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This article describes a self-organizing neural network architecture that
transforms optic flow and eye position information into representations
of heading, scene depth, and moving object locations. These represen-
tations are used to navigate reactively in simulations involving obstacle
avoidance and pursuit of a moving target. The network's weights are
trained during an action-perception cycle in which self-generated eye
and body movements produce optic flow information, thus allowing the
network to tune itself without requiring explicit knowledge of sensor
geometry. The confounding effect of eye movement during translation is
suppressed by learning the relationship between eye movement outflow
commands and the optic flow signals that they induce. The remaining op-
tic flow field is due to only observer translation and independent motion
of objects in the scene. A self-organizing feature map categorizes nor-
malized translational flow patterns, thereby creating a map of cells that
code heading directions. Heading information is then recombined with
translational flow patterns in two different ways to form maps of scene
depth and moving object locations. Most of the learning processes take
place concurrently and evolve through unsupervised learning. Mapping
the learned heading representations onto heading labels or motor com-
mands requires additional structure. Simulations of the network verify
its performance using both noise-free and noisy optic flow information.

1 Introduction: Optic Flow, Heading, and Visual Navigation

As we move through the world, we experience flowing patterns of light
on our retinas, Scientists have studied the ability of humans to use this
optic flow for a variety of tasks, including determination of heading (e.g"
Crowell & Banks, 1993; Van den Berg, 1992, 1993; Warren & Hannon, 1988,
1990; Warren & Kurtz, 1992), observer velocity (e.g., Monen & Brenner,
1994), three-dimensional structure (e.g., Cornilleau-Peres & Droulez, 1993;
Hildreth, Grzywacz, Adelson, & Inada, 1990; Treue, Andersen, Ando, & Hil-
dreth, 1995), the locations and speeds of self-moving objects (e.g., Brenner,
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1991), and distances to objects (e.g., Prazdn~ 1980; Simpson, 1988, 1993).
With the exception of determining observer velocity (Monen & Brenner,
1994), humans have proved to be very proficient in using optic flow to
perform these tasks.

This article describes a neural network that uses optic flow informa-
tion and eye position to determine the heading of a moving observer. This
heading network is embedded in a larger architecture that includes neural
networks for determining distances to visible objects and the locations of
moving objects. The resulting representations of heading, scene depth, and
moving object locations are then used to navigate reactively around visible
obstacles and to pursue moving targets. The aim of this project is to use in-
sights from biology to design a robust system that can be used for navigation
in autonomous mobile vehicles. To this end, the system is designed as an
interconnected collection of self-organizing neural networks. The primary
advantage of this approach is that it removes the need to hand-calibrate vi-
sual navigation systems for mobile robots. The network will automatically
adjust to a camera system's focal length, pixel layout, sensor size, and track-
ing speed without writing new software or performing carefully controlled
calibrations. This competence also renders the system tolerant to error in
sensor responses and changes in sensor and motor properties due to wear.

A central problem addressed by the current architecture is the determina-
tion of the heading direction of a moving observer from the optic flow field.
Gibson (1950) remarked that the optical flow pattern experienced by an ob-
server moving along a straight line through a static environment contains a
singularity he termed the focus of expansion (FOE). Gibson further hypoth-
esized that the visual system might use the global pattern of radial outflow
originating from the singularity to determine the translational heading of
the observer. However, psychophysical experiments rejected this hypothesis
because the flow pattern on the retina is radically altered by eye movements
(Regan & Beverly, 1982). H the observer's eyes rotate during translational
movement, the resulting flow pattern is a superposition of two vector fields
such that the FOE no longer necessarily coincides with heading direction.
The current architecture learns to cancel the effects of eye rotations so that
a moving robot can maintain an accurate sense of heading while visually
searching a scene or visually tracking objects.

The issue of whether humans use extraretinal signals from eye rotations
to derotate the flow field has been hotly debated in the experimental litera-
ture, since it raises difficult methodological questions concerning the nature
of the motion, its range of speeds, and the types of environmental cues that
are available (Banks, Ehrlich, Backus, & Crowell, 1996; Regan & Beverly,
1982; Rieger & Toet, 1985; Royden, 1994; Royden, Banks, & Crowell, 1992;
Royden, Crowell, & Banks, 1994; van den Berg, 1993; Warren, 1995; Warren
& Hannon, 1988, 1990; Warren, Li, Ehrlich, Crowell, & Banks, 1996). Warren
(1996) has summarized much of the relevant literature by noting that ex-
traretinal information is especially important in determining heading from
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impoverished visual environments, but less so in naturalistic scenes with
a rich, discontinuous three-dimensional structure. Our model indicates the
types of self-tuning mechanisms that are able to make effective use of ex-
traretinal information.

Since Gibson wrote, vision researchers have proposed a wide variety of
methods to extract ego motion from optical flow information.

The differential invariants method (Koenderink & van Doom, 1975; Wax-
man & Ullman, 1985) solves for the motion of planar surfaces. A rigidly
moving planar surface is a special case that gives rise to flow fields in which
the flow vectors vary as a quadratic function of image position. Waxman
and Ullman (1985), for example, first subdivided the flow field into patches
that are approximately planar. The three-dimensional structure was then re-
covered in closed form from the parameters of the second-order flow field.
An advantage of this technique is that the motion in each patch is computed
independently, so scenes with multiple moving objects can be better inter-
preted. One drawback is that it requires dense optic flow fields to compute
derivatives. Systems that use differential invariants are also vulnerable to
error in the flow field (Hatsopoulos & Warren, 1991). Optic flow error is
essentially unavoidable due to the aperture problem (e.g., Perrone, 1992).

According to the local differential motion method (Cutting, 1986; Hil-
dreth, 1992; Longuet-Higgins & Prazdny, 1981; Rieger & Lawton, 1985), if
two points have the same image location but are at different depths, then
the vector difference between the two flow vectors is oriented toward the
FOE. This technique relies on locating adjacent image features separated in
depth so that their flow vector difference is oriented approximately toward
the FOE. It fails to operate when approaching a wall with no depth varia-
tion, and as with the differential invariant techniques, it does not work well
on sparse or noisy flow fields.

Heeger and Jepson (1990) proposed a solution to the heading calculation
problem that uses least-square minimization. Their technique, termed the sub-
space algorithm, is robust and comparatively insensitive to noise. It has the
advantage of not requiring proprioceptive information from eye muscles to
cancel the effects of eye rotations, but it does not learn its operating param-
eters.

Several researchers have recently posited neural network models for deter-
mining optic flow. Because of the parallel processing capabilities embodied
in these networks, neural network solutions tend to be more tolerant of
noise in the flow field. Hatsopoulos and Warren (1991) describe a neural
network motivated by neurophysiological results from the middle tempo-
ral (MT) and medial superior temporal (MST) areas in primate visual cortex.
Although the model is tolerant to both speed and directional noise in the
flow field, the authors point out that it has two major shortcomings: (1) un-
like humans, the model's accuracy degrades drastically in the presence of
eye rotations, and (2) the model relies on supervised learning (i.e., it requires
an external teaching signal that would not be available to a developing ani-
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mal). Perrone (1992) incorporated both translational and rotational detector
cells in a model that offers an approximate solution to heading detection
during eye rotations. Lappe and Rauschecker (1993) describe a neural net-
work based on the algorithm of Heeger and Jepson (1990), but this network
requires tracking fixation eye movements to determine heading and oper-
ates only within a hemisphere of heading directions. The Heeger and Jepson
algorithm is forced to operate within a hemisphere of headings because it
cannot distinguish between motions separated by 180 degrees. It relies on
locating a minimal inner product between sets of heading weights and in-
coming flow vectors. The minimum occurs for weights that are orthogonal
to the flow vectors. However, if a heading is reversed, the flow vectors will
reverse, yet remain orthogonal to the weight vector. The Heeger and Jepson
algorithm cannot distinguish opposite motions, making it difficult to use on
robots with full translational capabilities. The current system can operate
over the full sphere of heading directions.

