
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004 245

Dynamics of Projective Adaptive Resonance Theory
Model: The Foundation of PART Algorithm

Yongqiang Cao and Jianhong Wu

Abstract—Projective adaptive resonance theory (PART) neural
network developed by Cao and Wu recently has been shown to be
very effective in clustering data sets in high dimensional spaces.
The PART algorithm is based on the assumptions that the model
equations of PART (a large scale and singularly perturbed system
of differential equations coupled with a reset mechanism) have
quite regular computational performance. This paper provides
a rigorous proof of these regular dynamics of the PART model
when the signal functions are special step functions, and provides
additional simulation results to illustrate the computational
performance of PART.

Index Terms—Data clustering, differential equations, learning
and adaptive systems, neural networks, pattern recognition.

I. INTRODUCTION

DATA clustering is an unsupervised process of classifying
patterns into groups (clusters), aiming at discovering

structures hidden in a data set. Clustering problems have been
studied extensively from different angles and using different
approaches (for example, [21], [23], [7], [8], [12], [24], [27],
[2], [1], [22], [16]), and new challenging arises as well due
to the technology development. In particular, spectacular
advances in information technology and large-scale computing
are producing huge and very high dimensional data sets.
These data sets arise naturally in a variety of contexts such as
text/web mining, bioinformatics, imaging for diagnostics and
surveillance, astronomy and remote sensing. The dimension of
these data is in the hundreds or thousands (see, for example,
[19]). In order to understand such high dimensional data sets,
one needs to overcome many technical challenges. Traditional
clustering methods do not work efficiently for data sets in such
high dimensional spaces because of the inherent sparsity of
data. In such data sets, for any given pair of points there exist at
least a few dimensions on which the points are far apart from
one another. For instance, for a data set that obeys the Gaussian
distribution , we have to pick at least random
points from the data set in order to obtain just a few which are
at distance less than from the center [14]. Therefore,
a set of trillion points is still very sparse if it is in a thousand

Manuscript received January 14, 2002; revised July 9, 2003. This work was
supported in part by the Canada Research Chairs (CRC) Program, the Natural
Sciences and Engineering Research Council of Canada (NSERC), and in part by
the Mathematics for Information Technology and Complex Systems (MITACS).

Y. Cao is also with the Department of Cognitive and Neural Systems, Boston
University, Boston, MA 02215 USA (e-mail: yqcao@bu.edu).

J. Wu is with the Laboratory for Industrial and Applied Mathematics, Depart-
ment of Mathematics and Statistics, York University, Toronto, ON M3J 1P3,
Canada; Fax: 1-416-7365757, E-mail: wujh@mathstat.yorku.ca.

Digital Object Identifier 10.1109/TNN.2004.824261

dimensional space! Furthermore, recent theoretical results [3]
have shown that in a high dimensional space, the distance
between every pair of points is almost the same for a wide
variety of data distributions and distance functions. Under such
circumstances, it even makes no sense to talk about proximity
or clustering in the original full space of all dimensions. This is
well known as the curse of dimensionality. This motivated the
concept of subspace clustering whose goal is to find clusters
formed in subspaces of the original high dimensional space.

CLIQUE [2] is the first well-known algorithm designed for
automatically discovering clusters in different subspaces of a
higher dimensional space. It uses a density-based approach
[21], [15], [25]. To approximate the density of the data points,
CLIQUE partitions the data space and finds the number of
points that lie inside each cell (unit) of the partition. More
precisely, the units are obtained by partitioning every dimension
into intervals of equal length. For a given subspace, a cross
product of such intervals (one from each of dimensions of this
subspace) is said to be a unit in the subspace. A unit is said to
be dense if the fraction of total data points contained in the unit
is above a density threshold . Then a maximal set of connected
dense units in a given subspace forms a cluster in the subspace.
Since a dense unit of -dimensional subspace is also dense
when projected into a -dimensional subspace, CLIQUE
therefore finds all dense units in -dimensional subspace based
on the dense units in -dimensional subspace. It first finds
all dense units in 1-dimensional subspace, then works from
lower dimensional subspaces to higher ones to discover dense
clusters in all subspaces. The time complexity of CLIQUE
is therefore exponential in the highest dimensionality of any
dense unit. Therefore, the time cost may be prohibitive when
the dimensionality is high.

A fast subspace clustering algorithm PROCLUS was pro-
posed by Aggarwal et al. in 1999 [1]. PROCLUS aims at finding
projected clusters, each of which consists of a subset of data
points together with a subset of dimensions such that the
points in are closely correlated in the subspace of dimensions

. PROCLUS uses a medoids-based optimization approach
[23], [24] and combines the greedy technique and a locality
analysis to find the set of dimensions associated with each
medoid. Here a medoid is a representative object in a cluster
to serve as the surrogate center for the cluster. The clustering
quality (the criterion function to be optimized) is evaluated
as the average Manhattan segmental distance from all points
to their corresponding cluster centers. Here, the Manhattan
segmental distance from a point to its cluster center is defined
relative to the dimensions in which the cluster is formed.
More precisely, for any two points

1045-9227/04$20.00 © 2004 IEEE

246 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

, and a set of dimensions ,
the Manhattan segmental distance between and relative
to is given by . With
two input parameters, the number of clusters and the average
dimensions , PROCLUS works as follows. In the initialization
phase, a small superset of medoids is generated from a
random sample of the data set, by using a greedy method such
that the points (medoid candidates) in the superset are well
separated from each other. Then a set of medoids from
is randomly chosen. In the iterative phase, the set of current
medoids is updated by a hill climbing process: the bad medoids
are replaced by random points from . The bad medoids are
defined as the medoid of the cluster with the least size and
the medoids of the clusters with sizes less than a predefined
threshold. The dimensions associated with each medoid are
determined by a locality analysis based on the simple idea that
data points of a cluster are closer in a correlated dimension
than in an uncorrelated dimension. More specifically, for each
medoid , let be the minimum distance from any other
medoid to . For each , define the locality to be the set of
points which are within distance from on the entire space.
Then compute the average distance along each dimension from
the points in to . Let be the average distance along di-
mension , then normalize as , where

