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Abstract
A quantitative model for the transduction dynamics whereby intracellular

transmitter in a vertebrate cone mediates between light input and voltage
output is analyzed. A basic postulate is that the transmitter acts to multi-
plicatively gate the effects of light before the gated signal ever influences the
cone potential. This postulate does not appear in the Baylor, Hodgkin, and
Lamb (BHL) model of cone dynamics. One consequence of this difference
is that a single dynamic equation from our mode! can quantitatively fit
turtle cone data better than the full BHL theory. The gating concept also
permits conceptually simple explanations of many phenomena whose
explanations using the BHL unblocking concept are much more complex.
Predictions are suggested to further distinguish the two theories.

Our transmitter laws also form a minimal model for an unbiased miniatur-
ized transduction scheme which can be realized by a depletable transmitter.
Thus our theory allows us to consider more general issues. Can one find an
optimal transmitter design of which the photoreceptor transmitter is a
special case? Does the cone transmitter obey laws that are shared by trans-
mitters in other neural systems, with which the photoreceptors can be
compared and contrasted to distinguish its specialized design features from its
generally shared features?

1. Introduction

Abundant experimental evidence has shown that many vertebrate photo-

receptors undergo large sensitivity changes during light and dark adaptation, and
that receptor adaptation is a significant component of the adaptive process
(Boynton and Whitten, 1970; Dowling and Ripps, 1971, 1972; Grabowski et al.,
1972; Kleinschmidt, 1973; Kleinschmidt and Dowling, 1975; Norman and Werblin,
1974). Various studies also suggest that light liberates internal transmitter mole-
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cules, possibly of Ca + +, which close Na + channels in the plasma membrane of

the photoreceptor outer segment, thereby decreasing the 'dark current' of Na +

ions entering this membrane and hyperpolarizing the photoreceptor (Arden and
Low, 1978; Backstrom and Hemila, 1979). Extensive parametric experiments on
turtle cones have shown the adaptive process to be highly nonlinear (Baylor and
Hodgkin, 1974; Baylor et al., 1974a,b). From these data, Baylor et al. (1974b)
constructed an ingenious model of cone dynamics which quantitatively repro-
duces many-"data- features. However, the "model's v6ltagereacuons a-re a factor of
ten off in response to flashes on variable backgrounds and, more importa~tly, the
timing of voltage peaks does not fit the data well. Other quantitative difficulties
can also be cited.

We will suggest that the quantitative difficulties of the BHL model are also
qualitative, and are due to the model's omission of a major feature of cone
design. The BHL model omits the basic postulate that the transmitter acts to
multiplicatively gate the effects of light before the gated signal ever influences
the cone potential. Without the notion of a multiplicative transmitter gate, the
full BHL theory grew in a different direction than our own.

We have achieved a better quantitative fit of the BHL data using a trans-
mitter model that was introduced in 1968 (Grossberg, 1968, 1969). In fact, for key
experiments we achieve a better quantitative fit using a single dynamic equation
from our theory than BHL do with their full theory with many equations. These
successes can be traced to the inclusion within our theory of a multiplicative
transmitter gate.

Our goal in this article is not merely to use this transmitter model to fit photo-
receptor data. We wish also to make a general point concerning neural modelling.
The BHL model, despite its many partial successes, is in a sense profoundly
disturbing. It leaves one with the impression that the photoreceptor is not merely
complex, but also that its complexities describe a rather mysterious transduction
scheme with properties that seem impossible to guess a priori. If this is the true
situation at each photoreceptor, then what hopes can we sustain for finding under-
standable principles of neural organization in the large?

We will derive our transmitter laws as a minimal model for an unbiased
miniaturized transduction scheme that can be realized by a depletable chemical
(Grossberg, 1980). Because the principles from which these laws are derived have
a general significance, our theory allows us to suggest affirmative answers to the
following more general questions: Can one find an optimal transmitter design of
which the photoreceptor is a special case? Does the cone transmitter obey laws
that are shared by transmitters in other neural systems, with which the photo-
receptor can be compared and contrasted to distinguish its specialized design
features from its generally shared features?

A gating concept appears in the model of Hemila (1977, 1978), which Hemila
used to explain adaptation in the rods of the frog retina. Hemila does not, however,
suggest dynamical laws for the gating process. Both the BHL theory and our
theory suggest that transmitter can close Na + channels. BHL call this process
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'blocking'. It is at this point that the ~wo theories diverge. The BHL theory invokes
a process to 'unblock' the blocking process. We never need such an idea. Once the
unblocking concept is accepted, however, it naturally suggests a series of auxiliary
hypotheses which diverge significantly from the ideas that emerge from a gating

concept.
Our theory also explains photort)ceptor data from systems other than turtle

cones, such as data from Gekko gekko rods (Kleinschmidt an" Dowling, 1975).
Because gating mechanisms are also used in nonvisua1 transmitter systems,
adaptation, overshoot and rebound of the rod potential can be compared and
contrasted with analogous phenqmena in midbrain reinforcement centers
(Grossberg 1972a,b, 1981a,b). The Gekko gekko data can, for example, be explained
by a gated dipole model which shows how slow gates acting on the signals within
competing channels can elicit adaptation, overshoot and rebound. In the rod, the
dipole is due to intracellular membrane interactions; in the midbrain, it is due to
intercellular network interactions. This type of insight would be impossible to
achieve were our theory not derived from a general principle of neural design.

In Sections 2-13 of this article we derive the gating theory and its predictions.
In Section 14 we fit the theory to photoreceptor data. In Sections 14-15 we contrast
the gating theory with BHL's unblocking theory.

2. Transmitters as gates

We start by asking the following question: What is the simplest law whereby
one nerve cell could conceivably send unbiased signals to another nerve cell? The
simplest law says that if a signal S passes through a given nerve cell VI' the signal
S has a proportional effect

I(I) T = SB

where B > 0, on the next nerve cell,v2. Such a law would permit unbiased trans-
mission of signals from one cell to a~other.

We are faced with a dilemma. however, if the signal from VI to V2 is due to the
release of a chemical z(t) from VI that activates V2. If such a chemical transmitter
is persistently released when S is large, what keeps the net signal T from getting
smaller and smaller as VI runs out of transmitter? Some means of replenishing,
or accumulating, the transmitter m~st exist to counterbalance its depletion due
to release from VI.

Based on this discussion, we can rewrite (I) in the form

(2) T = Sz

and ask how the system can keep z kplenished so th~t

(3) +(t) ~ B

at all times t. This is a question about the sensitivity of V2 to signals from VI'
since if z could decrease to very small values, even large signals S would have
only a small effect on T.



4 GAIL A. CARPENTER AND STEPHEN GROSSBERG

Equation (2) has the following interpretation. The signal S causes the transmitter
z to be released at a rate T = Sz. Whenever two processes, such as Sand z, are
multiplied, we say that they interact by mass action, or that z gates S. Thus (2)
says that z gates S to release a net signal T, and (3) says that the cell tries to
replenish z to maintain the system's sensitivity to S. Data concerning the gating
action of transmitters in several neural preparations have been collected by
Capek et 01. (1971), Esplin and Zablocka-Esplin (1971), Zablocka-Esplin and
Esplin (1971); --

What is the simplest law that joins together both (2) and (3)? It is the following
differential equation for the net rate of change dzldt of z:

dz(4) di = A(B -z) -Sz.

Equation (4) describes the following four processes going on simultaneously.

I and II. Accumulation and Production and feedback inhibition.

The term A(B -z) enjoys two possible interpretations, depending on whether
it represents a passive accumulation process or an active production process.

In the former interpretation, there exist B sites to which transmitter can be
bound, z sites are bound at time t, and B -z sites are unbound. Then term
A(B -z) says simply that transmitter is bound at a rate proportional to the
number of unbound sites.