In addition to determining heading, the current architecture represents
the locations of visible obstacles for the purpose of navigating around them.
The machine vision community has published hundreds of articles about
recovering three-dimensional structure from image motion. In general, the
focus of this effort has been to build scene representations that reflect ground
truth as accurately as possible. Over the years, a multiplicity of algorithms
have emerged that attempt to deal with the inherent ambiguity in the task
(e.g., sparse data and the aperture problem). Since the goal has been to
reproduce scene geometry as accurately as possible, algorithmic simplicity
and self-tuning have not been emphasized. Rather, most techniques assume
that all relevant camera parameters are available. In fact, camera calibration
is itself an active research topic. Most camera calibration techniques rely on
imaging features at known locations (Holt & Netravali, 1991). Other tech-
niques have been designed to use arbitrary scenes but require known move-
ments (Dron, 1993), and more recently, a few techniques have attempted cal-
ibration without specific objects or movements (Luong & Faugeras, 1992).

Despite the impressive amount of depth-from-motion research, it is still
unclear whether identically reproducing the three-dimensional structure
of the world is either feasible or necessary for autonomous robot naviga-
tion. The complexity, fragility, and computational load of most of these
algorithms have not produced the desired results in mobile robotics. Only
recently have researchers begun to concern themselves with how to solve vi-
sual navigation problems using simple, biologically plausible calculations
embedded in self-tuning systems. Although some initial work has been
done on very simple problems (Heikkonnen & Oja, 1993), the current sys-
tem stands apart by using simple self-tuning calculations to learn repre-
sentations of heading, scene structure, and moving object locations in the
presence of eye rotations. The architecture uses parallelism to capitalize on
the redundancy in the flow field in order to achieve noise tolerance. No
claim is made that this system will provide complete and accurate results
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Figure 1: Viewer-centered coordinate frame and perspective projection.

in all situations. In fact, no system that relies solely on optic flow can pro-
duce a veridical representation of the world that it can use for completely
error-free navigation. However, the current system's performance on sim-
ulations with noisy flow information suggests that its parallel, self-tuning,
and computationally efficient calculations are sufficient to provide useful
information for an autonomous robot.

2 The Optic Flow Field

Optic flow results from the projection of object movement in the three-
dimensional world onto a two-dimensional image plane. The motion of a
point in three-dimensional space has six degrees of freedom: translational
velocityT = (T x, T y, T z)t and rotation 0 = (Ox, °y, Oz)t.1f the position of an
observer's eye is R = (X, Y, Z)t, then motion may be described by Vobserver =
T + (0 X R).1f the observer is moving through a static environment, a viewer-
centered coordinate frame may be established in which the observer appears
to be standing still and each point in the environment is moving with the
opposite motion, V = -(T + 0 x R).

Figure 1 shows how a point, P, in three-dimensional space is projected
onto a pointr = (x, y)t = f(X/Z, y/Z)t in the image plane, where f denotes
the focal length of the lens (f = 1 was used in the simulations). Image
velocity is defined as the derivative, with respect to time, of the x and y
components of scene point projections and can be written as follows (Heeger
& Jepson, 1990):

9(x, y) = (vx, vy) = p(x, y)A(x, y)T + B(x, y).o., (2.1)
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where p(x, y) = IjZ is the inverse depth of points in the image plane, and
A(x, y) and B(x, y) are matrices that depend only on image position and
focal length, not on any unknowns:

-lOx
0 -I y

1 -(/+ t) y
1 + r -1 -x

The various processing stages of the current system can be thought of as
decomposing the right side of equation 2.1 until we are left with a map
representing the direction of the vector T, which is the observer's heading
direction.

In the following description, we will be interested in the speed and direc-
tion of the flow components at each retinal location since these components
form the input to the system. The speed at a retinal position is:

v = 11911 = ~~, (23)

A(x, y) =

B(x, y) =

and the direction is:

if> = alan (~).

3 System Description

Figure 2 shows an overview of the neural network architecture. The follow-
ing paragraphs describe the major components of this system.

Ski = 1 ~ k ~ n, 1 ~ i ~ m.

3.1 Motion Field. The input layer is a population of cells sensitive to
image flow on the retina. Several researchers have proposed physiologically
plausible models that yield population encoding of optic flow vectors (e.g.,
Wang, Mathur, & Koch, 1989). A typical approach uses a separate floret of
cells for each sampling point on the retina. Each cell of a floret is tuned to
a preferred direction, ek = [cos(27rkfn), sin(27rkfn)], where k = 1, n.
Florets of this form constitute the first stage of the system, called the motion
detector field. Motion at the ith retinal location with speed v and direction
c/> generates a response Ski according to the following equation:

( 2Jrk )vcos c/>-n

For robotic applications, it suffices to represent the flow field with its x and
y components:

Sxj = vcos(c/» Syi=vsin(c/». (3.2)
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Motion Field

i = index of retinal locations
j = index of eye velocity

vector cells
k = indcx of dircctional tuning

cells at a retinal location
I = index of heading map cells

Figure 2: Overview of the system. Cell activities are represented by uppercase
letters, and the modifiable synaptic weights projecting to these cells are rep-
resented by the same letters in lowercase. Each floret of velocity-tuned cells
corresponds to a single retinal location. Simulations reported in this article uti-
lized simplified versions of these florets that contained cells for only the x and
y components of the flow fields. See text for details.
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The simulations in this report used a motion detector field that consisted
of these two directionally tuned cells at each of 49 (7 x 7) retinal locations
unless noted otherwise.

Although the primary goal of the present model is not to achieve detailed
biological fidelity, it is of some interest that responses of many directionally
tuned cells in the cortical motion processing stream-for example, cells
in the MST area of monkeys (Orban, Lagae, Raiguel, Xiao, & Maes, 1995;
Tanaka & Saito, 1989)-increase with speed.

3.2 Eye Velocity Vector. The eye velocity vector consists of two pairs
of opponent cells that represent pitch velocity (01.02) and yaw velocity
(03. 04) of the eye when it is rotating in its orbit. For positive rotations
about the x-axis, 01 is linearly related to the rotational speed and 02 is zero.
For negative rotations, 01 is zero and 02 is linearly related to rotational
speed. 03 and 04 code rotations about the y-axis in a similar manner. The
eye velocity vector activities project through adaptive inhibitory weights to
the translation field as described below. This inhibitory input learns to cancel
the portion of the flow field corresponding to eye rotations. It is expected
that the system could easily be expanded to cancel rotational flow due to
other sources, such as head or wheel rotations, as long as the appropriate
velocity vectors are available. Only eye rotations are included in the current
implementation for the sake of simplicity. The eye velocity vector in the
current system is most naturally interpreted as either an efference copy of
eye velocity commands or a proprioceptive representation of eye velocity.
In a mobile robot with an active vision system, this vector would correspond
to motor velocity commands or velocity feedback from eye position sensors
or both. In biological models of eye and arm movement control, processing
stages exist that can generate an efference copy of commanded movement
speed and direction (Bullock & Grossberg, 1988; Grossberg & Kuperstein,
1989).

In most situations, people fixate on a point as they move. This behav-
ior generates a mixed optic flow signal resulting from the simultaneous
translation of the body and rotation of the eyes. Unless the point of fixation
coincides with the direction of heading, the FOE that results when fixating
during egomotion does not correspond to the direction of body translation.
The current system uses an estimate of eye rotational velocity to negate
internally the rotation part of the signal from the flow field. There are at
least two other approaches to solving the heading problem during eye ro-
tations. A less accurate approach is to sample a large part of the flow field
and subtract off any component that is common at all depths. This, how-
ever, has the advantage of not requiring explicit knowledge of eye rotations
(perrone, 1992). Another approach, exemplified by the Heeger and Jepson
(1990) algorithm, uses more sophisticated heading calculations that work
in the presence of rotational components, again without requiring explicit
knowledge of eye rotations. These more complex algorithms could be used
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in place of the heading calculations performed by the current model while
maintaining the current depth and independent motion algorithms.

