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SELF-ORGANIZING NEURAL NETWORK
ARCHITECTURES FOR ADAPTIVE PATTERN
RECOGNITION AND ROBOTICS

by Daniel Bullockt, Gail A. Carpenter}, and Stephen Grossberg*
Center for Adaptive Systems, Boston University

In this chapter, we discuss some recent results in neural
networks relevant to adaptive pattern recognition and sensory-
motor control problems. In biologically-oriented neural net-
works, whose fast dynamics are governed by slowly changing
network transmission weights as well as by rapidly fluctuating
external inputs, two major foci of research are (1) how to ensure
that short-term dynamics are pattern preserving and (2) how
to automatically regulate learning (transmission weight modi-
mo@ﬁoww in such a way that the system is guaranteed to de-
velop along an adaptive trajectory. To exemplify these issues,
we will quickly move through a series of network constructs. On
the perceptual-cognitive end, we will discuss how recurrent com-
petitive fields allow invariant pattern registration despite large
fluctuations in input energies, and how an adaptive resonance
module can learn a stable categorization/recognition code with-
out an external teacher. On the motor-control side, results on
variable-speed trajectory formation, sensory updating, learned
anticipatory error compensation, and length-tension factoriza-
tion illustrate networks that are applicable in several perfor-
mance domains (planned arm and speech movements, ballistic
eye-movements) and that help explain data on several distinct
but cooperative neural regions (pre-central motor cortex, globus
pallidus, cerebellum, spinal cord).
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The primate nervous system has parsed the problems of per-
ception, recognition, and sensory-motor control by distributing
the computational task across a large number of specialized neu-
ral networks, many of which operate in parallel. Though the
existence of a distributed solution has long been clear from the
selective and partial effects of localized brain and spinal lesions,
an understanding of the nature of the computations performed
by distinct networks has been slower to develop. Recently, how-
ever, functionally oriented studies of simulated neural networks
as analog, non-linear systems with coupled short- and long-term
dynamics have begun to produce a powerful theoretical basis for
making sense of the rich, but extremely ambiguous, physiological
database (Grossberg, 1988a; Grossberg and Kuperstein, 1986).

1. AUTOMATIC GAIN CONTROL AND SENSORY
FACTORIZATION OF PATTERN AND ENERGY

A paradigmatic study of short- and intermediate-term dy-
namics and their importance for non-distortive pattern regis-
tration and storage by a neuronal network was the paper by
Grossberg (1973; reprinted in Grossberg, 1982) on feedforward
and recurrent competitive fields. As shown in Figure 1A and
1B, each site in such fields recieves an excitatory input as well as
inhibitory inputs branching from excitatory inputs to all other
sites (in fully interconnected examples). To begin to analyze the
real-time behavior of such a network, it is necessary to write dif-
ferential equations for the activity z; at each site v;. Grossberg
(1973) chose to analyze equations whose forms were closely re-
lated to the neural membrane equations of Hodgkin and Huxley
(1952). A particularly useful formulation was

m. = —Az; + Am - Hs.st. —Z; MU I A:

&s k#1
where A is a spontaneous decay rate, B is the maximum activity
level, 3°¢+; I;; is the total input to m_nmm other than site ¢, and
1 =1,2,...,n for a neural field with n sites.
Grossberg showed that when the fluctuating activity at each
site in such a field is governed by (1), then the inhibitory connec-
tivity affords a kind of automatic gain control, which simultane-

ously prevents saturation and preserves information specified by
the relative sizes of activities at different sites. In particular, let

6; = wﬂ, where I = Y, I,. Then the equilibrium activity at site
v; is:
BI

zi =07 (2)
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Figure 1. Schematic representations of two types of on-center, off-surround
(competitive)networks. (A) A feedforward network, in which the input path-
ways define the on-center, off-surround interactions. For clarity, only inputs
branching from channel I;, which excites site v; and inhibits other sites, are
shown. The same, recentered, branching pattern holds for all indexes k # 4.
(B) A feedback network in which recurrent excitatory and inhibitory interac-
tions can lead to various pattern storage and pattern transformation proper-
ties, e.g., choice of the site with the largest initial excitatory input.