In the latter interpretation, two processes go on simultaneously. Term AB
on the righthand side of (4) says that z is produced at a rate AB. Term -Az says
that once z is produced, it inhibits the production rate by an amount propor-
tional to z's concentration. In biochemistry, such an inhibitory effect is called
feedback inhibition by the end product of a reaction. Without feedback inhibition,
the constant rate AB of production would eventually cause the cell to burst. With
feedback inhibition, the net production rate is A(B -z), which causes z(t) to
approach the finite amount B, as we desire by (3). The term A(B -z) thus enables
the cell to accumulate a target level B 01' transmitter.

III and IV. Gating and Release.

Term -Sz in (4) says that z is released at a rate Sz, as we desire by (2). As in
(2), release of z is due to mass action activation of z by S, or to gating of S by z

(Figure I).
The two equations (2) and (4) describe the simplest dynamic law that 'corre-

sponds' to the constraints (2) and (3). Equations (2) and (4) hereby begin to recon-
cile the two constraints of unbiased signal transmission and ,maintenance of
sensitivity when the signals are due to release of transmitter. All later refinements
of the theory describe variations on this robust design theme.
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Fig. 1. (a) Production. feedback inhibition, gating and release of a transmitter z by a signa! S.
(b) Mass action transmitter accumulation a~ unoccupied sites has the same formal properties as

production a~d feedback inhibition.

3. Intracellular adaptation and overshoot i

Before describing these variations, I let us first note Ithat Equations (2) and (4)

already imply important qualitative features of photo~eceptor dynamics; namely,
adaptation to maintained signal le\4els, and overshQot in response to sudden
changes of signal level. !

Suppose for definiteness that S(t) = So for all timbs t:::;; to and that at time
t = to, S(t) suddenly increases to ,. By (4), z(t) rtacts to the constant level
S(t) = So by approaching an equilibr 11m value zoo Thi~ equilibrium value is found
by setting dzjdt = 0 in (4) and solvin to get i

AB
(5) z 0 A + S

0

By (2), the net signal To to V2 at time.t = to is

ABSo(6) S z = 00 A+S
0 "'~
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Now let S(t) switch to the value Sl > So. Because z(t) is slowly varying, z(t)
approximately equals Zo for some time after t = to. Thus the net signal to V2
during these times is approximately equal to

ABS1(7) SlZO ;= A~.

Equation (7) has the same for~ as a 'Y~~~r..law !(A +. /.>.::-1. ThesignaLSI; is
evaluateo relative-to the baseline So just as J is evaluated relative to I. The Weber
law in (7) is due to slow intracellular adaptation of the transmitter to the sustained
signal level. A Weber law can also be caused by fast intercellular lateral inhibition
across space, but the mechanisms underlying these two adaptive processes are
entirely different (Grossberg 1973, 1980).

The capability for intracellular adaptation can be destroyed by matching the
reaction rate of the transmitter to the fluctuation rate in S(t). For example, if
z(t) reacts as quickly as S(t), then at all times t,

ABS(t)
(8) A ::.- 5(t)

no matter what values 5(t) attains, so that the adaptational baseline, or memory
of prior input levels, is destroyed.

A basis for overshoot behavior can also be traced to z's slow reaction rate.
If z(t) in (4) reacts slowly to the new transmitter level 5 = 51, it gradually
approaches the new equilibrium point that is determined by 5 = 51, namely

T(t) ~

(9)
AS

Zl=A+S1

as the net signal decays to the asymptote

ABS1
,(10) SIZI =

Thus after 5(1) switches from 50 to 5" the net signal T = 5zjumps from (6) to (7)
and then gradually decays to (10) (Figure 2). The exact course of this overshoot
and decay is described by the equation

ADS1A S exp {,:-(A + SI)(t -to)} +
+ 0

ADS ~
+ I (1 -exp {-(A + SI)(t -to)})

A + SI

J) SlZ(t) =
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Fig. 3. The transient reactions of a cone potential to a fixed flash superimposed on a sUccession
of increasing background levels. The potential peaks decrease, whereas the times of maximal
potential first decrease and then increase, as the background parametrically increases. Effect of
increasing intensity of conditioning step on response to II msec flash applied I. I sec after
beginning of a step lasting 1.7 sec. The abscissa is the time after the middle of the flash, and the
ordinate is U(f)/ldf, where U(r) is the hyperpolarization, df is the pulse duration, and I is propor-
tional to flash intensity. .The numbers against the curves give the logarirhmof the conditioning
light expressed in photoisomerizations cone- I sec-l. Redrawn from Fig. 3 (Baylor and Hodgkin

1974), p. 734.

the potential peak by computing the initial change in T due to the change in S
by <5. We also estimate a possible initial 'hump' in the potential through time by
measuring the height and the area of the overshoot created by prescribed back-
ground levels S (Figure 4).

The initial change in T to a change in S by <5 is found to be a decreasing function



Photoreceptor dynamics 9

t

Fig. 4. An input step of fixed size J on a ba4kground S causes a transient change in T of size 6-T
and an o~ershoot of size il.

of S. This result is analogous to the dlecreasing size of the potential change caused
by a fixed flash at successively higher Ibackground intensities. However, the size of
the overshoot, or 'hump', need not be a decreasing function ofb. Ifb is sufficiently
small, then the overshoot size can inr,ease before it d~creases as a function of b.
In other words, a more noticeable h!.lmp can appear ~t large background inten-
sities S, but it can eventually shrink ~s the background intensity is increased even
further. Baylor et a/. (1974b) report , umps at high background intensities as well

as their shrinkage at very high backg ound intensities.

To estimate the change ~T due to !l step size of c5, we subtract (6) from (7) to
find

(12) .j A + So

fLet S 1 -So = 8, corresponding to step of fixed siz 8 superimposed after S(t)
equilibrates to a background intensit : So = S. Then

AT = ~B(SI ~IS~)
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ABc5

A+S(13) ~T ;=

which is a decreasing function of S.
To estimate the overshoot size .0., we subtract (10) from (7) to find

(14) ABS1(Sl -So)li. = !- --.
(A + So)(A + S\)

Again setting S 1 -So = c5 and So = S. we express fi as the function of S

AB(S + c5)c5(15) fi(S) = (A +S)(A + S + c5).

How does fi(S) change as a function of S? To test whether fi(S) increases or
decreases as a function of S, we compute whether dfijdS is positive or negative.
One readily proves that dfijdS> 0 at S = 0 if A > ,,(1 + .j3>c5; and that
dfijdS < 0 if S > -c5 + .J A(A -c5) or if A < c5. In other words, the size of the
overshoot always decreases as a function of S if S is chosen sufficiently large, but
the overshoot size increases at small S valUes if the increment c5 is sufficiently small.
A similar type of nonmonotonic behaviour describes the total area of the overshoot.

5. Miniaturized transducers and enzymatic activation of transmitter production

We will now discuss how the time at which the potential reaches its peak can
first decrease and then increase as a functibn of background intensity. Our discus-
sion again centers on the design theme of ensuring the transducer's sensitivity.
By proceeding in this principled fashion, we can explain more than the 'turn-
around' of the potential peaks. We can also explain why the steady-state of T as
a function of S can obey a law of the form

(16) T = PS(1 + QS)

I + R.s1 + US2

with P, Q, Rand U constants, rather than a law of the form

" Ps---T=
(17) I

I +:RS

as in (6).
Equation (16) is the analog within our th~ory of the BHL equation

(18) ~ = PS(l -f1 QS)
K 1+ RS

for the steady-state level of their 'blocking' variable:: I. Equation (18) cannot be

valid at very large S values because it predicts that;: I can become arbitrarily large,
which is physically meaningless. This does not happen in (16). The appearance of
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term US2 in (16) allows us to fit BHIj-'s steady-state data better than they could
using (18). More important than thi$ quantitative detail is the qualitative fact
that the mechanism which replaces (17~ by (16) also causes the turn-around in the
peak potential. We now suggest that t~is mechanism is a light-induced enzymatic
modulation of transmitter production land/or mobilization rates. Thus we predict
that selective poisoning of this enzym~tic mechanism can simultaneously abolish
the turn-around in the potential peak ~nd reduce (16) t() (17).

