time 1= O. then

I"(O)=-P(O)<O. (A21)

and Equation ..\1 implies that
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Appendix B

Synchrony and Duration lnvariance

Thus by Equations 8 I and 89. both V and Q start out with 0 values at
1=0.

Now define new variables

v(t) = ~
T2

and

Consider Equations A I and A:! under the influence of an arbitrary
nonneg;ltive and continuous GO function G(r). As in Appendix A.let

."(0) = 0 (81)

and P = Tbefore T is switched to a new value. Suppose for definiteness
that T(t} switches from the \~lue To to TI at time r = 0 and that

T1 > To = P(O). (82)

Consequently. equations

q(t) = ~ .

By Equations B7 and B8. these variables obey the equations

E-1"=a(-I"+T-P)
dt

(83)
(812)

d
-L' = a( -L' + I -q)
dtand

and
(84) d;jiq = GL'

In addition.hold for T ~ ( ~ O. Define the new present-position command variable

Q(t)=P(t)-To. (85)

and the ne" target-position constant

T2 = T, -To. (86)

Then Equations 83 and 84 can be replaced by equations

E.1"=a(-I.+T,-Q)dt -

L'(O) = q(O) = 0 (814)

by Equations 81 and 89. It is obvious that a unique solution of
Equations 812 through 814 obtains no matter how T2 and T1 are cho-
sen,ifT~> TI.

8y combining Equations 82,85.86. and 8 II, we find that

P(t) = P(O) + [T1 -P(O)]q(t), (815)

where q(l) is independent of T, and P(O). Equation 815 proves duration
invariance given a general GO function G(l). Indeed. differentiating
Equation 815 yields

(87)

and

(88)
d
d(Q=GJ

for t ~ O. By Equation B2.

d d
diP=[T,-P(O)]diQ(l). (816)

which shows that function dqjdl generalizes function g(r) in Equa-

tion A9.Q(O) = O. (89)
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Appendix C

Passive Update of Position

Descri"ptions of mathematical equations lor a passive update of posi-
tion (PUP) circuit follow. As in our description of a vector-integration-
to-endpoint (VITE) circuit. equations for the control of a single muscle
group will be described. Opponent interactions between agonist and an-
tago.nist muscles also exist and can easily be added once the main ideas
are understood.

The PL'P circuit supplements Equation CI

!!.
, p=G[rl+. (Cl)

, (

","hereby the present-position command (PPC) integrates difference vec-
tors through time. A PUP circuit obeys the lollo\\"ing equations:

present-position command.

~ P = G[Jl. + Gp[.\/]+: (C2)

(C3)

outllo\\i-inflo\\' interlace.

d-d .\1 = -d.\1 T if -=P:
I

adapti\e gain control.

(C4)

match between inflow and outflow signals accurately encodes a cor-
rectly updated PPC. Adaptive recalibration proceeds as follows.

In Equation C4, the learning-rate parameter.l is chosen to be a small
constant to assure that = changes much more slowly than .\for P. The
passive gating function Gp also modulates learning, because = can
change only at times when Gp > O. At such times. term -,= describes a
very slow forgetting process that prevents = from getting stuck in mis-
takes. The forgetting process is much slower than the process whereby
: grows when [.\f]+ > O. Because function .\f reacts quickly to its inputs
-yl and -=P. as in Equation C5. term [.\/)+ > 0 only if

i'I> =P. (C6)

The outflo'" signal P is multiplied. or gated. by = on its ""3y to the match
interface ",'here .\1 is computed (Figure 26).

Because = changes only ",'hen the muscle is in a postural. or a passive.
state. terms -yl and P typically represent the same position. or state of
contraction. of the muscle group. Then Inequality C6 says that the scale
-yl for measuring position I using inflow signals is larger than the scale
:P for measuring the same position using outflow signals. When this
happens. = increases until.\! = 0: namely. until outllo\\ and inllo'" mea-
surement scales are equal.

On an occasion when the arm is passively moved by an extemallorce.
the inflo"" signal., I may momentarily be greater than the outflow signal
:P. Because of past learning. however. the inflow signal satisfies

il = =P*. (C7)

where p. is the outflow command typically associated \vith I. Thus by
Equation C5.

The match function .\/ in Equation C3 rapidly computes a time aver-
age of the difference between inno,,' () I) and gated outno'" (=P) signals.

Thus

~

-
.\/ ~ =- (p' -P), ICS)

,j

By Equations C2 and C8. P quickly increases until it equals p*, Thus.
after learning occurs. P approaches P*. and .\1 approaches 0 \'ery
quickly. so quickly that any spurious n~' learning which might have
occurred because of the momentary mismatch created b~' the onset of
the passive movement has little opportunit~ to occur. because = changes
slowl~' through time, \\'hat small deviations may occur tend to average
out because of the combined action of the slow forgetting term -,= in
Equation C4 and opponent interactions.

Equations C3 and C4 use the same formal mechanisms as the head-
mll,f,'/e inr"r:faceIHMI) described b~' Grossberg and Kuperstein (1986).
The HMI adaptivel~' recodes a visually activated target position coded
in head coordinates into the same target position coded in agonist-an-
tagonist muscle coordinates. Such a mechanism for adaptive matching
of t\\'O measurement scales may be used quite widel~' in the nervous
s~stem, We therefore call all such s~stems adapri\'e \'ecror encoders,
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1
.\[~-(,I-:P). (C5)

13

If the intlo\\' signal ')'1 exceeds the gated outflow signal =P. then [.\/]+ >
0 in Equation C5. Otherwise [.\l]. = O. The pa~si1'e ,-.rarin.~"timcrion Gp

in Equation C~ is positive only \\"hen the muscle is in a passive. or po~
tural. state. In particular. Gp > 0 only when the GO signal G(r) == 0
in the \lTE circuit. Figure ~6 assumes that a signal ([G([)] inhibits a
tonically acti\e source of the gating signal Gp. Thus Gp is the output
from a "pauser' cell. \\"hich is a tonically acti\e cell \\'hose output is
attenuated during an active movement. Such cells are \\ell-known to
occur in saccadic eye-movement circuits (Grossberg & Kuperstein.
19~6: Luschei & Fuchs. 1972: Raybourn & Keller. 1977). If both Gp
and [.\1]" are positive in Equation C:.. then tiP/tir > O. Consequently. P
increases until \1 = O. that is. until the gated outl10\\ signal =P equals

the intlo\\ signal ')'/. At such time. the PPC is updated to match the
position attained by the muscle during a passive movement. To see why
this is true. "e need to consider the role of function = in Equations C3

and C~.
Function = is a long-term memory (L TM) trace. or associative \veighL

\\"hich adaptively recalibrates the scale. or gain. of outflow signals until
they are in the same scale as inflow signals. Using this mechanism. a