, and is

the number of dimensions of the entire space. Finally, pick up the
numbers with the least values of , and the set of dimen-

sions associated with medoid is then determined according to
the rule that dimension if is selected. Of course, this
is only an approximation to the dimensions associated with each
medoid. The clusters are then formed by grouping every data
point to its closest medoid according to the Manhattan segmental
distance relative to the set of dimensions associated with the
medoid. By simulations on synthetic data sets, Aggarwal et
al. [1] showed that PROCLUS performed better than CLIQUE
in term of quality and running time. However, a problem with
this algorithm is how to determine its two input parameters, the
number of clusters and the average dimension . Moreover, as
the illustrative simulations in [4] showed, PROCLUS is sensitive
to the choice of these input parameters. This imposes significant
challenges for a user, as determining the number of natural
clusters is one of the most difficult problems in cluster analysis.
Besides, the estimation of the dimensions associated with each
medoid may be quite inaccurate since the locality usually
contains many uncorrelated points. As a result, the clustering
quality may be degraded.

In [4], we proposed an alternative approach based on a
new neural network architecture projective adaptive resonance
theory (PART) in order to provide a solution to the challenging
high-dimensional clustering problem. The basic architecture
of PART is similar to that of adaptive resonance theory (ART)
neural networks which have been shown to be very effective
in self-organized clustering in full dimensional spaces (for
example, [7]–[13]). The adaptive resonance theory (ART) was
first introduced by Grossberg in 1976 [17], [18] in order to
analyze how brain networks can autonomously learn in real
time about a changing world in a rapid but stable fashion,
based on which Capenter and Grossberg [7], [8] developed two

Fig. 1. Simplified configuration of ART architecture consisting of an input
layer F , a clustering layer F and a reset subsystem.

classes of ART neural network architectures ART1 and ART2
whose computational performance (dynamics) are described by
systems of differential equations. ART1 self-organizes recogni-
tion categories for arbitrary sequences of binary input patterns,
while ART2 does the same for either binary or anolog inputs.
Some other classes of ART neural network architectures such
as Fuzzy ART [12], ARTMAP [10], Fuzzy ARTMAP [13],
Gaussian ARTMAP [26], and Distributed ART and Distributed
ARTMAP [5], [6] were then developed with increasingly
powerful learning and patten recognition capabilities in either
an unsupervised or a supervised mode. Simply speaking, an
ART network includes a choice process and a match process
as its key parts. The choice process picks up the most likely
category (cluster) for an input pattern. If the template of the
chosen category is sufficiently similar to the input pattern to
satisfy a predefined vigilance parameter , then the category
resonates and learns: its template is updated to respond to the
new input pattern. Otherwise, the category is reset, and the
next most likely category is chosen. If no existing category
satisfies the match criterion, then a new category is recruited.
Thus, ART incrementally produces categories necessary to
represent clusters of input patterns. Fig. 1 shows the simplified
configuration of an ART structure, which involves an input
processing field (layer, also called input layer or comparison
layer), a clustering field (layer, also called clustering layer
or recognition layer), and a vigilance and reset subsystem.
There are two sets of connections (each with its own weights)
between each node in layer and each node in layer.
layer is connected to layer by bottom-up weights while

layer is connected to layer by top-down weights (also
called templates). The connection weights between these two
layers can be modified according to two different learning
rules. The layer is a competitive layer which follows the
winner-take-all paradigm: the node in with the largest net
input becomes the candidate to learn the input pattern. Whether
the candidate will learn the input pattern is decided by the
vigilance and reset mechanism, which controls the degree of
similarity of patterns placed in the same node (cluster).

The advantage of ART is that it does not assume the number
of clusters in advance and allows the user to control the degree
of similarity of patterns placed in the same cluster. Despite the
great success of applying ART to clustering problems, our sim-
ulations reported in [4] show that the current ART architecture
has to be modified to perform the task of subspace clustering in
high dimensional data sets. In particular, ART focuses on sim-
ilarity of patterns in the full dimensional space and thus may

CAO AND WU: DYNAMICS OF PART MODEL: FOUNDATION OF PART ALGORITHM 247

Fig. 2. PART architecture. In addition to the usual F layer (input and
comparison), F layer (clustering) and a reset mechanism, there is a hidden
layer associated with each F layer node v for similarity check to determine
whether the node v is active relative to an F layer node v .

fail to find patterns formed in subspaces of higher dimensional
space.

A significant challenge in subspace clustering is that the sub-
spaces in which clusters are formed can not be identified in ad-
vance. One may attempt to find clusters in all possible subspaces
and then to compare the results to obtain an optimal partition of
the data set, but this is practically not feasible as the number of
all possible subspaces is intractably large for a data set
with high dimension . PART addresses this problem by intro-
ducing a selective output signaling mechanism to ART. Fig. 2
illustrates the basic PART architecture. Similar to ART archi-
tecture, layer of PART is a competitive layer which follows
the winner-take-all paradigm. The principal difference between
PART and ART lies in the functioning of the layer. In PART,

layer selectively sends signals to nodes in layer. In other
words, a node in layer can be active relative to some nodes
but inactive relative to other nodes. To which node an

node is active is determined by a similarity test between the
corresponding top-down weight and the signal generated in the

node. This similarity test plays a key role in the subspace
clustering of PART. More precisely, we denote the nodes in
layer (Comparison layer) by ; nodes in layer
(Clustering layer) by ; the activation
of node by , the activation of node by ; the
bottom-up weight from to by , the top-down weight
(also called template) from to by . The main differ-
ence between PART and ART is the introduction of the selec-
tive output signal (to be specified later) from a node in

to a committed node in by a similarity check between
the top-down weight and the signal generated in ,
where is a signal function to be specified later. The introduc-
tion of the selective output signaling mechanism in PART allows
the signal generated in a node in the input layer to be transmitted
to a node in the clustering layer only when the signal is sim-
ilar to the top-down weight between the two nodes, and hence
PART focuses on dimensions where information can be found.
Like ART, the vigilance and reset mechanism in PART controls
the degree of similarity of patterns in the same cluster, but the
similarity measurement in PART is closely related to subspaces
involved. In particular, the degree of similarity of patterns is
controlled by both vigilance parameter and distance parameter

which control the size of dimensions of the projected subspaces
and the degree of similarity in a specific dimension involved,
respectively. In contrast to PROCLUS, these vigilance and dis-
tance parameters are the only required input parameters for the
PART algorithm. As our simulations on high dimensional syn-
thetic data in [4] and the additional results reported in the Ap-
pendix of this paper showed, the PART algorithm, with a wide
range of input parameters, enables us to find the correct number
of clusters, the correct centers of the clusters and the sufficiently
large subsets of dimensions where clusters are formed, so that
we are able to fully reproduce the original input clusters after a
reassignment procedure which reassigns every data point to its
closest cluster center according to the distance on the subspace
of the found dimensions.1