35



Thus despite huge variations in I, the total input energy, the
neural activity at each site remains proportional to the size of
its excitatory input, I;, relative to the excitatory inputs at all
other sites. Such invariant ratio processing is a well-known oper-
ating characteristic of human perceptual systems, where it goes
by the name “Weber’s law”. Besides explaining an important
psychophysical law as a corollary of the need to factor pattern
and energy, the model provides a rationale for a ubiquitous neu-
ral property, namely feedforward inhibitory connectivity within
sensory and perceptual systems.

Further analyses concerned pattern processing in recurrent
competitive fields, which, by virtue of excitatory feedback, are
capable of indefinitely storing a pattern after the input is shut off.
Sites in the simplest example of such a network obey equations
of the form

o oi= — Az + (B— 2L+ ()] - X Lo+ X Fa)] (4)
k#i k#i

where f(w) is generally a monotonic increasing function of its
argument. Figure 2 (based on Grossberg, 1973) shows how the
choice of this function can change the pattern-storage character-
istics of the network. In particular, it shows that when the goal is

to preserve initial activity ratios in a noisy environment, the best -

choice is a sigmoidal feedback function. Unlike a zero-threshold,
linear feedback function, the sigmoid affords a tunable threshold
that allows the suppression of small activities due to noise.

2. SELF-STABILIZING ADAPTIVE PATTERN
CLASSIFICATION

A direct descendent of the work on recurrent competitive
fields, and of related work on spatial pattern learning and classi-
fication (e.g. Grossberg, 1968) is the Adaptive Resonance The-
ory (ART) of Carpenter and Grossberg (1987a; 1987b) which
itself has been under continuous development for more than a
decade. This theory shows how to design a family of stable
multi-layered neural networks, each member of which is capa-
ble of automatic, on-line category induction and rapid pattern
classification. In particular the theory provides an autonomous
solution to the stability problem inherent in all networks with
coupled short- and long-term dynamics. The essential point of
the solution is that the architecture responsible for the short-
term dynamics—which constitute the computations in these sys-
tems where “the architecture is the algorithm” —must be parsed
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Figure 2. Influence of recurrent signal function f(w) on input pattern trans-
formation and short-term memory storage in a recurrent competitive field.
Note that g(w) = f(w)/w. Based on Grossberg (1973).

into a relatively fixed regulatory component and an adaptive
pattern-encoding component, which changes more slowly than
the short-term dynamics. The fixed regulatory component then
guarantees that the slower adapting pattern-encoding compo-
nent cannot develop along non-adaptive trajectories.. By con-
trast with ART networks, many recent neural network models
have virtually no self-regulatory component, and hence depend
on benevolent input schedules for their apparent adaptive tra-
jectories (Grossberg, 1988a).

Figure 3 is a highly schematic representation of an ART mod-
ule. Its first component is an input field, F1, whose distinct sites
correspond to possible object features. Thus a distinct pattern of
activity across F'1 represents the set of features possessed by the
object currently being presented for categorization by the ART
module, and objects with disparate features will activate largely
non-intersecting sets of sites in F1. In the maximal compres-
sion case, the task of the network is to learn to assign a single
distinct site in field F2 for every distinct class of patterns that
may be instated at F1. Furthermore, we desire a network that
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Figure 3. Anatomy of the attentional-orienting system: Two successive °
stages, F; and F3 of the attentional subsystem encode patterns of activation :

in short term memory (STM). Bottom-up and top-down pathways between

F; and F;, contain adaptive long term memory (LTM) traces which multiply -
the signals in these pathways. The remainder of the circuit modulates these :
STM and LTM processes. Modulation by gain control enables F; to distin- .

guish between bottom-up input patterns and top-down priming, or template,

patterns, as well as to match these bottom-up and top-down patterns. Gain
control signals also enable F; to react supraliminally to signals from F; while
an input pattern is on. The orienting subsystem generates a reset wave to °
F, when mismatches between bottom-up and top-down patterns occur at Fj. .
This reset wave selectively and enduringly inhibits active Fy cells until the .

input is shut off. Reprinted with permission from Carpenter and Grossberg
(1987a).
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can quickly stabilize its assignment, so that the same distinct
site in F'2 is always activated when a member of the pattern
class is presented, despite large numbers of intervening presen-
tations during which other pattern classes are learned. Finally,
we want the network to induce and stabilize its categorization
scheme autonomously, i.e. without an external teacher.