Th~ need f9~ecnzYlJ1atic mQdulation qan be motivated by the following considera"
tions. Despite the transmitter accu~ulation term A(B -z) in Equation (4),
habituation to a large signal S can sub~tantially deplete t, as in (5). What compen-
satory mechanism can counteract this ~epletion as S in<:ireases? Can a mechanism
be found that maintains the sensitivity of the transmitter gate even at large S
values? '

One possibility is to store an enorrous amount of transmitter, just in case;
that is, choose a huge constant Bin (4) This strategy has the fatal flaw that a very
large storage depot takes up a lot of sp~ce. If each photoreceptor is large, then the
number of photoreceptors that can be li>acked into a unit retinal area wilt be small.
Consequently the spatial resolution of ~he retina will be poor in order to make its
resolution of individual input intensiti~s good. This solution is unsatisfactory.

Given 'this insight, our design probl~m can be stated in a more refined fashion
as follows: How can a miniaturized reqeptor maintain its sensitivity at large input
values? I

An ans~ver is suggested by inspectiO~ of Equation (4). In Equation (4), the trans-

mitter depletion rate -Sz increases as S increases, but the transmitter production

rate A isfs constant. If the production rate keeps up with the depletion rate, then
transmitter can be made continuously vailable even if B is not huge. The marriage
of miniaturization to sensitivity hereby $uggests that the coefficient A is enzymatic-
ally activated by the signal S.

Let us suppose that this enzymatic st~p obeys the sim~lest mass action equation.

dA
dt

(19) -C(A -Aoi + D[E ---(A -IAo)]S.

In (19), A(t) has a baseline level Ao in t~e dark (S = O)olTUrning light on makes S

positive and drives A(t) towards its m~ximum value Ao + E. Rewriting (19) as

dA
dt

(20) = -(C + D~)(A -Ao) + DIES

shows that the activation of A(f) by a Ctnstant signal S increases the gain C + DS
as well as the asymptote

DES
C+ DS

(21) A = Aol+

of A(t). This asymptote can be rewritter in the convenient form
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(1 + FS )A = Ao ~(22)

by using the notation

(23) F=(Ao +E)DAo-1C-1

and

(24) .-G='DC:-:1.-

To make our main qualitative points, let us assume for the moment that the
enzymatic activation of A by S proceeds much more rapidly than the release of
z by S. Then A(t) approximately equals its asymptote in (22) at all times t. Equation
(4) can then be replaced by the equation

dz (1 + FS
)(25) -= Ao (B -z) -Sz.

df 1 + GS

Letus use (25) to compute the steady-state response T = Sz to a sustained signal S.
We find that

T = PS(1 + QS)
1 + RS + US2

(26)

where

P=B

(27) Q = F = (Ao + E)DAo-lC-1

(28) R=Ao-l+F=Ao-I[I+(Ao+E)DC-1]

and

(29) U = GAO-l = DAo-lC-1.

Note that the form of (16) does not change if S is related to light intensity I by a
law of the form

S(l) =(30)
JLI-.

1 + vi

Only the coefficients P, Q, R, and U change.

6. Turn-around of potential peaks at high background intensities

Despite the assumption that A depends on S, all of our explanations thus far
use a single differential Equation (25). We will qualitatively explain the turn-
around of potential peaks, the quenching of a second overshoot in double flash
experiments, and the existence of rebound hyperpolarization when a depolarizing
current is shut off during a hyperpolarizing light using only this differential
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equation. In the BHL theory, by Itontrast, a substantial number of auxiliary
differential equations are needed tq explain all of these phenomena at once.
Moreover, we can quantitatively fit tpe data using only Equation (25) better than
BHL can fit the data using all their ~uxiliary variables. Our full theory provides
an even better fit. More importantly, I Equation (25) suggests that all these pheno-
mena are properties of a transmitter ~ate.

To qualitatively explain the turnraround of peak potential as background
intensity increases, we consider Figur~s5and6..

s<t)

50

ts

z(t)

tz t

T(t)

tT

Fig. 5. Signal S(/) peaks at time I = Is beforei transmitter z(t) reaches its minimum at time I = I.,
Consequently, the gated signal T = Sz peaksiat a time I = IT earlier than I = Is.

In Figure 5, S starts out at a stead~-state value So' Then a flash causes a chain
reaction which creates a gradual rise! and then fall in S. Function S reaches its
maximum at the time t = ts when d$/dt = O. The trahsmitter z responds to the
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increase in S by gradually being depleted. As the chain reaction wears off, Z
gradually accumulates again. Function Z reaches its minimum at the time t= tz
when dzjdt = O. From Figure 5, we can conclude that the gated signal T = Sz
reaches a maximum at a time t = tT before S reaches its maximum. This is because

dT dS dz
(31) -= -z + S-.

dt dt dt

A-ftertime t =1s, both dSjdtand d2'jdt are negative until the chain reaction wears
off. Thus dTldt is also negative during these times. Consequently dTldt = 0 at
a time tT < ts-

Figure 6 explains the turn-around by plotting the times when dSjdt = 0,
dzldt = 0, and dTjdt = 0 as a function of the background level So' In Figure 6,
we think of ts(So), t:(So) and tT(SO) as functions of So. Two properties control
the turn-around:

(a) the function ts(So) might or might not decrease as So increases, but eventu-
ally it must become approximately constant at large So values;

(b) the function tz(So) decreases faster as So increases until t:(So) approxi-
mately equals ts(So) at large So values.

So
Fig. 6. As 1:(So) is drawn closer to 1,,(So) at large So values due to enzymatic activation of trans-

mitter accumulation rate, 'T(SO) reaches a minimum and begins to increase again.
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Property (a) is due to the fact that the photoreceptor has a finite capacity for
reacting to photons in a unit time interval. After this capacity is exceeded, higher
photon intensities cannot be registered. Property (b) is due to the light-induced
increase of z's reaction rate to higher So levels. Light speeds up z's reaction rate,
so that at higher So values z can equilibrate faster to the chain reaction S. In
particular, Iz(So) approaches Is(So) as So increases.

Using properties (a) and (b), we will now explain the turn-around. When So
is small, dzjdl is also small.. By (3.1) this meansthaLdTjdl =O.almost.. when
dSjdl = 0, or that I'r ~ Is. As So increases to intermediate values, the chain

reaction S also increases. Consequently dzjdl becomes more negative and makes
z smaller. Also z's gain is sped up, so that Iz approaches closer to Is. In (31), this
means that Sdzjdl will be large and negative at times when z is small. To achieve
dTjdl = 0, we therefore need dSjdt to be large and positive. In other words, T

reaches its peak while S is still growing rapidly. Hence IT occurs considerably
earlier than Is. This argument shows why the peak of T occurs earlier as So
increases.

Why does turn-around occur? Here properties (a) and (b) are fully used. By
property (b), z reaches its minimum right after S reaches its maximum if So is
large. :In other words, I: approaches Is as So becomes large. This means that both
dSjdl= 0 and dzjdl= 0 at almost the same time. By (31), also dTjdt =0 at about
this time. In all, tT ~ Is ~ Iz if S»O. Now we use property (a). Since 15(SO) is
approximately constant at large So values, IT(SO) must bend backwards from its
position much earlier than Is(So) at. intermediate So values to a position closer
to ts(So) values. This is the turn-around that we seek.