The PART algorithm developed in [4] is based on the assump-
tions that the model equations of PART (a large scale and sin-
gularly perturbed system of differential equations coupled with
a reset mechanism) have quite regular computational perfor-
mance described by the following dynamical behaviors, during
each learning trial (when a constant input is imposed).

a) Winner-take-all paradigm: the node with the largest
bottom-up filter input becomes the winner and only this
node is activated after some finite time.

b) Selective output signals remain to be constants.
c) Synaptic weights are updated following specific formulae.
d) Set of dimensions of a specific projected cluster is nonin-

creasing in time.
The purpose of this paper is to provide a rigorous proof of

the aforementioned dynamical behaviors of the model equations
when the signal functions are step functions with thresholds, and
to provide additional simulation results to further illustrate the
algorithm. Our main results (Theorem 3.2) also provide param-
eter ranges where these dynamical behaviors hold (equivalently,
where the PART algorithm works).

The rest of this paper is organized as follows. Section II de-
scribes the model and formulates all assumptions on parameters
and the signal functions. Section III states the main results, fol-
lowed by some explanations in terms of the PART algorithm.
Section IV gives the proof of main results. Section V presents
some further discussions and concluding remarks. We also sum-
marize PART algorithm and give an illustrative example in the
Appendix.

II. DYNAMIC MODEL OF PART

We rewrite the dynamic model of PART described in [4] with
precise time domain specification as follows. We refer to [4]
for readers who are interested in how the model equations are
derived, and we defer to the Appendix for a summary of PART
algorithm.

Let denote the set of nodes in layer, and
denote the set of committed nodes in

layer. Recall that a node of the layer is called committed if it
has learned some input patterns in previous learning traces, and
a node is called noncommitted if it has not learned any input
pattern.

1Here the correctness means the natural cluster structure which is hidden in
a data set. In particular, in high dimensional synthetic data we considered here,
the correctness means the input cluster structure.

248 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

The short term memory or activation (STM) equations for
nodes in layer are given by

(1)

where is the (constant) input imposed on node
.
The STM equations for the committed nodes in layer are

given by

(2)

where is a signal function to be specified later,
, and are nonnegtive constants, and the bottom-up filter

input satisfies

(3)

with a constant and the selective output signal to be
defined later.

The LTM (Long Term Memory or weight) equations for com-
mitted nodes in layer are

(4)

(5)

where , and is a given constant, is
a signal function.

The LTM equations for noncommitted winning node in
layer are

(6)

(7)

The term is related to the essentially new feature of PART:
the selective output signaling mechanism. It is defined as fol-
lows:

(8)

where we take

(9)

and for a given constant is given by

(10)

and is given by

(11)

In the definition of (8), we require and

(12)

In the PART architecture, the above dynamical process is cou-
pled with a reset mechanism: A winning node will be reset
so that it will always be inactive during the remainder of the
current trial if it does not satisfy some vigilance conditions. In
particular, a winning (active) node will be reset if at any
given time , the degree of match defined by

(13)

is less than a prescribed vigilance. Namely, reset occurs if and
only if

here is a vigilance parameter.
In what follows, we are going to make the following set of

standing assumptions:

(H1). The constants , and satisfy

(14)

(H2). The signal function is nondecreasing
and satisfies the Lipschitz condition

(15)

(H3). The signal functions and satisfy

(16)

(17)

where and are two thresholds. Usually we require
.

Assumption (H1) is made for the sake of simlpifying the pre-
sentation, and is in fact a rescaling procedure so that the max-
imum level of activation of each node in layer is 1. and

can be any positive constants, and can be any nonnegative
constant, as long as the ranges of signal functions and thresholds
involved are modified accordingly. (H2) is a assumption satis-
fied by all signal functions used in the literature. (H3) requires
all signal functions to be step functions with thresholds, and
these reflect the on-or-off characteristic of neurons and make
our already long proof relatively simple. We shall address the
limitation of these assumptions in the final discussion section.

For convenience, we define some notations as follows. Define

(18)

(19)

CAO AND WU: DYNAMICS OF PART MODEL: FOUNDATION OF PART ALGORITHM 249

We then let and be two arbitrarily given constants
satisfying

(20)

(21)

In other words, and are respectively the upper bound
and lower bound of all possible nonzero bottom-up filter inputs

’s under perfect learning (see Proposition 5.1).

III. MAIN RESULTS

We start with the following technical Lemma, which plays an
important role about the dynamical behaviors of the network.

Lemma 3.1: Consider the system

(22)

where and all are constants, and satisfy
conditions (14) and (17). Assume that there exists such
that and

for all . Then we have the following conclu-
sions.

a) If , then we have the following results:

i) For all when , and

ii) is increasing for , and

iii) For any given there
exists such that when and

when . Moreover, we can make
if is sufficiently small.

b) If then for all and
.

Proof:

a) Note that if . Therefore, when
for all , (22) becomes

(23)

Under the assumption that and
for , we can solve linear system

(23) and obtain that for as long as
for all and .

Note that for any , the unique equilibrium of (23)
is . Since increases
until its value exceeds . Therefore, there exists
such that and for .
Therefore, we have for all and

.

Recall that . From (23) we have, at ,
that

(24)

(25)

From (24), . Therefore, there exists
such that when For ,
from and the continuity of , it follows
that there exists such that for

Let , then and
for all and with .