3.3 TranslationField. As shown in Figure 2, each cell OJ in theeyeveloc-
ity vector has a set of inhibitory weights Wjki that project to each directionally
tuned cell k in the floret at every position i in the translation field. Each trans-
lation field cell also receives excitatory input from the corresponding cell
in the motion detector field. After learning (see section 4), the net result of
these inputs is a field of cells that represents only the component of the flow
field that is due to translational motion. That is, the translation field activity
contains only the p(x, y)A(x, y)T component of equation 21.

A variant of the vector associative map (YAM) neural architecture (Gau-
diano & Grossberg, 1991) is used to adjust the weights projecting from the
eye velocity vector in such a way as to cancel out the portion of flow cor-
responding to voluntary rotations of the eyes as registered at the eye ve-
locity vector. The V AM allows both error-based learning and performance
to take place simultaneously. This property has enabled YAMs to control
self-adapting mobile robots autonomously (Gaudiano, Zalama, & Lopez-
Coronado, 1996; Zalama, Gaudiano, & Lopez-Coronado,l995). Using such
a VAM, the activity of a cell in the translation field is formed by subtracting
the inhibitory input from the eye velocity vector cells (corresponding to the
rotational component of the flow field) from the excitatory input projecting
from the motion detector field,

Wki = Ski -L °jWjki, (3.3)

and the learning equation for the weights projecting from the eye velocity
vector is:

dW'ki-L = al WkiOj, (3.4)
dt

where al is a learning-rate parameter ranging from 0.9 for noise-free condi-
tions to 0.01 for noisy conditions. Before learning, the weights are set equal
to zero.

The eye rotation cancellation map learns best when the incoming flow is
purely rotational. If desired, this can be guaranteed by gating learning off
if translational motion commands (e.g., limb movement or wheel rotation)
are active. During purely rotational movements of the eye, the learning
law of equation 3.4 adjusts the weights so that the inhibitory input from
the eye velocity vector exactly cancels the excitatory input from the motion
detector field. When the two inputs are equal, Wki in equation 3.4 goes to
zero, and learning stops. At this point the system is tuned such that the
rotational component of the flow field is effectively "filtered out" by eye
velocity vector projections at the translation field.
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During movements with both a translational and rotational component,
only the rotational component is reliably correlated with the presynaptic
activity of the eye velocity vector cells. The translational flow component
will vary depending on heading direction and will not be strongly corre-
lated with eye velocity vector activity. This translational component thus
amounts to a form of noise in the learning process. A slower learning rate
can be used to "average out" the noisy translational component, as well
as other forms of noise, such as noisy sensor information. The ability to
learn correct parameters in the face of sensor noise or translational motion
is demonstrated in the simulations of section 4.

3.4 Normalization Field. The next stage of cells in the system performs
a normalization operation on the outputs of the translation field. This is
done because the magnitude of the flow vectors at the translation field
contains information pertinent to observer speed and object distances only,
not observer heading direction. In other words, we are not interested in the
magnitude of the p(x, y)A(x, y)T term from equation 2.1. Only the direction
of vector T is needed. Normalization removes the unpredictable changes
in flow vector magnitudes due to varying object distances and translation
speeds. The normalization calculation is:

Nki = [Wki]+J~aw:j~ ' (3.5)

where [ ]+ denotes a rectification function such that [x]+ = x for x > 0,
[x]+ = 0 otherwise. AlINki are set to zero for retinal locations where the total
flow signal is zero. Although not implemented in the simulations, it may
be useful to have a threshold for eliminating small but nonzero activities
in the normalization map because optic flow detectors operating on a real
image will be noisy. These locations typically include points with no visible
objects, very distant objects, or points near the FOE for a given heading. If
we assume that the detectors are more accurate at detecting the direction of
large-flow signals than small-flow signals, then setting the threshold slightly
higher would allow the network to base its heading decision on larger, more
reliable signals.

3.5 Heading Map. The next stage of cells is a self-organizing feature map
(SOFM) that encodes heading. Cells in the heading map receive weighted
excitatory input projections from the normalized flow field. Heading can be
determined by classifying the pattern across these inputs. Kohonen (1982)
described a learning algorithm, based on earlier work of von der Malsburg
(1973) and Grossberg (1976), that can be used to self-organize a topographi-
cal map whose cells classify input patterns. In our application, neighboring
cells in the map code similar heading directions. During learning, neighbor-
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hood interactions cause adjacent cells in the heading map to code similar
headings. The interactions also ensure that the map uses all of its cells to
encode headings. Otherwise, a single cell might learn large weights early on
and continue to monopolize learning even though its match with the input
pattern is poor. In addition, the neighborhood interactions cause heading
map cells to distribute themselves automatically according to the frequency
statistics of sampled headings. Greater discrimination among the more com-
mon headings is possible because these headings attract a higher density of
map cells.

The heading map consists of a group of cells with activities H1 that per-
form a maximum inner product classification (Grossberg, 1976; Kohonen,
1982) using weights hkil projecting from cells with activities Nki in the nor-
malized flow field. For each presentation of a normalized flow pattern, one
cell in the heading map will receive the largest total input. Early in devel-
opment, this maximally excited cell and its N nearest neighbors are set to
activity level1/(N + 1), and all other map cell activities are set to zero.
Weights projecting to each of the active cells are adjusted toward the flow
pattern. Initially, large neighborhoods help the map cells, which begin with
small, random weights chosen from a uniform distribution between 0 and
0.1, to "unfold" properly and thereby cover the entire range of experienced
headings. Over time, the neighborhood size N shrinks to zero so that flow
patterns are categorized more precisely. The following equations were sim-
ulated:

Hi = L Nkihkil
ki

Hmax = cell with maximum activity Hi

1 .
HI = N':j:""l for Hmax and N neighbors

HI = 0 otherwise

dhkil

dt
= a2(Nki -hkil)HI.

where Hi is the input to the Ith heading map cell, and CX2 is a learning rate
parameter that starts at 0.1 and shrinks with a linear decay rate to 0.001
over 2000 learning trials. The neighborhood N starts as a 15 x 15 square
centered at the maximally active cell. The width of this square shrinks by
one after every 100 heading samples until the neighborhood consists of only
the maximally active map cell.

After training, a cell in the heading map will respond maximally to flow
generated by a particular heading. However, most headings will fall be-
tween those encoded by cells in the heading map. During performance,
winner-take-all competition among the heading cells is relaxed so that sev-
eral candidate heading cells survive the competition based on the size of
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their total input. Allowing distributed activation across heading cells creates
an interpolated output. For example, if an input heading falls halfway be-
tween headings encoded by two cells, then each of those cells will probably
survive the competition and contribute approximately half of their infor-
mation to the rest of the network. Activity in the surviving heading cells
is also normalized so that the heading representation is a weighted aver-
age of active heading cells. Heading cell activity is thus calculated during
performance as follows:

Hi = L::Nkihkil
ki

Hi* = 0 if Hi < (max[~] -r)
m

Hi* = Hi otherwise
H**

H/=
L::/ ,

~*m
m

(3.8)

where r is a threshold parameter determining how many cells survive the
competition. For the simulations, r was set to maxm[~J/15. In words, the
heading map cell activities HI are a contrast-enhanced version of their total
inputs Hi. Other methods, such as the softmax of Bridle (1989), could be
used to provide the same functionality as this thresholding process. Note
that the sizes of the total inputs to the map cells determine the "neigh-
borhood" during performance, whereas the active neighborhood during
training is determined based on proximity to the maximally active cell. This
was done because it provided the best map unfolding during training and
noise tolerance during performance. Since the trained map is topograph-
ically organized, however, the maximally active cells during performance
will still typically be neighboring cells in the map.