These properties can be realized if the pathways that connect
all sites in F'1 to all sites in F'2 possess modifiable transmission
weights (also called LTM, or long term memory, traces) that can
be stably adapted over learning trials. To begin, suppose that
during learning transmission weights z;; on pathways arriving
at a particular F2 site v;, which is arbitrarily chosen to code
exemplars of category j, become relatively large for all pathways
from F'1 feature-coding sites v; that are diagnostic of category j,
but relatively small for all pathways from features not diagnostic
of category j. Suppose that upon instatement of any future
feature set at F1, the total signal arriving at F2 sites v; (j =

1,2,...n) is
Tj =) Sizj (4)
t

where, in the simplest case, S; = 1 if the input contains the
feature represented by F'1 site v;, and S; = 0 if the input lacks
this feature. Thus the fiber bundle projecting from F'1 sites to F'2
sites maximally activates that F'2 site whose learned diagnostic
feature pattern (encoded in the path weights) best matches the
feature pattern of the new exemplar presented to the network.
In effect, the adaptable filter connecting F'1 to F'2 computes, in
parallel, the dot products between the input feature pattern and
the distinct diagnostic feature patterns associated with all sites
in F2. The site of the maximal dot product specifies the network
class into which the current input exemplar falls.

If F'2 is a recurrent competitive field (e.g., if it obeys equation
3), then its feedback function can be chosen such that after a
short time the F'2 site with the initially maximal activity will also
be the only active site (Figure 2). Thus the “arbitrary choice”
of a distinct coding site mentioned above can be made by the
network itself on the basis of random initial differences in the
strength of connectivity between F1 and F2 sites. Once such
a choice is made, we have a distributed pattern across F1 and
a single site active in F'2 with activity z;. During this interval
of coactivation, pathweights z;; are adjusted in accord with a
learning law of form:

WN&. = \Aﬂ.u.v—lmwnw. + QAH&_ Amv
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Assuming that f(z;) and g(z;) are positive for positive argu-
ments and zero otherwise, this law assures that weights on lines
projecting to the active F'2 site from active F'1 sites grow toward
positive value g(z;) while weights on lines projecting from inac-
tive F1 sites shrink toward zero. As a result the active F2 site
becomes more susceptible to future activation by input patterns
possessing large featural commonality with the training pattern,
and less susceptible to activation by disparate input patterns.

Grossberg (1976) noted that the scheme as so far described is
unstable if learning continues beyond the time when categories
are first established. This can be appreciated by noting that
the best initial match need not be a good match. Because the
simple feedforward scheme just described has no way of detecting
whether the winning F2 site was activated by a pattern that
matched the category’s diagnostic feature pattern well or poorly,
situations readily arise in which the weight vector associated with
the winning F'2 site begins to deform, in accord with (5), in the
direction of a poorly matching input vector.

ART overcomes this problem by providing mechanisms
whereby the network can compute the goodness-of-match be-
tween the current F'1 pattern and that F1 pattern ezpected on
the basis of prior input patterns that led to activation of the
current F'2 site. In the simplest case, such an expectation can
be learned as a vector of weights on pathways projecting back
from the chosen F2 site to all sites in F1, and the learning rule
can be a variant of the form already described for the F1 to F2
adaptive filter. Then when an F2 site is activated, this causes
the learned expectation to be sent as a second “input” to F1.
A suitably designed F1 can then perform a feature-by-feature
comparison between the bottom-up and the top-down inputs.

ART also provides a mechanism by which the F2 level can
be reset whenever the degree of match between F1 inputs falls
below an adjustable criterion. This reset prevents recoding of
committed F'2 sites by disparate exemplars and guarantees code
stability. After reset, competition at F'2 determines a new choice
of site for coding the F1 input pattern, with the initial choice
excluded from effective competition. This process iterates until
an F'2 node that has not learned a non-matching expectation is
found. Its input weight vector and its output to F'1 weight vector
then begin to deform in the direction of the F1 pattern, and a
resonance begins to occur between F'1 and F2. This phenomenon
gives the theory its name, “adaptive resonance theory.”