7. Double-flash experiments

In BHL's double flash experiments, a bright flash causes the potential to over-
shoot. A second bright flash that occurs while the potential is reacting to the chain
reaction caused by the first flash dt>es not cause an overshoot even though it
extends the duration of the chain reaction. This effect can be explained as follows

(Figure 7).
The first bright flash causes an overshoot due to the slow reaction of z to the

onset of the chain reaction, as in Section 4. For definiteness suppose that z(O) = B
at time t = 0 and that the chain reaction starts rising at time t = 0 to a maintained

intensity of approximately S. By (16), z(t) decreases from B to approximately

(32) BCI + QS) .
1+ RS+ US2

This decrease in z(t) causes the overshoot, since the product Sz(t) first increases
due to the fast increase in S(t) and then decreases due to the slower decrease in
z(t). Once z(t) equilibrates at the leve1 (32), it thereafter maintains this level until
the chain reaction decays. In a double-flash experiment, the second flash occurs
before the chain reaction can decay. The second flash maintains the chain reaction
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a while longer at the level S. No second overshoot in z occurs simply because z
has already equilibrated at the level (32) by the time the second flash occurs.

When T is coupled to the potential V, the overshoot in T also causes a gain
change in V's reaction rate. BHL noticed this gain change and introduced another
conductance into their model whose properties were tailored to explain the double
flash experiment. In the BHL model, this second conductance is a rather mysterious
quantity (see Section 15). In our model, it follows directly from the slow fluctuation
rat~ of the transmitter gate (Section 9)."" " " .

Our model's predictions can be differentiated from those of the BHL model
because they all depend on the slow rate of the transmitter gate. Speeding up the
transmitter's reaction rates should eliminate not only the overshoot and the
second conductance, but also the photoreceptor's ability to remember an adapta-
tational baseline (Section 3).

mV

B

c

.~
,
,

, ~. -""'"~'J ~~.;:/;;;-' ., / - , '.
.' ,,', "

.,
." , ,
..' ~'---

'J

I , I I
0 750

msec

Fig. 7. Effect of a bright conditioning flash on the response to a subscqllent bright test flash.
(a) Response to test flash alone. (b) Response to conditioning flash alone. (c) Response to both
flashes, with the upper two responses dotted. Redrawn from Fig. 15 of Baylor et ul. (1974u),

p.716.
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8. Antagonistic rebound by an intracellular dipole: rebound hyperpolarization
due to current offset

The ubiquity of the gating design in neural systems is illustrated in a striking
way by the following data. Baylor et al. (1974a) showed that offset of a rectangular
pulse of depolarizing current during a cone's response to light causes a rebound
hyperpolarization of the cone's potential. By contrast, offset of a depolarizing
current in the absence of light does not cause a rebound hyperpolarization (Figure
8). In other words, an antagonistic rebound in potential, from depolarization to
hyperpolarization, can sometimes occur.

40~

-2~t

mV

0 120

msec
Fig. 8. Changes in potential produced by current in darkness (a), and during the response to
light (b), superimposed tracings. Between arrows, a rectangular pulse of depolarizing current
(strength 1.5 x 10- 1°) was passed through the microe!ectrode. (c) is the response to light without

current. Redrawn from Fig. 10 of Baylor et af. (1974a), p. 706.

One of the most important properties of a slow gate is its antagonistic rebound
property. This property was first derived to explain data about reinforcement and
attention in Grossberg (1972a,b; 1975) and was later used to explain data about
perception and cognitive development in Grossberg (1976, 1980). These results
show how antagonistic rebounds can be caused when the signals to one or both
of two parallel channels are gated before the gated signals compete to elicit net
outputs from the channels (Figure 9). In reinforcement and cognitive examples,
the two competing channels have typically been interpreted to be due to inter-
cellular interactions. The competing channels implicated by the BHL data are, by
contrast, intracellular. They are the depolarizing and hyperpolarizing voltage-
conductance terms in the membrane equation for the cone potential (Section 9).

In the remainder of this section, we will review how slow gates can cause
antagonistic rebounds. Then we will have reached the point where the gated
signal must be coupled to the potential in order to derive further insights. This
coupling is, however, quite standard in keeping with our claim that most of the
interesting properties of the BHL data are controlled by the fluctuations of T
under particular circumstances.



18 GAIL A. CARPENTER AND STEPHEN GROSSBERG
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Fig. 9. A gated dipole. Signals SI and S2 are gated by the slow transmitters Zl and Z2 respectively,
before the gated signals T1 = SIZI and T2 = S2Z2 compete to generate a net reaction.

To explain the main idea behind antagonistic rebound, suppose that one channel
receives input SI and that the other channel receives input S2 = SI + e, e > O.
Let the first channel possess a slow gate Z I and the second channel possess a slow
gate Z2. Suppose for definiteness that each gate satisfies

""'\ -__P(l + QSJ\""} Z, = 1+ R--S;-+ uS;Z'

i = 1, 2, as in (32). The explicit form of (33) is irrelevant. All we need is the
property that Zi is a decreasing function of Si- In other words, la!ger signals can
deplete more transmitter. This is true in (33) because, by (27) and (28), Q < R.

However, the opposite is true for the gated signals T 1 = SlZl and T 2 = S2Z2-

The function

PS(l + QS)
110 ) T =\ 1 + RS + US2

is an increasing function of S because, by (27)-(29) QR > U. In other words, a
larger S signal produces a larger output T even though it depletes more z. This
simple yet subtle fact about gates lies at the heart of our explanation of antago-
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nistic rebound. The property was first derived in Grossberg (1968, 1969). The lack
of widespread knowledge of this property among experimentalists has caused
much unnecessary confusion about the dy_namics of transmitters in various neural
systems. Because this fact was not known to BHL, they found an ingenious,
albeit unintuitive, way to explain the rebound in terms of their second conductance.
Our theory differs from theirs strongly on this point. Their steady-state Equation
(18) does not embody either the intuitive meaning or the mathematical properties
of our steady-state Equation (16).

In our theory, antagonistic rebound can be trivially proved as follows. When e
is on, S2 > SI. Consequently, despite the fact that Z2 < ZI' it follows that
T2 > T1. After competition acts, the net output T2 -T1 of the on-channel is
positive. To see how rebound occurs, shut e off. Then S2 and SI rapidly equalize
at the value SI. However Z2 and ZI change more slowly. Thus the inequality
Z2 < ZI persists for some time. Consequently the net output reverses sign because

(34) T2 -T1 ~ S!(Z2 -ZI) < 0

and an antagonistic rebound occurs. The rebound is transient due to the fact
that Z2 and Z I gradually equilibrate to the same input Slat a common value Z!,
and thus
(35) T2 -T! ~ SIZI -SIZ, = 0

after equilibration occurs. A similar argument shows how antagonistic rebound can
occur if only the channel whose input is perturbed contains a slow gate.

where V(t) is a variable voltage; CQ is a capacitance; V +, V -, and VP are
excitatory, inhibitory, and passive saturation points, respectively; g+, g-, and gP
are excitatory, inhibitory, and passivelconductances, respectively; and

(37) V- ~ VP < V+.

Then V- ~ V(t) ~ V+ for all t ~ 0 if V- ~ V(O) ~ V+. By rewriting (36) as

dV
(38) C°"d( = -(g+ + g- + gl')V + V+g+ + V-g- + VPgP

K+ + K + gP
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Both the gain and the asymptote are altered by changing the conductances. In the
special case of the turtle cone, light acts by decreasing the excitatory conductance
g+ (Baylor et al., 1974b). We will assume below that the gated signal T causes this
change in g+. Light hereby slows down the cone's reaction rate as it hyperpolarizes
the cone (driving V towards V -). We wish to emphasize at the outset that similar
results would hold if we assumed that T increased, rather than decreased, g+. The
main difference would be a speeding up of the potential change rather than its
slowingdown~y i~PM~~ r.. In all ~ituations wherein V can react more quickly than
T can fluctuate, differences in the gain of V do not imply new qualitative prop-
erties, although they can imply quantitative differences. One of these differences
is that a decrease of V's gain as T increases prolongs the duration of V's reaction
to light.