As described thus far, the heading map can only discriminate between
headings, not identify heading in terms of absolute azimuth and elevation
angles. This is sufficient for the proper formation of the depth and indepen-
dent motion maps in the system. However, testing the network's ability to
determine heading accurately and using the heading estimate to perform
navigation require thatretinotopic labels be attached to each cell in the head-
ing map. A simple technique for assigning a retinotopic label to a heading
cell with activity HI is to find the index i of the smallest weight dli project-
ing from that cell to the retinotopically organized depth map. The smallest
weight will be located near the FOE on the retina, which is equivalent to the
retinotopic heading. Alternatively, the following technique could be used
to assign heading labels in a mobile robot:

1. Move toward a visual cue, such as a point of light, at eye level and
adjust the wheels until the image of the light is stationary on the optic
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sensor. When the image is stationary, the navigator is heading directly
toward the point of light in body-centered coordinates.

2. As the robot approaches the light, rotate the eye so that the light image
falls on many different regions of the optic sensor. Since the navigator
is heading toward the light inbody-centered coordinates, the projected
point of light should still be motionless even though it is projected to a
different retinal location. However, the retinotopic heading will have
changed. The floor and other objects in the scene will create a flow
pattern that excites a different cell in the heading map.

3. For each eye position, map the maximally excited heading cell to the
current retinotopic location of the imaged point of light.

In the heading map simulations, heading labels were supplied by sys-
tematically sampling heading directions and labeling each cell with the
heading that maximally excited it The heading estimate is calculated using
the following equation:

HMAP = L H/<I>/. (3.9)
/

where 4I[ is the preferred heading of the lth heading map cell, and H[ is
determined using equation 3.8. This labeling procedure was done only so
the accuracy of the self-organizing map could be compared against other
reported models. In the navigation simulations, all navigation took place in
a retinotopic coordinate system so the heading labels were applied using
the smallest weight technique.

Because the system bases its heading estimate on a flow field where only
the rotational component due to self-generated eye movements has been re-
moved, it has an advantage over many other heading estimation algorithms
during curvilinear motion. This can be seen in the following example. Imag-
ine that the navigator is following the circumference of a circle. Algorithms
designed to ignore rotational components of the flow field without using
extraretinal information cannot distinguish whether the rotational compo-
nent of the flow field is due to eye movement or the curvilinear body move-
ment. Therefore, during curvilinear motion, these algorithms will ignore
the rotational component of the motion and always report that the naviga-
tor is heading straight forward. In this case, however, "straight forward"
is defined in a coordinate system that is rotating as the navigator proceeds
around the circle. In other words, the heading estimation algorithm will be
unable to distinguish if it is indeed heading straight or in a circle. In con-
trast, the current architecture will recognize that the rotational part of the
optic flow due to the curvilinear motion is not associated with an internally
generated eye motion. This unremoved rotational flow component will bias
the heading estimate in the direction of the curve, so that the navigator will
be aware that it is constantly drifting away from "true forward motion."
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3.6 Depth Map. In addition to providing heading information, optic
flow can be used to determine the distance to the object at each retinal
location (if one is present) in a scene. For visual navigation, it suffices to
form a distance measure that is scaled by the speed of the observer-for
example, an inverse time-to-collision measure pll TII for each retinal location,
where p is the inverse depth, or proximity, of an object, as in equation 2.1,
and II TII is the translation speed of the observer. The general problem of
determining scene depth from a sequence of images isa difficult one, largely
due to the unknown rotational component of the flow field and the unknown
heading direction. Solutions have been proposed (e.g., Koenderink & van
Doorn, 1987; Longuet-Higgins, 1981; Prazdny, 1980; Waxman & Ullman,
1985; Waxman & Wohn, 1988; see Simpson, 1993, for a review), but these
solutions typically require rather complex calculations. In contrast, once the
rotational component of the flow field is removed and heading direction is
known, as in the current network, calculating the time to collision at each
retinal position is relatively straightforward (see also Perrone, 1992). By
removing the rotational flow component from equation 2.1, the optic flow
generated by translational motion alone reduces to:

VTx = p/iT/I( -f~ + xT~)

VTy = p/iT/I(-fT~ + yT~), (3.10)

where VTx and VTy are the x and y components of the translational flow field, f
is the focal length of the imaging system, (T~, T~, T~) are the components of a
unit vector that defines the direction of translation, and (x, y) specifies retinal
location. From equation 3.10, one can derive the relationship between the
magnitude of the flow vector at a retinal location, VT , and time to collision:

VT = p/iT/lJ(-fT~ + XT~)2 + (-fTy + yT~)2. (3.11)

Note that for a specific heading (T~, Ty, T~) and motion sampling position
(x, y) on the retina, the square root term in equation 3.11 is a constant, which
we can rename kTxy. In the current simulations, which involve only two
directional cells at each retinal location of the translation field, the function
g that determines the magnitude of the translational flow velocity at the ith
retinal location is:

g(Wj) = J~-:;:~ = VT. (3.12)

In order to produce a depth measure that is invariant across all headings
and retinal locations, kTxy must be removed from the flow speed measure
VT. This is accomplished in the system by logarithmically compressing the
flow speed represented at the translation field before passing it to the cell
representing the corresponding retinal location in the depth map, then sub-
tracting off an average value of this compressed flow speed. Specifically,
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the retinotopically organized depth map cell activities are governed by the
following equation:

Di = log[g(Wj)] -LHldli.
I

where dli is the weight projecting from the Ith heading map cell to the ith
depth map cell. Tal and Schwartz (1994) have demonstrated that a logarith-
mic relationship between neuron firing rate and input activity is a property
of integrate-and-fire neurons. This suggests that the logarithmic processing
in equation 3.13 could also be implemented in a biological system.

Using a VAM learning mechanism, the weight dli learns to represent the
average of the compressed flow velocity signal at the ith retinal location
when heading in the direction coded by the lth heading map cell. The learn-
ing equation governing the weights dli is:

~ = a3DjHi.
dt

where CX3 is a learning-rate parameter that was set equal to CX2 for the simu-
lations.

Training the network according to equations 3.13 and 3.14 during random
movements leads to depth map cell activities that each codes the following
depth measure for objects at the corresponding retinal location:

Dj = logvT -llogvTI

= log(PIITllkTxy) -llog(PIITllkTxy)1

= (log pll TI + logkTxy) -1(logpIiTII) + logkTxyl

= (logpliTIl + logkTxy) = (llogpllTIlI + logkTxy)

= logpliTIl -llogpIlTIlI.

where the term IlogpllTll1 is a constant determined by the environmental
experience of the network during learning. For correct operation, the system
should be trained in an environment that consists of objects in the same
depth range as the environment it will encounter during performance so
that an appropriate value of this constant is learned. A large, positive cell
activity in the depth map corresponds to a short time to collision; these large
cell activities identify the retinal locations of nearby obstacles for use by the
navigation module. This depth measure has several advantages. First, it is
easily learned and calculated in the network using the VAM mechanism
already described. Second, it is invariant with respect to retinal position. In
particular, the same value of the depth measure corresponds to the same
time to collision regardless of the retinal location, even though objects at
the same depth generate different velocity signals at different places on
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Figure 3: Speed measure produced by equation 3.17 as a function of translational
flow angle and number of cells in the floret. The speed measure is scaled so that
the maximum output for each collection of cells is 1.0. More cells reduce the
angular dependence of this flow speed measure.

the retina. Third, logarithmic processing leads to a depth measure that is
compressed such that nearby objects garner a larger percentage of the cell's
dynamic range. This allows the depth map to represent proximity of nearby
objects more accurately than distant objects, which is a useful property for
avoiding collisions. Finally, because the depth map encodes an inverse time-
to-collision measure pliTII, a large signal means a short time to collision.
Therefore, the most salient signals in the depth map are those that present
the most danger.

A larger number of directional cells at each retinal location (as would be
expected in motion processing pathways in vivo) enables a more biologically
plausible function g than the one defined by equation 3.13 to determine the
magnitude of translational flow velocity:

g(Wj) = L[Wki]+.
k

(3.16)

When there are a small number of directionally tuned cells at each reti-
nallocation, this measure depends on the direction of the flow vector at
each translational flow speed. Larger numbers of directionally tuned cells
eliminate this dependence (see Figure 3).