Let

Clearly, . We claim that
By way of contradiction, we assume that . Then

or for some with .
With the above definition of , we have (24)–(25) hold
for . As the unique equilibrium of (24) is
given by , we can see
that is increasing for . Therefore, it
is impossible that . On the other hand, the
unique equilibrium of (25)

. For any , we have
if . Therefore, it is impossible

that . This yields a contradiction. Therefore,
.

Since (24)–(25) hold for all , we get

and we easily verify the increasing property of . It
also follows that for any given there exists

such that when , and
when .

When is sufficiently small, from the following ex-
plicit expression of a solution of (23)

we have such that . When ,
from (23) we get

Therefore, for any given if is sufficiently
small, we have such that when

and when .

250 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

b) For any , as , from (23) we get

where .
This proves Lemma 3.1.
Note that an node is active at time if and only if

. For every implies that
. Therefore, Lemma 3.1-(a)-(i) implies that all

nodes with are always inactive. Using the same argu-
ment, Lemma 3.1-(a)-(iii) implies that node is activated
after some finite time . This is the winner-take-all paradigm.

Lemma 3.1 shows the winner-take-all paradigm in a simple
case where all bottom-up filter inputs (’s) are fixed constants.
The general case is addressed in the following main results.

Theorem 3.2: Consider the system of differential equations
(1), (2), (4), (5) with given by (3) and given by
(8)–(12). Assume that and condi-
tions (H1), (H2), and (H3) hold with and satisfying

(26)

(27)

Assume also that there exists such that

Then when , and are sufficiently small, the following
results hold:

i) For and and ;
ii) There exists with such that

and when and and
when ;

iii) For any and ,

(28)

(In other words, implies for all
, and implies for all);

iv) For any and with and
remain unchanged for all . But

(29)

where

(30)

and denotes the number of elements of the set , and

(31)

Moreover, writing and to indicate explic-
itly the dependence on , we have

(32)

(33)

where ;
v) For any , define

. Then
(va) for any ;
(vb) if ;
(vc) for all , where is
defined in (30).
We defer the proof to Section 4.

Remark 3.3: Theorem 3.2 describes the dynamics of PART
during a trial. In PART algorithm, layer (clustering layer)
makes a choice by winner-take-all paradigm: The node with
the largest bottom-up filter input is activated and therefore be-
comes the winner (a candidate to learn the input pattern), while
all other nodes are inactive. (i) and (ii) in Theorem 3.2 verify
that the winner-take-all paradigm is realized in the dynamics of
PART. Recall that an node is active at time if and only if

. (i) implies all nodes with are always
inactive (unless a reset process occurs). (ii) implies that node

is activated after some finite time . In other words, the
node () with the largest bottom-up filter input () becomes
the winner after some finite time . Therefore, (i) and (ii) im-
plies the winner-take-all paradigm, the property (a) described in
Section 1.

(iii) implies all the selective output signals remain to be con-
stants. This is the property (b) described in Section 1. It follows
from this property that the degree of match
keeps constant. This suggests an alternative implementation of
PART net: reset in parallel all nonmatching nodes at ,
then select the winner from remaining nodes so that the
winner must satisfy the match criterion. This will speed up the
network computation since the serial search process (caused by
repeated resets to successive winners in some situations, in par-
ticular, when a new pattern is input) is omitted.

Equations (32) and (33) (in (iv)) are the learning formulae
used in PART algorithm, with being the learning
rate. This addresses the property (c) described in Section 1.

Recall that is the set of dimensions of projected sub-
space associated with cluster (represented by node)
at time . (v) shows that the set of dimensions is nonincreasing
during the learning. In particular, the resulting dimensions
of winner after the learning trial corresponds to those
nodes which are active relative to the winner . This is prop-
erty (d) described in Section 1. This nonincreasing property of
dimensions contributes to stabilizing learning in response to ar-
bitrary sequences of input patterns.

The following corollary gives a necessary and sufficient con-
dition for an node to be activated.

Corollary 3.4: Consider the system of differential equations
(1), (2), (4), (5) with given by (3) and given by

CAO AND WU: DYNAMICS OF PART MODEL: FOUNDATION OF PART ALGORITHM 251

(8)–(12). Assume that , and condi-
tions (H1), (H2), and (H3) hold with and satisfying

(34)

(35)

Assume also that there exists such that
and for all , and

. Then when , and are sufficiently small, we have
the following results.

i) If , then all conclusions of Theorem
3.2 hold.

ii) If , then for all and
and .

Proof:

i) We note that

implies

Therefore, we can choose such that

Choose

we then have

From

it follows

Therefore, all conditions of Theorem 3.2 are satisfied.
This proves (i).

ii) From and the continuity of , there is
such that when for all

. This implies when
for all . Therefore (4) and (5) imply that
and remain to be constants on . It
follows that and remain to be constants on

. Noting that is equivalent
to using the same argument
as in (b) of Lemma 3.1 we can get for all

. This process can be repeated until . This
proves (ii).

Remark 3.5: Although Corollary 3.4 gives a condition that

under which no node will be activated and therefore the
winner-take-all paradigm fails, this condition can actually not
hold under perfect learning (see Section 5 for a definition of
perfect learning) based on the following reason: The second in-
equality of (34) and condition imply that

But it is impossible that under perfect learning
(see Proposition 5.1).

IV. PROOF OF MAIN THEOREM

The proof is technical and long, so we start with a short de-
scription of the main ideas and steps. First of all, we shall show
that during a particular trial, the similarity measure (given by

) between the output of an node and the corresponding
component of the template of a target node remains to be a
constant (persistence), this is the essential part in order to main-
tain the stability of the learning and categorizing process for
each input. With this in mind, then the description of the dy-
namics in the layer (that decides the candidate for a given
input) becomes relatively easy due to the “competitive exclu-
sion principle”: the total selective output signals from all
nodes to all nodes have been decided already and thus the
competitive nature of the layer selects the candidate based
on the winner-take-all paradigm. This is (i) and (ii) of Theorem
3.2: only one node will be activated after a finite time. Once this
is shown, the equations for the updating of the bottom-up and
top-down weights become simple and decoupled ordinary dif-
ferential equations that can be explicitly solved.