We will couple T to g+ using a simple mass action law. Suppose that there
exist go membrane 'pores' of which g+ = g(t) pores are open and go -g(t) are
closed at any time t. Suppose that T closes open pores by mass action, so that go
pores will open after T shuts off. Then

where Hand J are positive constants. Suppose also that this process is rapid
compared to V's reaction rate to changes in g. We can then assume that g is
always in approximate equilibrium with T. Setting dg/dt = 0, we find

+ -go
g -l+KT(41)

where K = JH -I. To achieve a more symmetric notation, we write g- = gl and
for simplicity set gP = O. We also rescale the time variable so that Co = 1 in
(36). Then Equation (36) takes the form

dV + go ( - )(42) -=(V -V)- V- V gl.
dt 1 + KT

Our next steps are to compute the equilibrium potential V 0 that occurs when
T = 0, and to write an equation for the amount of hyperpolarization

(43) x = V 0 -V

that occurs in response to an arbitrary function T. We find

Va = I
~ -(44)

Y+go + Y-gj

and

~=-
dt(45)



Photoreceptor dYl/amics 21

where

L = Kg'1(Vo -V-).

The steady-state value x"" of x, in response to a constant or slowly varying T
is found by (45) to be

MT

N+T

x'"

where

M = Vo -V-> 0

and

(go + gl)gl-lK-1N

From (47), it follows that

--~
M-x~

=T

where M is the maximum possible level of hyperpolarization. This equation is
formally identical to the BHL equation (in their notation)

aU z
-~--.!

UL- U- K
II

(51)

except that their blocking variable z 1 is replaced by our gated signal T = Sz
(Baylor et 01., 1974b). The formal similarity of (50) to (51) is one cornerstone on
which our fit to the BHL data is based. Another cornerstone is the fact that T
satisfies the equation

P'S(1 + QS)
I

1 + RS + US2
(16) T=

whereas z 1 satisfies

~.J.. -PlS(1 + QS)
K --~ l+RS .

BHL relate data about U to data about S via the hypothetical process z 1 using
(18) and (51) just as we relate data about x to data about S via the hypothetical
process Tusing (16) and (50). Despite these formal similarities, the substantial
differences between other aspects of the two theories show how basic the gating
concept is in transmitter dynamics.
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10. 'Extra' slow conductance during overshoot and double flash experiments

Baylor et al. (1974a) found that a bright flash causes an overshoot in hyper-
polarization followed by a plateau phase before the potential returned to its
baseline level. They also found that an extra conductance accompanies the over-
shoot. Because their blocking and unblocking variables could not explain these
overshoot and conductance properties, they added a new conductance term,
denote,d qf~ to th~ir voltage equ,ation and ~efined its properties to fit the data.
Baylor et al. (1974b) also defined the properties of Gf to explain'double 'flash
experiments. If a second bright flash occurs during the plateau phase of the
response to the first flash, then the plateau phase is prolonged, but a second
overshoot does not occur (Figure 7).

We will argue that such an 'extra' conductance follows directly from the coup-
ling of the gated signal T to the potential V. In other words, an extra conductance
can be measured without postulating the existence of an extra membrane channel
to subserve this conductance.

To qualitatively understand this property, note that the gain of x in (45) is

I~"\ r = go + g\ + g\KT
I +KT .

Approximate the chain reaction that is elicited by a bright flash with a rectangular

step

(0 if t < 0,

S if t ~ O.
5(1) =

Then (25) and (53) imply z(t) = B for t < 0, whereas

ICII\ z(t) = Be-[A(S)+S]t + BA(S) -(I -e-[A(S)+S]t)

A(S) + S

for t ~ 0, where

A(S) = AO[
1 + FS
1 + GS

(55)

Equation (54) can be rewritten as

BA(S)(56) z(t) = -~- + ~ -..
A(S) + S A(S) + S

Thus z reacts to the chain reaction with a fast component BA(S)[A(S) + S]-I
and a slowly decaying component BS[A(S) + S]-I exp [-(A(S) + S)t]. The
slow component causes an overshoot in T = Sz, and thus in x's asymptote
MT(N + T)-I, The gain r of .\' also possesses fast and slow components. We
identify the slow component of r with the extra conductance that BHL observed.
Note that the same process which causes the overshoot of .~ also causes the

BS
o-[A(SI+S]I
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emergence of the slow conductance; namely, the slow equilibration of z(t) to the
new level of the chain reaction.

This explanation easily shows not only why a second flash (Figure 7) does not
create another overshoot, but also why the slow component in the gain of x does
not reappear in response to a second flash. In the BHL model, this slow conduc-
tance and its relationship to the overshoot had to be added to the theory to fit
the data. In the gating model, the slow component and its relationship to the over-
shoot occur automatically.

An estimate of r as a sum of constant, fast, and slow conductances can be
computed by using the approximation

1I~"\ .-/(r + K2r2 -K3r3--~
I+KT-

to rewrite (52) as

r ~ go + gl -goK~ + goK2T2 -goK3T3.(58)

Then substitute

T=
BSA(S) I BS2 -[A(S)+S]t

+'e
A(S) + S A(S) + S

into (58), and segregate constant, fasti, and slow terms. This computation is un-
necessary, however, to understand the (qualitative reasons for correlated overshoot
and gain changes.

11. Shift property and its relationship to enzymatic modulation

An important property of certain isq/ated photoreceptors is their ability to shift
their operating range of maximal s~nsitivity, without compressing their full
dynamic range, in response to shifts 'in background light intensity (Figure 10).
Such a shift property can be caused by the action of shunting lateral inhibition
within a network of cells (Grossberg 1978a,b). Herein we show how it can be
caused when a transmitter gate reacts to changes in light level more slowly than
the light-mediated chain reaction that causes transmitter release. The result also
predicts a relationship between the amount of shift and the influence of light on
the enzymatic activation of transmitter at high light intensities. By Section 5, the
amount of shift should also be related to the size of the turn-around in the timing
of potential peaks to fixed flashes on increasing background intensities.

The result follows from (47). Suppose that Zo has equilibrated to a steady
background level So so that

P(l + QSo)
I + RSo + USO2

(60) Zo =



24 GAIL A. CARPENTER AND STEPHEN GROSSBERG

gated

signal

log intensity

Fig. 10. Shift of dynamic range to increments in log S after transmitter equilibrates to different

background intensities Soo S.o S20

as in (33). Now parametrically change the input level S and measure the hyper-
polarization x a fixed time after the change in S and before z can substantially
change. For simplicity, denote the series of S values at this time by S(O) and the
corresponding hyperpolarizations by

MS(O)(61) x(O) = Zo .
N + S(O)zo

Also perform the same experiment using a, different background level S 1 that
causes a different z level

and a different series of hyperpolarizations

MS (l)(1;1\ 
X(l) = Zl

N + S(l)Zl

in response to the test inputs S(l). The theoretical question to be answered is the
following. If the series of test inputs S(O) and S(l) are plotted in logarithmic co-
ordinates does the series x(O) differ from the series X(l) by a constant shift ).? In
other words, if we write S(O) = eK and S(l) = eK+;', is

(64) x(I)(K + ).) = x(O)(K)

for all K ~ 0 and a suitable choice of ).? A simple computation answers this
question in the affirmative with

). = In(~).
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The effect of light-induced enzymatic activation of z on J. is controlled by the
quadratic terms US02 and US12 in (60) and (62), respectively. Without enzymatic
activation, U=O. Thus as So -i'- 00 and S1 -i'- 00, both Zo and Z1 approach
PQR-1, so J. -i'- O. By contrast, if U > 0, then at large values of So and S1,

(66) J. ~ In (~).