3.7 Independent Motion Map. When one is sitting still, it is a common
experience to have one's attention drawn to a moving object. This is not
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surprising since the isolated motion signal uniquely identifies the location of
the object. During locomotion, however, large optic flow signals fill the entire
retina, yet independently moving objects may still retain their perceptual
saliency. For example, the optic flow velocities in peripheral vision can be
quite large when one is driving down a street, yet the location of a moving
vehicle is still salient because the optic flow signal it creates differs from the
pattern of flow generated by surrounding stationary objects.

The independent motion map in Figure 2 is formed by a VAM mecha-
nism, similar to the one used for estimating depth, that detects indepen-
dently moving objects. Whereas the depth V AM compares the magnitude
of a flow signal to a learned average, the motion VAM compares the direc-
tion of flow with an expected pattern of flow. The net input to a cell in the
independent motion map is:

lki = Nki -LH/m/ki,

/

where Nki is the excitation from the corresponding cell in the normalization
field and the mlki are adaptive weights tuned to represent the expected flow
field when heading in the direction represented by heading map cell output
Hlo The cell outputs Mki in the independent motion map are calculated from
this input as follows:

(3.18)

where

A = max (~lki) -0.1

This is a dynamic threshold based on the maximum disturbance in the in-
dependent motion map that has the effect of maintaining only the activities
of pixel locations with approximately the same level of activity. Activity
in the independent motion map is the vector difference between the cur-
rent normalized flow vector and the expected normalized flow vector. The
length of this vector is reflected in the total activity of the florets at a given
pixel location of the independent motion map. A flow vector that differs
by 180 degrees will have maximal activity, while a flow vector that dif-
fers only slightly will have very little activation. If there is any noise in the
system, it will unavoidably appear as activity in the map. The threshold,
A, is introduced as a simple way to "clean up" the independent motion
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map. Its chosen value can be flexible depending on the needs of the navi-
gator. We expect that, as designed, the independent motion map would be
most useful with a fairly high threshold. In this way, the robot's attention
would be drawn only to pixel locations with significant deviation from the
expected flow direction. Of course, this means that the robot might miss
slowly moving objects or objects that match its heading. However, without
some threshold there will be continuous low-level activity across the entire
map that might be distracting.

The weights mlkj are adjusted as follows:

dmlki
dt

= (X4IkiH/, (3.20)

where C¥4 is a learning-rate parameter that was set equal to C¥z for the sim-
ulations. This learning law leads to weights miki that represent the average
directional flow pattern seen at retinal location i when moving in the head-
ing direction coded by HI. After training, if the pattern of flow received from
the normalization field corresponds to the expected pattern for heading HI,
then weighted inhibition from HI will cancel the input from the normaliza-
tion field, and all activity in the independent motion map will be quenched.
However, independently moving objects will likely generate flow directions
that differ from the directions expected for the perceived heading and reti-
nallocations. A nonzero output Mki indicates that an independentl y moving
object is located at the retinal location indexed by i since the flow in direction
k at this retinal location is significantly larger than the expected flow for the
current heading as encoded by the weights miki. The larger the value of A,
the larger the angular difference between the normalized flow signal and
the expected flow signal must be before it produces a positive activation in
the independent motion map.

It is possible for an object to avoid detection by the independent motion
map if that object is moving toward the observer such that the flow caused by
its motion is exactly aligned with the translational flow field. Such an object
would still be avoided by the current system since the faster flow would be
registered as a shorter time to collision in the depth map, allowing the robot
to navigate around the object before it gets too close. Also, noise in the flow
field can lead to false positives at the independent motion map. However,
these false positives will typically last for only a few time steps and can be
largely eliminated by averaging over time.

Although learning in the weights projecting to the heading, depth, and
independent motion maps occurs concurrentl~ correct values of the in-
dependent motion map and depth map weights depend on the heading
directions coded by cells in the heading map. These weights thus do not
stabilize until shortly after the weights projecting to the heading map have
stabilized.
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3.8 Navigation Module. Together, the heading, depth, and independent
motion maps provide a representation of the visual world that can be used to
navigate around obstacles toward stationary or moving targets. Goal-based
navigation in the presence of obstacles is carried out in the simulations
reported here using a very simple approach-avoidance algorithm. We do
not pose this algorithm as a new or creative solution for navigation; rather,
we use it simply to show that the maps built up by the system are robust
enough to allow successful navigation in the presence of large amounts of
sensor noise even with a relatively "stupid" navigation algorithm.

For simplicity, the navigator was limited to fixed-speed motion on the
ground plane (IITII = 1), thus requiring the generation of only an azimuthal
translation command, T x. Navigation toward a target involves keeping the
output of the heading map HMAP, defined in equation 3.9, equal to the
direction of the goal G in retinal coordinates. If the target and heading do
not match, then a nonzero difference vector generates motor commands
that adjust the navigator's translation T x toward the target,

Tx(t + 1) = Tx(t) + e(G -HMAP),

where E is a gain factor set to 0.02. Translational commands were limited to
-45° < Tx < 45°.

Obstacles are ignored until one becomes a threat by registering a short
time to collision as indicated by cell activity in the depth map, defined
by equation 3.13, greater than a threshold value ,8. A value of,8 = 3.5
was used in the simulations reported here. The center of mass Cx of these
suprathreshold cells in the depth map is calculated, and the heading is
altered to move away from this center according to the following algorithm:

if (HMAP > Cx) then T x(t + 1) = T x(t) + !I

if (HMAP < Cx) then T x(t + 1) = T x(t) -!I,

where 15 is a small, positive constant set to 0.2 in these simulations. The nav-
igator veers away from the looming obstacle until it is no longer a threat.
Once clear, the approach signal regains dominance, and the navigator re-
sumes progress toward the goal.

4 Simulations

4.1 Training the System. An important advantage of this system over
previous ones for heading perception in mobile robots is its ability to self-
organize through an action-perception cycle rather than requiring teaching
signals and supervised learning. The system is trained by randomly gen-
erating rotational and/ or translational movements, then using the combi-
nation of eye velocity information and the flow pattern resulting from the
movements to tune the parameters in the translation field and the heading
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map. These learning processes are detailed in the following paragraphs.
Throughout training and testing, optic flow information was corrupted by
varying amounts of three types of noise:

1. Directional noise. Each flow vector is perturbed by a uniform ran-
domly distributed angle between plus or minus the amount of direc-
tional noise.

2. Speed noise. Each flow vector is multiplied by a uniform randomly
distributed number between 0 and 2.

3. Aperture noise. Each flow vector is perturbed by a uniform randomly
distributed angle between plus or minus the amount of aperture noise;
then the magnitude of the flow signal is reduced by the cosine of the
angular difference between the original and perturbed vectors. Aper-
ture noise attempts to model the uncertainty of using local flow detec-
tors to measure the motion of a luminance edge. Our use of noise that
is uncorrelated across pixel locations is only a rough approximation
to the aperture noise that would arise in a real vision system, which
could lead to higher error levels than those seen in the simplified
simulations reported here.

During training and performance, simulated objects in the field of view
were placed randomly at distances between 1 and 200 units from the navi-
gator. The units are relative to a navigator focal length of 1 and a navigator
speed of 1.

4.2 Translation Field. The weights projecting to the translation field
from the eye velocity cells learn to cancel the rotational optic flow gen-
erated by eye movements. The easiest way for this to happen is to generate
random eye motions without any translational movement (imagine an in-
fant scanning around a room before it can crawl). Therefore, learning in the
translation field was carried out before learning began in the higher stages of
the model. Under these circumstances, a fast learning rate may be used, and
the system is completely trained after only 20 to 30 random eye movements.
Figure 4A shows the weights projecting from each eye velocity vector cell to
the floret of cells at one retinal location after training with purely rotational
movements of the eyes. To illustrate more clearly the pattern of weights
projecting from each eye velocity vector cell, 12 directional cells were used
in each floret of the translation field in this simulation.