What makes the proof technically difficult is that we have to
prove the “similarity measure persistence” and the “competitive
exclusion principle” in two steps: we first show the “similarity
measure persistence” holds true until layer selects its winner,
and then we have to show simultaneously that the winner re-
mains to be a winner and the similarity measures remain to be
constants, and we do so by way of contradiction: violation of
one of the above statements at some point will lead to a contra-
diction.

In order to prove Theorem 3.2, we need the following lemma.
Lemma 4.1: Consider (1) and assume satisfies (H2). Then

for any given , if is sufficiently small then for

(36)

Proof: For all , from (1) it follows that

(37)

We distinguish several cases.

Case a: . Let . If
is sufficiently small, then

for , where is the Lipschitz constant in
(15). Therefore,

252 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

for . Therefore,

Case b: . Using a similar argument to
the above, we can show that

Case c: . We will prove the lemma
when . The proof is similar when

. We distinguish several subcases.
Case (ci): but . We have

from (37) that and is de-
creasing. Therefore, and

. This also im-
plies that

Therefore,

for .
Case (cii): . Clearly, for all

. Since is nondecreasing,
for any .

If for any , then
for all . It follows

that for . Therefore,

If there exists such that
, then when is sufficiently

small, we have for . Therefore,
for . This implies that

for .
Case (ciii): . Since , we have

. Therefore,
since is nondecreasing. We have from (37)
that is decreasing and tends to as

. Therefore,

when is sufficiently small and . This
implies

for . Therefore,

for
Summarizing the above discussions we conclude that (36)

holds. This proves Lemma 4.1.
We can now give the proof of Theorem 3.2.

Proof of Theorem 3.2:

Step 1) We prove (i) & (ii). When , we have
by the definition of function . From

(4) and (5) it follows that when

for all and . On the other hand, from
Lemma 4.1, we have that when is sufficiently
small

Therefore, from (3) and (8), we have when

for all and . Note that
implies

for all . Applying Lemma 3.1 we obtain that
when is small enough, then there exists

such that for ,
and for all and . In
other words, we obtain that for

, and for all
and . Therefore, when

and for all . From
Lemma 4.1, when is sufficiently small we have

and for all
, and .

At , we have for ,

(38)

(39)

(40)

and for

(41)

(42)

(43)

Let . Note that
. Then for , (39) becomes

(44)

Since and
from (38) we have

CAO AND WU: DYNAMICS OF PART MODEL: FOUNDATION OF PART ALGORITHM 253

. Therefore, there exists such
that when For ,
from and the continuity of , we have
that there exists such that for

For
implies . It follows that .
Then from the continuity of , there exists

such that for Let

then for all

Let be the maximal extension of
such that

We claim that . Assume, by way of contra-
diction, that . Then or

(for some and) or (for
some) (otherwise can be extended
further according the continuity of , and

). Therefore, (38)–(43) hold for .
From (42)–(43) and Lemma 4.1, we have

when is sufficiently small. Therefore, from
(41),

Consequently for any and , it is
impossible to have .

Now we show it is also impossible to have
. According to (8), implies

Note that and
. From Lemma 4.1, when is suf-

ficiently small

for and . But from (40)

for . It follows that
implies

Therefore, when is sufficiently small

for all and . Furthermore, for
and , from we have

. Therefore, (44) holds for all and
.

Note that , from (44)
we get

(45)

If there exists such that
, we get from (45) that
for all . It

follows that:

for all .
If for all

, then from (45), is in-
creasing, and hence is increasing on .
Therefore

for all .
Therefore, we always have that for

all Consequently, from (38) we obtain,
for all , that

(46)

From (46) we get that, if
, then is increasing

on and hence, it is impossible to have
.

According to (45), as long as
is increasing. Therefore, for

any it is impossible to have .
This leads to a contradiction. Therefore, .
This proves (i) and (ii).

Step 2) We now prove (iii). Note that for any
. Therefore, from (4) and

(5) we have and .
Then from Lemma 4.1, we obtain that when is
sufficiently small then for every

.
Using the proof in Step 1, we can show that

implies for all , and
implies for all .

Therefore, we only need to show that
implies for all . From (8),

implies either or
. We now distinguish

two cases.
Case A: . It follows that

. Note that . From (39) we get, at ,
that

(47)

Note that and
implies that

254 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

Therefore, . So there exists such
that when Let
be the maximal extension of contained in

such that . Then (47) holds for all
. We claim that . Assume, by way

of contradiction, that . Then .
Otherwise, can be extended further by using
the continuity of . On the other hand, it is im-
possible to have since on

. Therefore, . This implies
for all . Therefore, for all .

Case B: . It fol-
lows that

From the continuity of functions , and ,
we have that there exists such that

for all .
It follows that when .
Therefore, (47) holds for all .
Therefore, when is sufficiently small, we have

. It follows that .
Using the same argument as in case A we can show
that for all . Therefore,

for all . This proves (iii).
Step 3) We now prove (iv). Note that for any

. Therefore from (4) and (5)
we have for all

. From (28), we obtain that implies
, and implies .

Note that for , from (4) we
have, when , that

(48)

(49)

From (5) we have, when , that

(50)

Then (29) and (32) follow from (48) and (49). It is
easy to see that (31) and (33) follows from (50) and
(1).

Step 4) We now conclude the proof by verifying (v). For
any follows from

. Clearly, when .
Therefore, we only need to consider the case where

. For every such that
, we have . It follows that .

From (49), is decreasing on . There-
fore, for all . In other words,

implies . For any such that
but , from (49) we con-

clude that is decreasing on and tends to
0 as . Therefore, there exists such that

when , and

when . It follows that when
, and when . Moreover,

if is sufficiently small, we have . For any
such that and ,

from (48) we get .
Therefore, for all . It follows
that for all . In summary,
we have shown that if .
Noting that implies for
all and imply

for all , and
but implies for

when is sufficiently small, we conclude that
for all when is suffi-

ciently small. This completes the proof of Theorem
3.2.

V. DISCUSSIONS

Theorem 3.2 requires that there exists such that
, and

for all . It is natural to ask whether these as-
sumptions can be satisfied in a sequence of arbitrary trials. To
answer this problem, let us introduce a new terminology. A win-
ning nodes is called to have perfect learning at a trial if
either is a committed node and, at the end of the trial ,
satisfies

(51)

or is a noncommitted node and, at the end of the trial ,
satisfies

(52)

for all , where is defined in (30). We
can now state the following result.