Consequently by choosing a series of background inputs So andSl such that
S1 = MSo, an asymptotic shift J. of size In (M) can be achieved. Of course, all of
these estimates are approximate, since z begins to adapt to the new level of S as
soon as S changes the chain reaction, z's adaptation rate depends on S, and S
can asymptote at a finite level whether or not U = 0 because the photoreceptor
possesses only finitely many receptors with which to bind photons. Nonetheless,
the qualitative relationship between asymptotic). values and the. highest power of
S in the steady-state equation for z is worth noting as a possible tool for inde-
pendently testing whether an experimental manipulation has altered the enzymatic

step.

12. Rebound hyperpolarization, antagonistic rebound, and input doubling

The rebound hyperpolarization depicted in Figure 9 can be explained using

Equation (42); namely,

dV + go(42) -d = (V -V) -(V -V-)gt.
t ~ +KT

Rebound hyperpolarization can be explained if the depolarizing pulse interferes
with the ability of the signal S in the g+ channel to release transmitter. This sug-
gestion is compatible with the data in Figure 9, since the depolarizing pulse acting
by itself achieves the same depolarization as the pulse acting together with hyper-
polarizing light. We therefore suppose that the effective signal strength during a
depolarizing pulse of intensity J is ()S, where the function () = ()(J) is a non-
negative decreasing function of J such that ()(O) = I and ()(J)« I if J» O.
To see how this mechanism works, suppose that S(t) is a rectangular step with
onset time t = 0 and intensity S. After the light and the depolarizing pulse are

both turned on, z(t) will approach the asymptote

P(I + Q()S)
(67) I + R()S + U()2S2

rather than the smaller asymptote

P(l + QS)
t()tS) I + RS + US2

that would have been approached in the absence of the depolarizing current. If 0
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is small, the asymptote of V with and without current will be similar because the
gated signal

T = OSP(l + QOS)
1 + ROS + UO2S2

(69)

approaches zero as e does. If the pulse is shut off at time 1 = 10. e rapidly returns
to the value I. so that S can bind transmitter with its usual strength. Hence shortly
after timet = to. the gated signal will approximately equal.

SP(I + Qes)(70) T9 = 1 + Res + ue2s2

by (68), rather than the smaller value

SP(l + QS)
1 + RS + US2

(71) T1 =

that it would have attained by (6g), had the depolarizing pulse never occurred.
By (70), (71), and (42), more hyperpolarization occurs after the current is shut off
than would have occurred in response to the light alone.

This explanation of rebound hyperpolarization can be tested by doing para-
metric studies in which the asymptote of V in response to a series of J values is
used to estimate (J(J) from (42) and (69). When this (J(J) function is substituted
in (70), a predicted rebound hyperpolarization can be estimated by letting
T = T B in (42).

A related rebound hyperpolarization effect can be achieved if, after the photo-
receptor equilibrates to a fixed background level S, a step of additional input
intensity is imposed for a while, after which the input is returned to the level S.
An overshoot in potential to step onset, and an undershoot in potential to step
offset, as well as a slowing down of the potential gain, can all be explained using
(42) augmented by a transmitter gating law. Kleinschmidt and Dowling (1975)
have measured such an effect in the Gekko gekko rod. It can be explained using
Figure II. Figure Iia depicts the (idealized) temporal changes in the input signal
S(t); Figure lib depicts the corresponding depletion and recovery of z(t), and
Figure 11 c depicts the consequent overshoot and undershoot of the gated signal
T(t), which has corresponding effects on the asymptote and gain of the poten-
tial V(t).

Baylor et al. (1974a, p. 714) did a related experiment when they either inter-
rupted or brightened a steady background light. In particular, they first exposed
the turtle eye to a light equivalent to 3.7 X 104 photon .um-2 sec-1 for one
second. Then the light intensity was either doubled or reduced to zero for 40
msec. The net effect is to add or subtract the same light intensity from a steady
background. The depolarization resulting from the offset of light is larger than
the hyperpolarization resulting from doubling the light. This follows from (42)
by showing that the equilibrium hyperpolarization achieved by setting S = Sn
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is greater than the change in hyperpolarization achieved right after switching S
to 2So given that the transmitter has equilibrated to S = So. In other words,

( ) a a + ab a + ab a + 2ab72 --
c

-::tl -
c+b c+b c + 2b

where

(73) a~gor+ +glY-

S(t)

a

z(t) "' ,

t
b

Fig. 11. (a) Rectangular step in S(t) causes (b) gradual depletion-then-accumulation of z(t). The
combined effect is (c) overshoot and undershoot of T(t).
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(74)

(75)

and

(76)

b = glKSozo

c = go + gl

IX = v-

Inequality (72) can be reduced to the inequality V + > V-, and is therefore true.

Another inequality follows from V+ > V -and is stated as a prediction.
Twice the equilibrium hyperpolarization achieved by setting S = So exceeds the
total hyperpolarization achieved right after switching S to 2So given that the
transmitter has equilibrated to S = So. In other words,

( a a + CXb) a a + 2cxb
(77) 2 ---> c c + b c c + 2b

Z1 ::;:: Z2 -;::Z3:::::Z4':::ZS- precursor of Z1

100101.1.01-.1
Fig. 12. Order of magnitude of the time constants of the z, processes in seconds. Backward reac-
tions are all small compared to forward reactions. Redrawn from Baylor and Hodgkin (1974),

p.757.

Let us distinguish between transmitter that is in bound, or storage, form and
transmitter that is in available, or mobilized, form, as in Figure 13. Let the amount
of storage transmitter at time t be }v(t) and the amount of mobilized transmitter
at time t be z(t). We must subdivide the processes defining (4) among the com-
ponents w(t) and z(t), and allow storage transmitter to be mobilized and con-

versely. Then (4) is replaced by the system

13. Transmitter mobilization

Baylor et at. (1974a) found that very strong flashes or steps of light introduce
extra components into the response curves of the cone potential. These com-
ponents led BHL to postulate the existence of more slow processes Z3, Z4, and zs,
in addition to their blocking and unblocking variables Zl and Z2. The time scales
which BHL ascribed to this augmented chain reaction of slow processes are
depicted in Figure 12.

Below we will indicate how transduction processes that are familiar in other
transmitter systems, say in the mobilization of acetylcholine at neuromuscular
junctions (Eccles, 1964, p. 90f) or of calcium in the sarcoplasm reticulum of
skeletal muscles (Caldwell, 1971),. can account for the existence of extra com-
ponents. We will also indicate how these processes can cause very small correction
terms to occur in the steady-state relationship (16) between the gated signal T
and the signal intensity S.
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Fig. 13. Transmitter IV accumulates until a target level is reached. Accumulated transmitter is
mobilized until an equilibrium between mobilized and un mobilized transmitter fractions is
attained. The signal S is gated by mobilized transmitter which is released by mass action. The

signal also modulates the accumulation and/or mobilization processes.

(78)
dw
-= K(L -w) -(Mw -Nz)
dt

and

Term K(L -II') in (7S) says that w(t) tries to maintain a level L via transmitter
accumulation (or production and feedback inhibition). Term -(Mw -Nz) in
(7S) says that storage transmitter w is mobilized at a rate M whereas mobilized
transmitter z is demobilized and restored at a rate N until the two processes
equilibrate. Term Mw -Nz in (79) ~ays that w's loss is z's gain. Term -Sz in
(79) says that mobilized transmitter i~ released at rate -Sz as it couples to the
signal S by mass action. In all, Equations as) and a9) are the minimal system
wherein transmitter accumulation, gating, and release can occur given that trans-
mitter must be mobilized before it can be released.