By virtue of the reset-on-mismatch operation, ART performs
an automatic serial search for an uncommitted F2 site when
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Figure 4. (A) A match interface within the VITE model continuously com-
putes a difference vector (DV) between a target position command (TPC)
and a present position command (PPC), and adds the difference vector to
the present position command. (B) A GO signal gates execution of a primed
movement vector and regulates the rate at which the movement vector up-
dates the present position command. Reprinted with permission from Bullock
and Grossberg (1988).

confronted by a member of a novel pattern class. Yet m.?m.u
learning, a serial search is unnecessary because the input di-
rectly addresses the correct F2 site as part of what is essentially
a massively parallel search operation. ART systems thus ex-
emplify a property we call autonomous supercession of control:
the trajectory through system states utilized at an early stage
of learning is autonomously superceded by a shorter, more effi-
cient trajectory as learning proceeds. This is a S..;mo.& feature
of self-organizing systems, which must be capable of iterating
to a solution when confronting novel problems, yet also capa-
ble of achieving high performance by directly instating learned
solutions to familiar problems. In the second part of the chap-
ter, we show that autonomous supercession of control has also
been a major organizing theme in studies of neural networks for
motor-control.
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the operating characteristics of several <m1m§m.?.m; versions for
binary and for analog features) can be found in Carpenter angd
Grossberg (1987a; 1987b).

In the remaining sections, we will discuss four networks that .
have emerged on the motor-control side of neural networks re- :

search. Though different than the ART networks, each borrows:

from the same tradition of thinking within the neural networks.”
these examples further illustrate the impor--

and long-term dynamics in these kinds of - -
systems, and provide further evidence that autonomous match-

field. In particular,
tance of coupled short-

regulated learning, automatic supercession of control, and auto-
matic pattern-energy factorization are key organizing principles
for the theory of neural networks.

3. TRAJECTORY GENERATION

First is a network model formulated by Bullock and Gross-
berg (1988; 1989) to explain trajectory formation in simple point-

to-point arm movements. The theory proposes that sight of a

desired object within reach can activate a distributed neural rep-
resentation called the terminal position command, or TPC, an
array of muscle-length (and therefore Jjoint-angle) settings which,
if instated in the arm, would position the hand near the object.
This TPC is compared with a distributed representation called
the present position command, or PPC, the array of muscle-
length settings responsible for the arm’s present posture. Sub-
tracting the PPC from the TPC yields a difference vector, or
DV, the array of muscle-length changes needed to bring the arm

from its present position to the desired position coded by the
TPC (see Figure 4A).

Thus the initial assumptions, apart from the parallelism, are
fairly standard in a control-theoretic context, though not in the
context of some recent physiological discussions of arm move-
ments (e.g. Cooke, 1980). However, rather than merely adding
the DV to the PPC, we propose that before being integrated by
the PPC stage, outputs of the DV stage are multiplied in paral-
lel by a widely broadcast, time-varying signal that grows faster-
than-linearly during the movement interval. Thus the product
of a declining DV and a growing “GO-signal” determine the
momentary PPC updating rate (see Figure 4B). The widely-
broadcast signal is called a GO-signal because until it becomes
greater than zero the circuit can compute a DV but no PPC
updating can occur—a motor act can be centrally primed then
released by activation of the GO-signal. The GO-signal itself is
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Detailed specifications of ART systems and explorations of -

;wé_awmmm by a scalar that serves as a movement duration: set-

ting. Because the trajectory is formed by integrating multiplied

pVs until the PPC equals the TPC and the DV stage activity
. m thereby zeroed, we call the model the <m39...53m3$om-&o.
,_‘Mmmwomn? or VITE, model of trajectory formation. Equations

for one component, corresponding to the controller for one of
many muscles that may contribute to the movement, are:

v,

sVi=a(-Vi+ T - F)

(6)

4p

dt~? Ad
where a is constant, V; is the DV stage woﬂﬁgg T; is the TPC
stage activity, and P; is the PPC stage activity, for nwm compo-
nent indexed by ¢. G(t) is the current value of the GO-signal and
[Vi]* = max(V;,0). Competitive (inhibitory) inputs to the PPC
stage from antagonist muscle channels are omitted for clarity
(see Bullock and Grossberg, 1988, 1989).