If necessary, the weights may also be trained in the presence of trans-
lational movements. Random translations have an effect similar to noise
on the desired training signal. In an actual implementation, noise may also
result from limitations of sensor arrays such as those due to the aperture
problem (Wallach, 1976; Perrone, 1992), although this problem may be re-
duced by motion preprocessing stages that convert aperture ambiguities
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Figure 4: Learning at the translation field. (A) Inhibitory weights WI"ki in equa-
tion 3.4 projecting from eye velocity signals after training with purely rotational
eye movements. Each of the four curves on the plot indicates the weight val-
ues projecting from one of the four eye velocity vector cells to all of the floret
cells at one retinal location. An eye rotation corresponding to the activation of a
single eye velocity vector cell results in a flow pattern that takes a cosine shape
across each floret of cells (see equation 3.1). The cosine shapes of these curves
thus indicate that the weights have successfully learned to cancel the flow field
components due to eye rotations as reflected at the eye velocity vector. (B) Noise
tolerance while learning eye velocity parameters without noise (left) and with
:i:45 degrees of random directional noise (uniformly distributed) added to the
motion detector field input. Percentage error is measured as the amount of resid-
ual activity at the translation field during a rotational movement divided by the
amount of activity that would occur without rotational nulling.
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into coherent representations of object speed and direction (Chey, Gross-
berg, & Mingolla, 1996).

A slower learning rate is required for stable learning with noise. Still, the
system can learn to cancel the effects of eye rotations on the flow field in the
presence of noise with a relatively small number of movements, requiring on
the order of 500 randomly generated eye movements to tune the parameters.
Such a simulation is summarized in Figure 4B, which shows how the error
decreases as training proceeds in the noiseless case and with ~45 degrees of
random (uniformly distributed) directional noise added to each cell's input
at the motion detector field.

4.3 Heading Map. Like learning at the translation field, learning at the
heading map is carried out during an action-perception cycle. Here, how-
ever, the goal is to train the system to use the translational component of the
flow field to determine heading direction. This is done by randomly generat-
ing translational movements of the eye (as if it were mounted on a moving
body), then using the resulting translational flow field to self-organize a
map representation of heading direction.

As noted in section 3, the heading map is a variant of a SOFM. During
learning, the cells in the heading map spread out to code different heading
directions. The angular separation of neighboring heading cells will depend
on the number of cells in the map and the statistical distribution of head-
ing directions sampled during learning (Kohonen, 1982). This provides the
map with the desirable feature of efficiently allocating its resources toward
more commonly experienced input patterns. For example, when the system
is trained on a body that spends most of its time moving forward (as would
be expected for most animals), it develops an accuracy bias as illustrated
in Figure SA. The heading map on the left is the result of training on a set
of 2000 movements with headings distributed uniformly between %45 de-
grees in both azimuth and elevation. The map on the right was trained
on a set of headings biased toward small deviations from straight ahead.
The tightly grouped heading cells in the center of the map (corresponding to
straight-ahead movement) allows the map to code these directions more ac-
curately than more peripheral directions. In this regard, Crowell and Banks
(1993) noted that people are more accurate at judging headings with small
eccentricities (forward) than those with large eccentricities (sideways), and
similar degradation of heading detection as the FOE moves away from the
fovea was noted by Warren and Kurtz (1992). When trained with a distribu-
tion of headings as shown in the right side of Figure SA, the system develops
a similar accuracy bias.

As noted for learning in the translation field, it is important for the head-
ing map to be tolerant of noise in the direction and speed of local optic
flow signals. Figure SB shows that the heading map is still able to orga-
nize topographically when trained with noisy optic flow information. In
these "aperture noise" simulations, the effects of the aperture problem were
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Figure 5: Unfolding of the heading map. (A) Example heading maps with uni-
form heading sampling (left) and sampling biased toward straight ahead (right).
When the distribution of training samples is biased toward straight ahead, the
distribution of map cells is more concentrated for movements near straight
ahead, resulting in more accurate heading estimates for these movement direc-
tions. (B) Heading map after 2000 training steps for three levels of simulated
aperture error in the motion detection field.

simulated by randomly perturbing each perceived flow vector by an angle
uniformly distributed between ::1:0, 40, and 90 degrees and then reducing
the magnitude of each flow vector by a factor equal to the cosine of the per-
turbed angle minus the actual angle. Two thousand randomly generated
movements with headings between ::1:45 degrees for azimuth and elevation
were used to train the network. In all noise simulations, the same level of
noise was used for both training and testing of the network.

Figure 6A shows heading estimate accuracy under various kinds and
amounts of noise in the optic flow signal. To allow comparisons with the
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Figure 6: Heading estimation under various noise conditions. (A) Error in head-
ing judgment plotted as a function of the amount of directional noise, speed
noise, and aperture noise in the flow field for a network trained with headings
between:l:25 degrees. (B) Example of heading error for 0 degree noise and 40 de-
gree aperture noise for a network trained with headings between :1:45 degrees
(top). The circles mark the actual heading direction, and the plus signs mark the
estimated heading direction.

simulations of Hatsopoulos and Warren (1991), training was carried out on
headings between :1:25 degrees in azimuth and elevation, and error was av-
eraged over test headings between :1:20 degrees. The directional noise sim-
ulations indicate that the network performs with about 0.75 degree average
error with no directional noise and 3.9 degrees average error with :1:90 de-
grees directional noise. This is comparable to both human performance and

(A).
c
~
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the performance reported in Hatsopoulos and Warren (1991), which showed
average errors of approximately 0.8 degree for no noise and 3.4 degrees for
:1:90 degrees noise. The network's performance under aperture noise (see
bottom of Figure 6A) is similar to the directional noise results. Finally, a
simulation using "speed noise" (an increase or decrease of the magnitude
of the flow vector), reported in Figure 6A, shows that speed noise has little
effect on the network's performance, again in keeping with psychophysical
results showing that speed noise has little effect on the ability of humans to
determine heading.

Some comments should be made regarding these comparisons. First,
the current network achieves comparable results despite using a learning
scheme that trains from randomly generated headings as compared to the
learning scheme of Hatsopoulos and Warren that requires network-using
optic flows that correspond to known headings. Second, the current net-
work works in the presence of eye rotations due to the learned removal of
rotational flow components at the translation field; the Hatsopoulos and
Warren does not work in the presence of eye rotations. Although the results
reported here use a slightly larger retina (7 x 7 versus 5 x 5) and more cells
for heading detection (49 versus 25), the number of input patterns required
to train the network adequately is less in the current system than in the
Hatsopoulos and Warren (1991) network (2000 versus 4000).

Figure 6B shows a graphical representation of heading estimation per-
formance under two different amounts of aperture noise, this time for a
network trained with headings between :1:45 degrees. The open circles de-
note an arbitrarily selected grid of sample headings. The plus marks plot
the responses of the heading map.

A possible criticism of these simulations is that the aperture problem is
not simply uniform random noise but instead is systematic in nature for
objects that span many retinal locations and thus may cause errors that do
not simply average out as they appear to in the previous simulations. The
results of a simulation designed to test further the system's ability to deal
with the aperture problem are illustrated in Figure 7. Several changes dis-
tinguish this simulation from those presented in Figure 6. First, in previous
simulations, the scenes consisted of point objects placed at random depths
for each pixel location. A flow signal was calculated for each pixel location,
and then various types of random noise were added to the flow field. Here,
larger rectangular objects replace the point objects. A more realistic aperture
effect is simulated by assuming that the flow detectors can detect activity
only at luminance boundaries and, due to the aperture effect, can detect
only the component of flow that is perpendicular to the luminance edge. At
corners, the ambiguity of the aperture effect is removed because both the
horizontal and vertical flow detectors can respond. Second, because most
of the field now contains no information, the network was modified so that
no learning takes place at pixels without activity in the translation field.
Third, the retina was increased to 20 x 20 pixels so that objects with long,
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Figure 7: Simulation providing a more realistic treatment of the aperture prob-
lem. (Top) Example scene where aperture noise is correlated to the viewed ob-
jects. The objects are squares of various dimensions placed at random depths
averaging 100 units away. It is assumed that the optic flow detectors can detect
only the component of the flow field that is perpendicular to the luminance
edge. The "x" marks the actual heading and the open circle marks the heading
predicted by the heading map. (Center) Scene with correlated aperture noise
plus %90 degrees directional noise. The "x" marks the actual heading direction
and the open circle marks the heading estimated by the heading map. (Bottom)
Plot of average heading map error versus amount of directional noise added in
addition to the systematic aperture noise error induced by shapes in the scene.
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straight edges could be observed. Fourth, the learning rate and neighbor-
hood shrinking rate were reduced by one-half. Finally, the number of trials
was increased from 2000 to 8000. This last change reflects the fact that for
any given trial, three-fourths of the pixels are not receiving information and
therefore cannot learn. With these new scenes, it simply takes longer for
each pixel to experience enough training data.