Once this system is defined, we must again face the habituation dilemma that
was discussed in Section 5. Should not some or all of the production and mobiliza-
tion terms be enzymatically activated by light to prevent the mobilized transmitter
from being rapidly depleted by high intensity lights? The terms which are candi-
dates for enzymatic activation in as) and a9) are K, M, and N, as in the equations

'n", dK
-cxK(K -Ko) + PK[YK -(K -Ko)]S,-

dt

dM
dt

(81) = -IXM(M -Mo) + PM[YM -(M -Mo)]S,
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and

(82)
dN
di = -aN(N -No) + PN[YN -(N -No)]S,

The BHL data are insufficient to conclude whether all the terms K, M, and N can
vary due to light activation.

"A possible -empirlca:llest of how many terms are activated wiR be suggested
below. Before this test is described, however, we note an interesting analogy with
the five slow variables Zl, Z2, Z3. Z4, and Zs that BHL defined to meet their data
and the five slow variables w, z, K, M, and N. BHL needed the two slow variables
Zl and Z2 to fit their data at moderate light intensities, and the three extra variables
Z3' Z4, and Zs to describe components at very high light intensities. By comparison,
the variables II', Z, K, M. and N are five slow variables with IV and z the dominant
variables at intermediate light intensities, and K, M, and N possibly being slowly
activated at high light intensities. Apart from the similarity in the numbers of
slo~ variables in the two models, their dynamics and intuitive justification differ
markedly, since our variables have an interpretation in general transmitter
systems, whereas the BHL variables were formally defined to fit their data.

A possible test of the number of enzymatically activated coefficients is the
following. Recall that enzymatic activation of transmitter production changed the
steady-state law relating T to S from (17) to (16). In other words, enzymatically
activating one coefficient adds one power of S to both the numerator and the
denominator of the law for T. Analogously, enzymatically activating n coefficients
adds n powers of S to the numerator and denominator of this law. When 11 = 3.

the law takes the form

P*S(I + Q*S + R*S2 + U*S3)T=
I + V*S + W*S2 + X*S3 + Y*S4°(83)

The higher-order coefficients R*, U*, X*, and y* are very small compared to the
other coefficients P*, Q*, V*, and W*. Thus the enzymatic activation terms add
very small corrections to the high intensity values of T, and thus to the corre-
sponding values of x'" via (50). If these high-intensity corrections could be
measured, we would have an experimental test of how many terms K, M, and N
are enzymatically activated. These higher powers do not alter the asymptotic
shift A in (66), but they do alter the rate with which the asymptotic shift is

approached as a function of increasing light intensity.
We have hereby qualitatively explained all the main features of the BHL data

using a minimal model of a miniaturized chemical transmitter. It remains to
comment more completely on the form of the chain reaction which we used to
convert light intensity I(t) into the signal S(t) and to display quantitative data
fits. The simplest chain reaction is the one used by BHL:
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c/(t)

Y1Yl

~ + 1'"y" = 1',
dt

S(t) = Yn(t).

We have used this chain reaction with good results. However, this law possesses
the physically implausible property that Yi -00 as ! -00. Only finite responses
are possible in vivo. A related chain reaction avoids this difficulty and also fits the
data well. This modified chain reaction approximates (84) at small !(t) values. It is

(85)

dYn
dt

+ yy" =(lJ -BY")Y"-l'

S(t~ = Yn(t).

It is easily checked that in response to a step of light of intensity /, all the asymp-
totes y;(oo) in (85) have the form p./(l + V/)-l, as in (30). The possibility exists
that each step in this chain reaction is gated by a slow transducer. This would
help to explain why so many slow variables appear at high light intensities even
if not all the rates K, M, and N are enzymatically activated. Such a complication
of the model1!-dds no new conceptual insights and will remain unwarranted until
more precise biochemical data are available.
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14. Quantitative analysis of models

In this section we will compare the experimental measurements of Baylor and
Hodgkin (1974) with the predictions of their model (Baylor et al., 1974b) and our
models I (Equation (25» and II (Equations (4) and (19». The BHL model is out-
lined in Section 15. For each of Models I:

as}
dz [1 + FS ]"di = 40 ~S (B -:- z) -Sz

and II:

(4)

we will examine the properties of the gated signal

(2) T=Sz.

That is, we present a model in which the amount of hyperpolarization, x, is
directly proportional to Sz -Sozo, where To = Sozo is the steady-state level.
Similar results, with better quantitative fits, are obtained when the potential
obeys the equation

godV +
,.-, C°"dt = (V , 1 + KT

Recall that, if the potential obeys Equation (42), then the amount of hyper-
polarization is given by the equation

dxC---0 dt-

and, if x equilibrates quickly relative to z,

-V) -~ -(V -V-)g\.

LTgo(45) gl + 1+ i1'} +.-+KT

MT
(47) x~-.

N+T

Equation (47) says that x is approximately proportional to T if N is large relative
to T.

For the rest of the section we will consider the experiment (Section 4) in which
a short flash of fixed intensity is superimposed on ever-increasing levels of back-
ground light. Let x be the amount of hyperpolarization and Xo the equilibrium
level for a fixed background intensity. As presented in Figure 3, the peak x -Xo
decreases as background intensity increases, but the time at which the peak occurs
first decreases and then increases as the intensity increases.
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BHL

b

Fig. 14. Intracellular response curves X(I) -Xo showing the effect of a flash superimposed on a
background light of fixed intensity. Each horizontal axis represents the time since the middle
of the flash, which lasts II msec. The vertical axis is scaled so that the peak value of X(I) -Xo =
X(I) in the dark is equal to 25. The number above each curve is log,o of the background light
intensity 10, which is calibrated so that when 10gl0 10 = 3,26, the peak of .'C(I) -.'Co is equal
to 12.5. (a) The Baylor-Hodgkin (1974) data. (b) The BHL model (redravm from Baylor el al.

(1974b), p. 785).
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dc

Fig. 14 (cont.). (c) Model I. (d) Model II. Note that the vertical scales are not all the same.
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Figures 14-17 show that, of the three models under consideration, Model II
provides the best fit to the data and BHL the poorest. Figure 14a presents the
results of the intracellular recordings of Baylor and Hodgkin (1974); Figure 14b
gives the predictions of BHL model; and Figures 14c and 14d give predictions
of Models I and II. In each case, the peak potential in the dark is scaled to the
value 25. The minimal background intensity is calibrated by finding that level at
which the peak potential is 12.5, or h.lf the peak in the dark. Thus each model
fits the peak data exactly in the dark: and with the lowest positive background
intensity. Note that the vertical scale in Figure 14d (Model II) is the same as that
of Figure 14a, which depicts the data. ny contrast, the scales of Figure 14b (BHL)
and Figure 14c (Model I) have been adjusted to accommodate the poorer match
between the data and BHL and between the data and Model I. These results on
peak potential are summarized in Figure 15.

3 4 5 6 7

log 10

Fig. IS. The size of the peak hyperpolarization.las a function of log, 0 10. for the Baylor-Hodgkin
data and the three models. Note that at high input intensities, BHL differs from the data and

Model II bya factor of 10.
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Figure 16 indicates the time of peak hyperpolarization as a function of back-
ground intensity. Here, BHL gives a poor fit to the data; Model I gives a much
better fit; and Model II, with the slow enzymatic activation, gives the best fit of all.

Figure 17 shows the fit of the steady-state data (equilibrium levels of xo) for the
parameters chosen in each model.