Despite its simplicity, the VITE model B.mwam nsm.;rgﬁa&_%
and quantitatively correct predictions regarding a wide range
of behavioral and neurophysiological data. On the physiologi-
cal side, the key data are those of Qmop..movoﬁo? Schwartz and
Kettner (1986) on precentral motor cortical cells (DV stage), and
those of Horak and Anderson (1984) on the globus pallidus (GO-
signal pathway). Among the well-documented kinematic prop-
erties explained by the model, several are common to both arm
and speech-articulator movements, e.g., nwﬂw\-mmvgmgﬁ velocity-
profile asymmetry, invariant ratio of maximum to average ve-
locity, and a logarithmic mvmm@-mooc.gn% tradeoff (Bullock and
Grossberg, 1988, 1989). Regarding the latter, note that mnmw-
gizing the movement by increasing the Qo-mﬁ.sm_ scalar .rmm rel-
atively little effect on movement form (direction and distance)
because of the way the GO-signal feeds into &rm ﬁowv that %S.Wm
to zero the DV. In particular, the Ba_.ﬁvromaﬁw interaction of
DV and G(t) assures that PPC updating ceases whenever DV
reaches zero, regardless of the size of G(t). This is another exam-
ple of a network design that ensures pattern-energy factorization.

Figure 5 illustrates that the circuit tends to guarantee that
the different PPC command components Sma.mbomm v% a com-
mon faster-than-linear GO-signal will reach a.rm:.. n@mBS& values
(muscle-length settings) synchronously despite significant o,bﬂm?
time variability in DV component readout. This means that
brief selective inhibition of some DV output components could be
used to stagger action at different joints without sacrificing the

= G+
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Figure 5. Simulation results showing automatic VITE circuit compensation
for contraction-onset-time staggering across three components of a synergy.
Each block (I, II, III, IV) of simulations shows results for a different value (10,
20, 40, and 80, respectively) of the GO signal scalar. The different lengths
of bars within each block show that less time is needed to update those
components whose onset times are most delayed. Offset synchrony begins to
break down when earlier components have executed more than 50 percent
of their trajectories before later components begin to move. Reprinted with
permission from Bullock and Grossberg (1988).
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desirable property of synchronous termination of muscle contrac-
tions. Hollerbach, Moore, and Atkeson (1986) have noted that
such staggering could be used to linearize the Cartesian space
hand-paths produced by linear-interpolative joint-space trajec-
tory generators, of which the VITE circuit is one example, and
have produced evidence that human arm movements do exhibit
joint-space planning.

A closely related consequence of faster-than-linear GO-signal
growth during movement emerges when we consider that TPCs
frequently change during movement. For example, the projected
position of the object to be reached may change, or a subject
reaching for an object initially in the visual periphery may make
a better estimate of object location after performing a saccade
(ballistic eye movement) to foveate the object. The latter situa-
tion arises at least as frequently as the former (moving object),
because saccades take much less time than the arm movements
that may be unfolding in parallel. In a properly designed system
incorporating the VITE module, the TPC is updated, after the
saccade or after a target position change, by direct instatement
via an eye-hand map; the TPC-PPC computation then updates
the evolving DV, and this late-arriving information affects the
arm’s trajectory more quickly by virtue of the larger GO-signal
value. Strong evidence that this operating characteristic is true
of humans and perhaps many other mammals comes from exper-
iments by Georgopoulos, Kalaska, and Massey (1981), Goodale,
Pellisson and Prablanc (1986), and Gracco and Abbs (1985).