Proposition 5.1: Assume an node has perfect learning
in last trial. Then at the beginning of the current trial, either

or

for any input pattern.
Proof: Since has perfect learning in last trial,

satisfy (51) or (52). Noting that only take value 0 or 1,
from (3) we have

(note that).
On the other hand, implies that there exists

such that , and hence . Therefore,
. Therefore, either or

according to (51) and (52) (Here

CAO AND WU: DYNAMICS OF PART MODEL: FOUNDATION OF PART ALGORITHM 255

denotes the set of last trial). Since , we have
. Therefore

This proves Proposition 5.1.
The assumption that for all
can be satisfied by setting the initial activations of

all nodes to 0. This can be easily achieved by an additional
mechanism which resets all and nodes to the inactive
states when an input pattern is ceased to be presented to the
network.

The assumption that there exists such that
for all with is not always sat-

isfied. When this assumption is not satisfied it is possible that
more than one committed nodes are activated or no com-
mitted node is activated. In the case where no committed
node is activated, a noncommitted node will be selected as
the winner. In the case where more than one committed nodes
are activated, one usually has to increase the vigilance gradually.
At each given vigilance level, some nodes with lower degree
of match are reset until either a unique node with the largest
degree of match becomes the winner (when there is a unique
active node with the largest degree of match) or all active
nodes are reset and then a noncommitted node is selected as
the winner (when there are two or more active nodes with
the same largest degree of match).

The following proposition gives a sufficient condition under
which it is impossible that more than one nodes are activated
at the same time.

Proposition 5.2: Consider the system

(53)

where and all and
satisfy conditions (14) and (17) with and satisfying

(54)

(55)

where satisfies (20). Assume that for every
. Then for every given , it is impossible to have

with such that and .
Proof: By way of contradiction, we assume that there are

and with such that
and . Then, according to the assumption
and the continuity of , there must be with
such that and for but either

or . Without loss of generality, we
assume that . According to (53) and (

), we have for all and . Note
that for

From (53) we get

(56)

Therefore, from we obtain
whenever . In other words,

for . Note that . Therefore, it is
impossible to have . This is a contradiction. This
proves Proposition 5.2.

Throughout this paper, we assume that signal functions are
step functions with thresholds. This reflects the on-or-off char-
acteristic of a single neuron, and makes the PART algorithm
user friendly in the sense that users are required to pick up the
thresholds instead of picking up signal functions. This is clearly
an approximation of the concept of similarity. In other words,
whenever these signal functions are used to evaluate whether the
output signal of a node is similar to the corresponding com-
ponent of the template, we assume there is only “yes” or “no”
answer. This is clearly an approximation of a fuzzy concept of
similarity. It remains to be investigated in the future whether the
same dynamical behaviors are still true or not if we use general
signal functions. It is also desirable to extend PART to deal with
categorical and fuzzy data.

We note that, similar to the traditional ART systems, the “top-
down” weights observe a fast-commit/slow-recode dynamics.
However, in PART these weights track the inputs (due to (33))
rather than tracking a matched pattern, as is characteristic of
most ART systems where the matched pattern often tends to
code a low dimensional projection of a set of inputs (a major
task of the PART algorithm). It would be interesting to investi-
gate how this tracking the input itself affects the convergence of
top-down weight. More importantly, examining the alternative
dynamic of tracking a matched pattern should be a very useful
direction for future investigations. We wish to express our great
appreciation for the Associate Editor for pointing out this direc-
tion, and for many valuable comments that lead to significant
improvement of the manuscript.

APPENDIX A
SUMMARY OF PART ALGORITHM

This Appendix summarizes the discrete PART algorithm
which is derived from the PART dynamics described in this
paper. The original form of the algorithm was presented in [4].

A. Activation and Computation of Selective Output Signals

We take the signal function as the identical function
, then at an equilibrium where ,

where is an input pattern. Therefore, is
computed by (8) with being a distance vigilance parameter

256 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

and a small threshold usually taken as 0. In particular, we
have

.
(A-1)

B. Activation and Selection of Winner

We compute the bottom-up filter input to the committed
node by (3) with and then select the winner according
to the rule as follows:

Let node is committed and has not been
reset on the current trial , then node is a winner either if

and , or if and node is the next
noncommitted node in layer.

C. Vigilance and Reset

A winning node is reset if the matching degree de-
fined by (13) is less than a vigilance parameter . Otherwise, the
winner passes the vigilance test and is ready to learn the input
pattern.

D. Learning

For the winner which has passed the vigilance test, update
its bottom-up weights and its top-down weights as fol-
lows:

If is a committed winning node, then

(A-2)

(A-3)

where is the learning rate, denotes the number
of elements in the set . Therefore, .

If is a noncommitted node, then

(A-4)

(A-5)

E. Dimensions of Projected Clusters

Each committed node represents a projected cluster .
The set of the associated dimensions of the projected cluster

is determined by according to the following formula:

(A-6)

F. Outlier Node

Theoretically, layer can have arbitrarily many nodes in the
PART architecture, therefore it can categorize arbitrarily many
input patterns. But due to the resource restriction, the number of
nodes in layer has to be limited. On the other hand, in many
clustering problems, there are always some data points (called
outliers) which do not cluster well. Therefore, we add a special
node in PART module, called outlier node. We simply put into
the outlier node all data points that cannot be clustered into
nodes.

The step-by-step PART algorithm is presented in detail as
follows:

TABLE I
LIST OF PARAMETERS FOR THE PART ALGORITHM

PART Algorithm

0. Initialization:

Take the number of nodes in layer as the number of dimensions

of input data.

Choose the number of nodes in layer is much larger than the

expected number of clusters.

Set the internal parameters and and maximum iteration times .

Choose the external input parameters and .

1. Set all nodes as being noncommitted.

2. For each data point in input data set, do Steps 2.1–2.6.

2.1. Compute for all nodes and committed nodes . If all

nodes are noncommitted, go to Step 2.3.

2.2. Compute for all committed nodes .

2.3. Select the winning node . If no node can be selected, put

the data point into outlier and then continue to do Step 2.