The top panel of Figure 7 is an example of the more realistic scenes and
aperture effect used to train and test the network. The center panel shows a
typical training scene with the aperture effect and an additional :i:90 degree
directional noise. The bottom panel shows a plot of the average error in
heading estimation as an increasing amount of directional noise is added
in addition to the systematic aperture effect error induced by shapes in
the scene. For zero added directional noise, the average heading error is
about :i:l.8 degrees, indicating that the network deals very well with the
more realistic aperture effect. The average heading estimation error with an
additional :i:90 degrees of aperture noise increases to only :i:2.7 degrees.

4.4 Depth Map. Figure 8 shows the effect of directional flow noise on
relative depth estimation. The optic flow field used in these simulations had
49 cells arranged in a 7 x 7 grid. A random depth was selected for objects
at each of the 49 retinal locations. Then movements were made toward
those objects along 36 randomly chosen headings between :i:37 degrees
in both azimuth and elevation. Because the weights learned for the depth
map depend on the nature of the flow field experienced during training, it is
important that the flow field used to train the map is similar to the flow fields
that will be encountered after learning ceases. Specifically, the training flow
field should contain flow information corresponding to the typical range of
object depths that will be encountered during performance.

The first three panels of Figure 8 (the top two and the bottom left) com-
pare the depth measure calculated by the system to the actual depth of the
object at each retinal location. (For purposes of comparison, actual depth
was processed according to equation 3.15 and scaled to compensate for
translational speed.) For each of these simulations, noise was present dur-
ing both training and performance. The effects of noise during training are
quite small relative to the effects of noise during performance; that is, most
of the error in the plots is attributable to noise during performance rather
than incorrect values of system parameters learned during training. The
final plot in Figure 8 (bottom right) shows error versus the amount of di-
rectional noise. The system was trained in the absence of noise for this plot.
Error was calculated as the difference between the actual object depth and
the depth predicted by the network divided by the actual object depth. This
was multiplied by 100 to obtain the percentage error, and the result was
averaged over all retinal locations and 36 different headings. As indicated
in Figure 8, the depth map is unusually robust to noise because the optic
flow signals were perturbed in direction but not magnitude. Recall that for
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Figure 8: Effect of different levels of directional noise on relative depth esti-
mates. Each of the 49 cells on the 7 x 7 retina estimates the relative depth of the
object in its receptive field. The first three plots (the top two and the lower left)
show network depth estimates (solid lines) compared to actual relative depths
(dotted lines) for three different levels of directional noise presented during both
training and performance. The final plot shows the average percentage error of
depth estimates as a function of directional noise for a network trained in the
absence of noise.

a given heading, object depth depends on only the magnitude of the optic
flow signal. Therefore, as long as the heading estimate is reasonabl y correct
(see Figures 6 and 7), the depth estimates will also be correct regardless of
directional noise.

If any speed noise is present in the flow field, depth estimation will un-
avoidably degrade. This is evident from Figure 9, which shows the effect of
aperture noise on relative depth estimation. Since aperture noise contains a
speed component in addition to the directional component, depth map accu-
racy degrades significantly more than with directional noise. Nonetheless,
the depth map still performs well with 40 degree aperture noise, and later
simulations will show that the 100% average error in depth estimates under
90 degree aperture noise is still adequate for navigation because multiple
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Figure 9: Effect of different levels of aperture noise on relative depth estimates.
Each of the 49 cells on the 7 x 7 retina estimates the relative depth of the object
in its receptive field. The first three plots (the top two and the lower left) show
network depth estimates (solid lines) compared to actual relative depths (dotted
lines) for three different levels of aperture noise presented during both training
and performance. The final plot shows the average percentage error of depth
estimates as a function of aperture noise for a network trained in the absence of
noise.

snapshots of the scene, taken as the navigator moves, tend to average out
the unwanted effects of noise over time. Performance could be improved
further if predictions about the continuity of surfaces in the field of view
were used to perform neighborhood smoothing operations on the output
of the depth map, but this topic is beyond the scope of this article. It should
also be noted that the worst depth estimation errors occur for objects near
the FOE, where optic flow signals tend to be very small. This is another in-
herent problem with using optic flow for depth estimation. One technique
that can help alleviate this problem for real-world scenes is to ignore reti-
nallocations with very small depth weights and fill in depth estimates by
averaging estimates from neighboring cells.
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Figure 10: Independent motion detection with no noise. Each panel shows the
visual field as seen by the network's retinal array. Arrows in the left panels
indicate flow components in the translation field, and arrows in the right panels
indicate flow components at the independent motion map after thresholding.
(A) The navigator is moving straight ahead over a tiled ground plane. The
suspended box is stationary with respect to the ground plane, so no activity
remains in the independent motion map. (B) The navigator is moving straight
ahead over a tiled ground plane. The suspended box is moving to the left. The
flow field at the retinal location that corresponds to the box does not match the
expected field, so activity at that location pops out in the independent motion
field. (C) Here the navigator is moving at 37 degrees to the right while the box
still moves to the left, indicating that independent motion may be detected for
a wide range of navigator headings.
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4.5 Independent Motion Map. Figures 10 and 11 illustrate the perfor-
mance of the independent motion map. The scene consists of a tiled ground
plane, a distant wall, and a box floating above the ground plane between
the observer and the wall. Each panel shows the visual field as seen by the
network's retinal array. Objects in the visual field are indicated by dotted
lines. Arrows in the left panels indicate flow components in the translation
field, and arrows in the right panels indicate flow components at the in-
dependent motion map after thresholding according to equations 3.18 and
3.19.

Figure 10 indicates performance at the independent motion map in the
absence of noise. In Figure lOA, the navigator moves forward, while the
box remains stationary. Since optic flow in the scene is commensurate with
the flow expected by the activated heading map cells, all activity in the
independent motion map is quenched. In Figure lOB, the navigator again
moves forward, but this time the box is moving independently to the left.
The flow generated by the box does not fit with the flow pattern established
by the rest of the scene, so it is singled out in the independent motion map.
Figure 10C shows an example of detecting the same box motion while the
navigator moves at 37 degrees to the right instead of straight ahead. One
might note that the direction coded by the active cells in the independent
motion map corresponds only roughly to the actual motion direction of the
object with respect to the navigator. This highlights the fact that this map
is primarily useful for identifying the retinal locations of moving objects
rather than their direction of movement relative to the navigator. The direc-
tional error arises because the motion network detects mismatches between
expected direction and the incoming flow direction. The difference of these
two directions will point approximately in the actual direction of the mov-
ing object. However, the exact calculation of direction requires knowledge
of both the depth of the moving object and the navigator's speed so that the
component of optic flow due to object motion may be separated from the
component due to self-motion.