4. SENSORY UPDATING

A clearly delineated circuit like the VITE model provides
clues to the brain’s factoring strategy because it can only work
well in connection with several complementary circuits. Of pri-
mary importance is a self-organizing associative map for eye-
hand coordination, such as that developed by Kuperstein (1987).
Such a map explains how seeing an object can directly instate a
TPC.

Another likely circuit is the PUP (passive update of posi-
tion) circuit shown in Figure 6 (Bullock and Grossberg, 1988).
It ensures that when the GO-signal is off or small, the PPC is up-
dated by sensory DVs arising from passive movements imposed
on the arm. Such DV’s are computed at a motor-sensory inter-
face (DV, stage in Figure 6), which includes modifiable trans-
mission weights (symbolized by the semi-circular path-ending in
Figure 6) whose long-term dynamics ensure that the motor sig-
nals used in the computation are correctly calibrated to the scale
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Figure 6. A passive update of position (PUP) circuit. An adaptive pathway
PPC — DVp calibrates PPC-outflow signals in the same scale as inflow
signals during intervals of posture. During passive movements, output from
GO equals zero. Hence the passive difference vector DVp updates the PPC
until it equals the new position caused by any passive movements that may

occur due to the application of external forces. Reprinted with permission
from Bullock and Grossberg (1988).
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used by the sensory signals. A similar circuit was previously em-
ployed by Grossberg & Kuperstein (1986) in their multi-circuit
model of the primate neural system for ballistic eye-movements.
Note that the GO-signal gates, or switches on and off, not only
the passive updating process, which occurs on a fast time-scale,
but also the calibrative learning process (transmission weight
modification), which occurs on a slower time scale. The gat-
ing prevents learning during fast movement, when feedback lags
create spurious mismatches at the DV, stage, mismatches that
might force the transmission weights along a non-adaptive tra-
jectory in the absence of the regulatory gating.

Typical equations for a PUP circuit component ¢ are: present
position command,

d
4 P = GIVI* + Gyl ®)
outflow-inflow interface,
d
i Mi = —BM;+1L; — 2P; (9)

and synaptic transmission (learning) law,

d
74 = 6Gp(—ez + (M) (10)

where P; is the PPC stage activity, M; (for “match interface”)
the DV, stage activity, Gp the output of the node inhibited by
positive GO signals, and z; the value of the learned transmission
weight for a given component (muscle channel). With learning,
2z; converges on a value such that z;P; ~ vI; when the arm has
reached a given commanded posture. Constant coefficients 6
and e respectively control the overall learning rate and passive
forgetting rate, both of which are slow relative to the dynamics
governed by equations (8) and (9). Note that learning (change
in synaptic weights z;) proceeds faster when M;, the discrepancy
between inflow and outflow measures of present position, is large.
Thus learning must be prevented when large discrepancies occur
that are not due to miscalibration, e.g. during rapid movement.
The active gating of sensory feedback pathways during rapid
movement is well supported in the physiological literature (e.g.,
Evarts and Fromm, 1978).

47



5. ANTICIPATORY COMPENSATIONS

Because the VITE circuit uses feedback from the PPC stage
to zero the DV during movements rather than sensory feedback,
provisions must exist to ensure that the arm actually tracks the
evolving PPC. In fact, such provisions are distributed across
cortical and cerebellar networks in the brain, across spinal net-
works, and in the muscles themselves, which behave in some
respects like springs. Figure 7 shows the overall design for a
muscie linearization network (MLN) developed in Grossberg and
Kuperstein (1986). Such a network autonomously learns to an-
ticipatorily compensate for non-linearities in the muscle plant’s
response to changes in the PPC’s length settings. In particular,
whenever the measured response of the muscle (inflow signal)
fails to match the commanded response (unconditional outflow
signal), a mismatch is registered at the outflow-inflow interface
(OII) and an error signal is sent to the adaptive gain stage (AG),
where the strength of the transmission weight on a supplemen-
tary command-specific (position-dependent) outflow pathway is
incremented or decremented depending on the sign of the error.
Over time, the system comes to behave as if there were a linear
relationship between PPC stage activities and muscle lengths,
and errors no longer occur because they are pre-empted by the
feedforward conditioned gain signals that arrive at the muscle
plant via the supplementary pathway, or side loop, that passes
through the AG stage. Prior to AG stage learning, errors must
be compensated by reactive systems that operate after errors oc-
cur. Thus AG stage learning effectively creates new paths that
allow direct instatement to supercede iteration—another exam-
ple of autonomous supercession of control.