2.4. If the winner is a committed node, compute , otherwise go to Step 2.6.

2.5. If , go to Step 2.6, otherwise reset the winner and go

back to Step 2.3.

2.6. Set the winner as the committed, and update the bottom-up

and top-down weights for winner node .

3. Repeat Step 2 times.

4. For each cluster in layer, compute the associated dimension set

.

The time cost of PART algorithm is , where is
the number of dimensions of data space, is the number of
nodes, is the number of all data points and is the number of
iterations. Our simulations on high dimensional synthetic data
showed that the categories in layer became stable after only
a few iterations. Therefore, is usually a small number (less
than 10 in our simulations).

Table I gives the permissible range and the suggested sample
values of parameters in the above PART algorithm. For large
data sets, some random data points may be correlated in several
dimensions. However, it is very unlikely that a large number of
random data points are correlated in a large set of dimensions.
Therefore, we should choose large enough to eliminate the
randomness, but smaller than or equal to the number of dimen-
sions of any possible projected cluster. As we do not know in
advance the numbers of dimensions of projected clusters, we
can choose as small as possible, but large enough to eliminate
the randomness.

We now provide a small-scale example to illustrate the PART
algorithm. Consider the data set

of 12
points in 4-dimensional space. Note that a few points appear

CAO AND WU: DYNAMICS OF PART MODEL: FOUNDATION OF PART ALGORITHM 257

twice. We apply PART algorithm with
, and . The choice of requires two

points must be close to each other with respect to at least
one dimension, and the choice of is made since all
numbers involved in the data set are integers. We set
(the dimension of data space) and (the maximal number
of clusters).

Step 1) . Since no node is committed yet,
it is natural to select (the first node in layer) to
learn the input pattern. We have bottom-up weights

with

and the top-down weights

Step 2) . In this case,

since
We have and hence we select the
next noncommitted node to learn the pattern.
We have

Similarly, we have
Step 3) . is the noncommitted node to

learn the pattern

Step 4) . is the noncommitted node to
learn the pattern

Step 5) . is the noncommitted node to
learn the pattern

Step 6) . We have
since and

,

since
for

.

So is the winning node. Since
we conclude that learns the input pattern

Similarly, we have
Step 7) . is the winning node and

learns the input pattern

Step 8) . is the winning node and
learns the input pattern

Step 9) . We have

(using
in Step 3)

(using
in Step 5).

, so is the winning node.
, so learns the input pattern

Step 10) . We have

(using
from Step 6)

(using
from Step 4).

, so is the winning node.
, so learns the input pattern

258 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

Similarly, we have learns the input pattern and
learns the input pattern , and we obtain five pro-

jected clusters

the corresponding subspaces are
, and , where 1 and 0 indicate

that the corresponding dimension is used or not used respec-
tively.

APPENDIX B
A SIMULATION EXAMPLE

This Appendix provides a simulation example on high dimen-
sional synthetic data. We refer to [4] for more simulation exam-
ples and performance comparisons with other algorithms.

The high dimensional synthetic data are generated via the
method introduced by Aggarwal et al. in 1999 [1]. In partic-
ular, after the number of clusters, the number of data points in
each cluster and dimensions associated with each cluster have
been generated, the data points for a given cluster are generated
as follows: The coordinates of the points on the noncluster di-
mensions are generated uniformly at random, the coordinates of
the points projected onto a cluster dimension follow a normal
distribution with the mean at the respective coordinate of the an-
chor point, and with the variance given by , where is
a fixed spread parameter and is a scale factor chosen from

uniformly at random. We use in our data gen-
eration. We refer to [4] and [1] for more details about the data
generation process.

In the experiment reported below, we use an input data file
with 20 000 data points in a 100-dimensional space, which has
six clusters generated in 20, 24, 17, 13, 16, and 28-dimensional
subspaces respectively. Table II shows the associated dimen-
sions (the subspace where cluster is formed) and the number
of data points of each cluster in the input file. The data points
are presented in random order in the experiment. We report the
results, with emphasis on four different aspects: number of clus-
ters found, dimensions found, centers of clusters found, and the
contingency table [20] of input clusters (original clusters) and
output clusters (clusters found). Table III, Table IV, and Fig. 3
show the simulation results with and (Note
that since we use a different distance function in the PART al-
gorithm which is described in Appendix A, the value of is
much larger than the ones in [4]). Note that in the reported
results we have treated as outliers the data points in the
categories with very small sizes (less than 1.2% of total data
points in this experiment). The simulation results show that the
PART algorithm succeeds in finding the exact number of orig-
inal clusters and in finding almost exact centers of all original
clusters. The dimensions found are not identical to those of the
original clusters, but these found dimensions are contained as

TABLE II
DIMENSIONS AND NUMBERS OF DATA POINTS OF INPUT CLUSTERS FOR A

DATA SET IN A 100-DIMENSIONAL SPACE

TABLE III
DIMENSIONS AND NUMBERS OF THE DATA POINTS OF OUTPUT CLUSTERS

TABLE IV
CONTINGENCY TABLE OF INPUT CLUSTERS AND OUTPUT CLUSTERS. ENTRY

(i; j) DENOTES THE NUMBER OF DATA POINTS THAT ARE COMMON TO

OUTPUT CLUSTER i AND INPUT CLUSTER j. THE TABLE SHOWS THAT THE

ORIGNAL INPUT CLUSTER STRUCTURE IS SUCCESSFULLY IDENTIFIED

subsets of the associated dimensions of original clusters. These
subsets are sufficiently large so that, after a further reassign-
ment procedure, we are able to reproduce the original clusters
from the found cluster centers, the found number of clusters
and the found dimensions. Table V show the reassignment re-
sults. The reassignment procedure reassigns every data point to

CAO AND WU: DYNAMICS OF PART MODEL: FOUNDATION OF PART ALGORITHM 259

Fig. 3. Comparison of centers of output clusters with original clusters in associated dimensions. ‘O’ denotes the coordinate of the center of an original cluster,
and ‘+’ denotes the coordinate of the center of an output cluster, in the corresponding dimension. This figure shows that the centers of output clusters coincide
with the centers of input clusters in the associated dimensions in which clusters are formed.