The chain reaction .-

In Models I and II, the signal $(1)- is given by it chain reaction described by
Equation (84) (Baylor et al., 19740). The constants nand Yl ...Yn are chosen so
that, when the light stimulus !(t) is a flash in the dark, S(t) matches the experi-
mental dark response (top curve of Figure 140). Since equation (84) is linear, S(t)
is equal to the sum of the dark response curve plus a constant which is propor-
tional to the background intensity. Consequently, in this paradigm, any choice of
chain reaction constant which provides a good fit to the dark curve will fit the data
as well as any other choice. A simple function form which provides an adequate
fit in the dark is

log 10

Fig. 16. Times at which the peak hyper polarizations occur for the Baylor-Hodgkin data and the
three models. Note that the input intensity at which the turn-around occurs and the dynamic
range of peak times are much too small in the BHL model. BHL consider this the most serious

defect of their model.
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log 10

Fig. 17. Graphs of the steady-state hyperpolarization xo, in response to the constant light intensity
10, for the Baylor-Hodgkin data and the three models.

(86) f(t) = Je-r"(1 -e-yt)s.

A suitable choice of constant J makes l(t) equal to S(t) in the dark when n = 6

and
i(87) YI = 6y, yz =; Sy, ..., Y6 = y.

This is the 'independent activation' form of Baylor et af. (1974a). This form is
used in Model I (y = 17'3) and Model II (y = 17.6). Other chain reactions give
similar results.

In the BHL model, a similar chain reaction is used, except that the last step is
modified to incorporate the unblocking variable Zz and the slow process zJ
(Sections 13 and IS).

Parameter values for Model I and Model II

Equation (88) contains the parameter values chosen for Model I in Figures
14-17. Equation (89) contains the parameter values for Model II. We wish to



38

Mode! /

(25) dz [ I + FS
]-= Ao --' -(D -z) -Sz

dt I + GS

"- .." ..

Ao = 1'8, F = 0'00333, G = 0.00179.(88)

Mode/II

(4) dz
dt = A(B -z) -Sz

(19)
dA
-= -C(A -Ao) + D[E -(A -Ao)]S
dt
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Denote the concentration of blocking substance by z 1 (t) and the concentration
of the unblocking substances by Z2(t) and Z3(t). Function Zl(t) replaces the last
stage Yn(t) of the chain reaction in (84). Baylor et of. (1974b) choose the equations
for Zl to fit the data in Figure 3. To explain these and related data, it is assumed
that the Zj act on each other via a nonlinear feedback process that is defined as
follows:

(90)

(91)

(93)

'rfGf = F(V) -Gf

(ifF(V) = 1 + exp [(V -V f)/V,]'

( d ) "-1 -+a

dt
Y,,-l = 1X"-2/(t)

Zl =CXYn-l -K12Z1 + K21Z2

Z2 = K12Z1 -(K21 + K23)Z2 + K32Z3

Z3 = K23Z2 -(K32 + K34)Z3

(95)

(96)

(97)

(98) K - [ KI2M -£.12 ]A 21 = KI2 = KI2 + VZ2 .
KI2M -KI2 + VZ2

,Initial conditions on all Yi(t) and zIt) for t ~ 0 are 0, V(O) = VD, and VD, the

potential in darkness, satisfies

(99) V [I + (j f "" ] - ED I + exp [(VD -Vf)fV.] + V, -

to make V D an equilibrium point of (90) in the absence of light. The potential V
is related to the hyperpolarization U via the equation U = V -V D.

Equation (90) describes how the potential V is hyperpolarized by changes in
the conductances G f and G ,. Equation (91) shows that G I is a decreasing function
of z I' Equations (92) and (93) say that G f time-averages a logistic function of V.
Equation (94) describes the chain reaction with end product Yn-1 and light input
l(t). Equations (95)-(98) describe the nonlinear chain reaction of blocking and
unblocking variables Zl, Z2 and Z3 that is driven by the output Yn-1 of the chain
reaction. Equation (99) defines parameters to make V D the equilibrium point of

(90) when I~t) = O.
The Equations (90)-(99) are an ingenious interpretation of the data, but their



40 GAIL A. CARPENTER AND STEPHEN GROSSBERG

main features, such as the chain reaction of blocking and unblocking variables
in (95)-{98), the non-linear dependence of the blocking and unblocking rates on these
variables in (98), and the existence of the voltage-dependent conductance
G f in (92)-(93) are hard to interpret as logical consequences of a well-designed
transducer, and have difficulties meeting the data quantitatively, as shown in
Section 14.

To explain the turn-around of potential peaks, BHL use the nonlinear feedback
process betw~en blocking and unblocking_Yariab.l.e~ in- (90),(91), (95)-(28) to
argue that 'the shortening of the time to peak occurs because the concentration
of Z2 increases and speeds up the conversion of Z. to Z2' (Baylor et al. 1974b,
p. 784). To explain the eventual slowdown of response to high background inten-
sities, the parameters are chosen (e.g., A > 1 in (98») so that 'at very high levels
of Z2 the reaction is so fast that there is no initial peak and the reaction is in
equilibrium throughout the whole response. This results in an increase in the time
to peak because the rate of destruction of Z2 at a high intensity is less than the
rate of destruction of Z. at some lower intensity' (Baylor et al. 1974b, p. 784).
Thus, the existence of processz2 and its properties are postulated to fit these data
rather than to satisfy fundamental design constraints. Of great qualitative impor-
tance is the fact that this explanation of the turn-around in potential peak implies
the nonexistence of overshoots at high flash intensities. This implication does not
hold in our gating model. It forces the following auxiliary hypotheses in the BHL

model.
Baylor, Hodgkin and Lamb note that the above mechanisms do not suffice to

explain certain phenomena that occur after a strong flash. In particular, the
potential transiently overshoots its plateau, achieving a peak change of 15-25 m V,
before it settles to a plateau of 12-20 m V. They did their double flash experiments
(Figure 7) to study this phenomenon. In Figure 7, the second flash does not elicit
a second overshoot, but rather merely prolongs the plateau phase. They need two
variable conductances G, and G f to account for these data. The light-sensitive
conductance G, in (91) is a decreasing function ofzl, which is, in turn, an increas-
ing function of light intensity due to (94) and (95). The conductance G f in (92)
depends on light only through changes in potential. In particular Gf is a time-
average. of a logistic function (93) of the potential. The main idea is that the light-
sensitive conductance G, is shut off by the first flash. This leads to an initial
hyperpolarization which changes G f. This latter change decreases the potential at
which the cell saturates from 30 to 20 m V, and causes the potential to return
towards its plateau value. At the plateau value, G f is insensitive to a new flash,
so a second overshoot does not occur, but the newly reactivated chain reation

does prolong the plateau phase.
Even without the extra conductance G f' some overshoot can be achieved in

the model in response to weaker lights which hyperpolarize U(t) by 5- 10m V .
These overshoots are due to delayed desensitization, but they disappear when
strong lights perturb the BHL model, unlike the situation in real cones; hence

the need for Gr.
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The authors also use the conductance G I to explain why offset of a rectangular
pulse of depolarizing current that is applied during a cone's response to light
does cause a rebound hyperpolarization, whereas a depolarizing current in the
absence of light does not (Figure 8).

16. Conclusion

We have indicated how a minimal model for a miniaturized unbiased transducer
that is realized by a depletable chemical transmitter provides a conceptually
simple and quantitatively accurate description of parametric turtle cone data.
These improvements on the classical studies of Baylor, Hodgkin, and Lamb are,
at bottom, due to the use of a 'gating' rather than an 'unblocking' concept to
describe the transmitter's action. Having related the experiments on turtle cone to
a general principle of neural design, we can recognize the great interest of testing
whether analogous parametric experiments performed on nonvisual cells wherein
slowly varying transmitters are suspected to act will also produce similar reactions
in cell potential. Where the answer is 'no', can we attribute this fact to specia~ized
differences in the enzymatic modulation of photoreceptor transmitters that enable
them to cope with the wide dynamic range of light intensity fluctuations?
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