By virtue of the adaptive gain stage, the brain includes
a powerful general purpose mechanism for learning arbitrarily
conditionalized anticipatory compensations, and the broad use-
fulness of such a mechanism in motor skill acquisition (muscle
linearization being only one of many applications) is attested
by the large cranial volume displaced by the deeply convoluted
cerebellum—almost certainly the site of the predictive adaptive
gain stage (Grossberg and Kuperstein, 1986; Hore, 1987; Ito,
Hompw. Because the muscle linearization network-of Figure 7 was
developed as part of a neural system for moving the eye, which
carries no loads and is subjected to few if any external pertu-
bations, it can be much simpler than a functionally equivalent
network for an arm. Assembling other components of the arm
network, one of which is reprised in the next section, is one of
the foci for our ongoing research.
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Figure 7. Some main features of the muscle linearization network, or MLN:
The outflow-inflow interface (OII) registers matches and mismatches between
outflow signals and inflow signals. Mismatches generate error signals to the
adaptive gain (AG) stage. These error signals change the gain of the condi-
tioned movement signal to the motoneurons (MN). Such an MLN adaptively
linearizes the responses of a nonlinear muscle plant to outflow signals. The
outflow signals can therefore also be used as a source of accurate corollary
discharges of present eye position. Reprinted with permission from Grossberg
and Kuperstein (1986).
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6. SEPARABLE CONTROL OF JOINT ANGLE AND
JOINT STIFFNESS

A remarkable property of the skeleto-muscular control sys-
tem is the ability to hold arbitrary postures at various levels of

stiffness: at any desired angle, we can vary the muscular forces

acting on a joint such that the joint is either very compliant or
very rigid. Thus muscles must be able to generate many lev-
els of force at every possible length, and Bullock and Grossberg
(1989) showed that this requirement leads to a self-similarity
property, at the neuro-muscular interface, which had already
been known empirically as the size prineiple of spinal motoneu-
ron recruitment (Henneman, 1985) which ensures a faster-than-
linear functional relation between neural inputs and muscle-force

outputs. We also showed that the non-linearity introduced by :
the size principle complicates the spinal circuitry needed to pro- ..

vide higher motor centers with a simple method of achieving in-

dependent control of muscle length and muscle tension. This led .-
us to propose a new quantitative model of the spinal-muscular
system called FLETE, for factorization of length and tension. :
Simulations of this model show that the recurrent inhibition pro- -
vided by spinal Renshaw cells enables a special kind of automatic -
gain control that compensates for posture-code distortions intro-

duced by the size principle. This demonstration together with

prior results shows that pattern-energy factorization by auto-
matic gain control is a fundamental design feature at all points
along the pathway from sensory transduction to muscular force
generation.

7. CONCLUSIONS

These examples illustrate several basic themes in the recent
neural network literature. Long term adaptive changes are ac-
complished by modifying transmission weights on signal lines,
and the relatively slow weight modification process is regulated
by the outcome of fast network processes, including critical com-
parison processes. In the work done at the Center for Adaptive
Systems (e.g., Grossberg, 1988b) in Boston, it has often turned
out that perceptual learning is driven by matches, whereas motor
learning is driven by mis-matches. This correlation may reflect
the natural asymmetry between perception, whose goal is to de-
scribe the existing world, and action, whose goal is to change
the world in the direction of our desires. The ideal imposed
by our interest in modeling the real brain is to design systems
that can tune and even re-organize themselves on-line without
external intervention, and that are robust in the face of the in-
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herent non-linearities of neural systems, and the inherent non-
stationarity of systems that grow, atrophy, and constantly create
new adaptive challenges as unforseen consequences of their own
activities. In this chapter, we haveshown that match/mismatch-
regulated learning, automatic pattern-energy factorization, and
autonomous supercession of control have emerged as overarching
principles in.our evolving theory of such systems.
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