TABLE V
REASSIGNMENT RESULT ACCORDING TO THE FOUND CLUSTER CENTERS AND

DIMENSIONS. THE RESULT SHOWS THAT THE ORIGINAL INPUT CLUSTERS

ARE FULLY REPRODUCED

its closest cluster center according to the Manhattan segmental
distance relative to the found dimensions. Here, the Manhattan
segmental distance is defined as follows: For any two points

, and a set of dimen-
sions , the Manhattan segmental distance between

and relative to is .

REFERENCES

[1] C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park, “Fast
algorithms for projected clustering,” in Proc. SIGMOD’99, 1999, pp.
61–72.

[2] R. Agrawal, J. Gehrke, D. Gunopilos, and P. Raghavan, “Automatic sub-
space clustering of high dimensional data for data mining applications,”
in SIGMOD’98, 1998, pp. 94–105.

260 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
‘nearest neighbors’ meaningful?,” in Proc. 7th Int. Conf. Database
Theory (ICDT’99), 1999, pp. 217–235.

[4] Y. Cao and J. Wu, “Projective ART for clustering data sets in high di-
mensional spaces,” Neural Networks, vol. 15, pp. 105–120, 2002.

[5] G. A. Carpenter, “Distributed learning, recognition, and prediction by
ART and ARTMAP neural networks,” Neural Networks, vol. 10, pp.
1473–1494, 1997.

[6] G. A. Carpenter, B. L. Milenova, and B. W. Noeske, “Distributed
ARTMAP: A neural network for fast distributed supervised learning,”
Neural Networks, vol. 11, pp. 793–813, 1998.

[7] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for
a self-organizing neural pattern recognition machine,” Comput. Vision,
Graphics, Image Processing, vol. 37, pp. 54–115, 1987.

[8] , “ART2: Self-organization of stable category recognition codes for
analog input patterns,” Appl. Opt., vol. 26, pp. 4919–4930, 1987.

[9] , “ART3: Hierarchical search using chemical transmitters in self-
organizing pattern recognition architectures,” Neural Networks, vol. 3,
pp. 129–152, 1990.

[10] G. A. Carpenter, S. Grossberg, and J. H. Reynolds, “ARTMAP: Super-
vised real-time learning and classification of nonstationary data by a
self-organizing neural network,” Neural Networks, vol. 4, pp. 565–588,
1991.

[11] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “ART2-A: An adap-
tive resonance algorithm for rapid category learning and recognition,”
Neural Networks, vol. 4, pp. 493–504, 1991.

[12] , “Fuzzy ART: Fast stable learning and categorization of analog
patterns by an adaptive resonance system,” Neural Networks, vol. 4, pp.
759–771, 1991.

[13] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D.
B. Rosen, “Fuzzy ARTMAP: A neural network architecture for incre-
mental supervised learning of analog multidimensional maps,” IEEE
Trans. Neural Networks, pp. 698–713, June 1992.

[14] S. Dasgupta, “Learning mixtures of Gaussians,” in Proc. IEEE Symp.
Foundations Computer Science, New York, 1999, pp. 634–644.

[15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,” in
Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining (KDD’96),
Portland, OR, 1996, pp. 226–231.

[16] B. Everitt, S. Landau, and M. Leese, Cluster Analysis, 4th ed, London:
Oxford University Press, 2001.

[17] S. Grossberg, “Adaptive pattern classification and universal recoding, I:
Parallel development and coding of neural feature detectors,” Biological
Cybernetics, vol. 23, pp. 121–134, 1976.

[18] , “Adaptive pattern classification and universal recoding, II: Feed-
back, expectation, olfaction, and illusions,” Biological Cybernetics, vol.
23, pp. 187–202, 1976.

[19] R. L. Grossman, K. Chandrika, P. Kegelmeyer, V. Kumer, and R.
R. Namburu, Data Mining for Scientific and Engineering Applica-
tions. Boston, MA: Kluwer Academic, 2001.

[20] L. Hubert and P. Arabie, “Comparing partitions,” J. Classification, vol.
2, pp. 193–218, 1985.

[21] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper
Saddle River, NJ: Prentice-Hall, 1988.

[22] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Computing Surveys, vol. 31, pp. 264–323, 1999.

[23] L. Kaufman and P. Rousseeuw, Finding Groups in Data—An Introduc-
tion to Cluster Analysis. New York, NY: Wiley, 1990.

[24] R. T. Ng and J. Han, “Efficient and effective clustering methods for spa-
tial data mining,” in Proc. 20th VLDB Conf., Santiago, Chile, 1994, pp.
144–155.

[25] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering
in spatial databases: The algorithm GDBSCAN and its applications,”
Data Mining and Knowledge Discovery, vol. 2, pp. 169–194, 1998.

[26] J. R. Williamson, “Gaussian ARTMAP: A neural network for fast in-
cremental learning of noisy multidimensional maps,” Neural Networks,
vol. 9, pp. 881–897, 1996.

[27] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data
clustering method for very large databases,” Proc. SIGMOD’96, pp.
103–114, 1996.

Yongqiang Cao received the B.S. degree in com-
putational mathematics from Beijing University,
Beijing, China, in 1991, the M.S. degree in systems
engineering from Dalian University of Technology,
Dalian, China, in 1994, and the Ph.D. degree in
applied mathematics from York University, Toronto,
Canada, in 2003.

Currently, he is a NSERC Postdoctoral Fellow in
the Department of Cognitive and Neural Systems
at Boston University, Boston, MA. His primary
research interests include neural networks, pattern

recognition, data mining, and biological and machine vision.

Jianhong Wu received the B.Sc. degree in computa-
tional mathematics and the M.Sc. and Ph.D. degrees
in applied mathematics from Hunan University,
Hunan, China, in 1982, 1984, and 1987.

He is currently a full Professor of Mathematics
and a Canada Research Chair in Applied Mathe-
matics (Tier I) at York University, Canada. He is
one of the founding members for the Laboratory
for Industrial and Applied Mathematics. His current
research interests include nonlinear dynamics, delay
differentil equations, neural networks for pattern

recognition and associative memory, mathematical biology and empdemiology.