Figure 11 illustrates independent motion map performance under vari-
ous noise conditions. Figures 11A and 11B illustrate the performance of the
independent motion detector in the presence of :1:40 degree and :1:90 de-
gree aperture noise, respectively. Noise was present during both training
and performance. The network successfully detects the moving box in both
conditions, but the network erroneously detects motion at several retinal
locations in the :1:90 degree condition. The independent motion detector
is the most sensitive part of the network to directional noise since it relies
on the accuracy of optic flow directions at each retinal location and cannot
average over the entire retina. Directional noise can be countered to some
degree by choosing a higher value of the threshold A in equation 3.18 but
raising the threshold also increases the chances of missing a moving object.
Figure 11C shows the performance of the independent motion map in the
presence of 100% speed noise. Because both the heading and independent
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Translation Field Independent Motion Map

(A)

(C)

Figure 11: Independent motion detection under various noise conditions.
(A) Example of independen t motion map performance when the incoming flow
field is randomly perturbed by :1:40 degree aperture noise. (B) At :1:90 degree
aperture noise, some errant vectors survive the threshold along with the mov-
ing box. (C) Performance of the independent motion map in the presence of
100% speed noise. Independent motion detection is essentially unaffected by
perturoations in the magnitude of the flow signals.

motion maps are essentially unaffected by perturbations in the magnitude
of optic flow signals, the moving box is easily detected in the speed noise
condition. Faster-moving objects perturb the optic flow signals more than
slower-moving objects and are therefore easier to detect.
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Figure 12: (A) Two example paths taken by the approach-avoidance algorithm,
viewed from above. The circles represent times when the approach signal was
dominant. The "x" symbols represent times when the avoidance signal was
dominant. The navigator starts at the bottom and attempts to reach the plus
sign while avoiding the blocks. (B) Two example paths taken by the approach-
avoidance algorithm in the presence of 90 degree aperture noise. (C) Two exam-
ple paths taken by the approach-avoidance algorithm in the presence of 100%
speed noise.

4.6 Navigation. The simulations shown in Figure 12 demonstrate the
utility of the self-organizing heading and depth maps for visual navigation.
Figure 12A shows an overhead view of a field of rectangular obstacles and
the path that the navigator takes to reach the goal indicated by the plus
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Figure 13: Pursuit behavior viewed from above. The first navigator, designated
by the open circles, is pursuing the navigator designated by the plus symbols.
The "plus" navigator is slightly slower but gets ahead start in its attempt to reach
the goal. The other navigator is faster and attempts to capture the first navigator
before it reaches its goal. The first navigator (open circles) detects the location
of the other navigator using its independent motion map. In both simulations,
the open circle navigator is able to overtake the slower plus navigator before it
reaches its goal.

sign. The task for the navigator is to start at the bottom center and reach the
plus sign at the top of the scene without hitting any obstacles. No high-level
path planning was used, only the simple approach-avoidance algorithm
described in section 3. The open circles mark places along the path where
the navigator was in approach mode, and the "x" symbols mark the places
where the navigator was in avoidance mode.

Because the components of the network are robust to noisy optic flow
fields, the approach-avoidance calculation based on the network's output
is also robust to noise. Figure 12B shows two example paths taken by the
navigator in the presence of 90 degree aperture noise. The main difference
between performance in 0 degree noise and 90 degree noise is that at higher
noise levels, the navigator occasionally misjudges steps and clips the comers
of obstacles. Also, random depth map errors occasionally cause the navi-
gator to veer unnecessarily. Figure 12C shows two example paths taken by
the navigator in the presence of 100% speed noise. This 100% speed noise
is guaranteed to degrade the performance of the depth map by at least that
amount, and one can see by the x's that the navigator is sometimes avoiding
ghosts. However, on average the ghosts tend to cancel each other, and the
network extracts useful information about the true location of the obstacles.

Finally, Figure 13 shows examples of motion pursuit simulations that
require all elements of the visual navigation network. Aperture noise of
:f:30 degrees was used in these simulations. One navigator, designated by
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the plus symbol, attempts to reach a goal indicated by a plus sign at the top
of the picture. A second navigator, designated by the open circle symbol,
is slightly faster and uses the first navigator's changing location as its goal.
The second navigator uses its independent motion map to determine the
location of the first navigator. As shown in the two simulations of Figure 13,
the second navigator is typically successful in its attempt to overtake the
slower navigator.

5 Concluding Remarks

The network described in this article was developed primarily as a mod-
ule for autonomous robot navigation. Its features include self-organization,
fast learning, noise tolerance, operation in the presence of eye movements,
and reasonable memory and computational demands. This system repre-
sents one of the first self-tuning systems to attempt seriously to solve the
problem of navigation using optic flow, although the structure and learn-
ing principles were inspired by several previous computational and neural
models (Hatsopoulos & Warren, 1991; Lappe & Rauschecker, 1993, 1995;
Perrone, 1992). Based on the good performance seen in the simplified sim-
ulations, it is expected that the system will also perform adequately on real
images. Work is in progress to transfer these algorithms to mobile robots.
Efforts spent developing a self-tuning system reduce the burden of software
rewri tes tha t would otherwise be required to accommodate robot hardware
changes. The current system could be expanded by introducing feedback
between the modules. For example, independently moving objects could be
detected more accurately by creating a feedback loop that removes pixels
containing suspected independently moving objects from the normaliza-
tion field. Therefore, the next iteration of the heading estimate will be less
corrupted than the previous, which will improve the performance of both
the depth and motion maps.

Although this was not the priffiary goal of the current model, many of
its cell types also show similarities to MT and MST cell properties. Cells in
MT are sensitive to the orientation and velocity of visual stimuli (Rodman
& Albright, 1987), as are cells in the motion detection, translation, and nor-
malization fields in the model. Many cells in MST respond maximally to
radially expanding patterns and patterns that include expansion and full
field translation, suggesting a role in heading detection and/or depthes-
timation (Lagae, Maes, Raiguel, Xiao, & Orban, 1994); cells in the heading
map are similarly tuned. MST receives strong fiber projections from MT
(e.g., Maunsell & Van Essen, 1983; Ungerlieder & Desimone, 1986), as do
heading map cells in the normalization field. Cells in MT and MST have
complex properties, however, that are by no means completely explained
by the current model or other models of heading direction (Lagae et al.,
1994; Graziano, Andersen, & Snowden, 1994).
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To the extent that the present model does capture brain heuristics, the
use of eye velocity information to nullify the rotational component of the
flow field suggests that MST cells may change their flow field sensitivities
in the presence of eye movements. Bradley, Maxwell, Andersen, Banks, and
Shenoy (1996) have presented evidence consistent with this hypothesis by
showing that during an active pursuit eye movement, expansion cells shift
their preferred focus of expansion in a direction that would compensate
for the eye rotation. This shift does not occur during a simulated rotation,
suggesting that it is due to extraretinal information.

Finall~ it must be noted that optic flow alone can be only an imperfect
indication of object motions and distances. For example, no optic flow is
available for objects centered at the FOE, and thus the distance of these ob-
jects cannot be determined using optic flow until they become close enough
to subtend a significant portion of the retina away from the FOE. An in-
dependently moving object that is heading directly down the line of sight
through the FOE will generate flow vectors that are directionally consistent
with the flow vectors caused by the translational motion of the navigator,
and such an object will thus not be identified as moving by the independent
motion map. However, such an object would correctly register a shorter
time to collision in the depth map, thus allowing the navigator to move
around it even though it was not identified as independently moving. An
independently moving object that covers a large portion of the retina will
generate false heading estimates. This is evidenced in humans by the mis-
taken perception that their stationary car is rolling because the truck next
to them is moving slowly in the opposite direction. Despite these short-
comings, optic flow is a rich and usually reliable source of information that
should not be dismissed simply because it is difficult to measure and pro-
vides misleading or no information in certain circumstances. The purpose of
our architecture is to extract as much information from optic flow as possible
using a self-tuning network with relatively uncomplicated computational
elements. Our approach distinguishes itself from previous work by provid-
ing a unified treatment of heading, depth, and independent object motion
within a single architecture. In addition, our approach deals with the effects
of self-generated eye motions thoroughly and effectively and has the unique
advantage of self-organization. We have shown, using simplified simula-
tions, that our network is able to provide sufficiently robust information to
approach targets while avoiding obstacles, even if those targets are mov-
ing. This does not mean that our system, or any other system that attempts
to process optic flow alone for that matter, is sufficient to allow error-free
navigation in all real-world situations. Robust navigation requires the inte-
gration of many information sources, and our network has been designed
to offer one piece of the puzzle by contributing useful heading, range, and
independent motion estimates that a robot may use to aid in tasks such as
moving object pursuit and obstacle avoidance.
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