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Abstract. This article describes a behaviorally, phy-
siologically, and anatomically predictive model of how
circadian rhythms are generated by each suprachias-
matic nucleus (SCN) of the mammalian hypothalamus.
This gated pacemaker model is defined in terms of
competing on-cell off-cell populations whose positive
feedback signals are gated by slowly accumulating
chemical transmitter substances. These components
have also been used to model other hypothalamic
circuits, notably the eating circuit. A parametric ana-
lysis of the types of oscillations supported by the model
is presented. The complementary reactions to light of
diurnal and nocturnal mammals as well as their similar
phase response curves are obtained. The "dead zone"
of the phase response curve during the subjective day
of a noctural rodent is also explained. Oscillations are
suppressed by high intensities of steady light.
Operations that alter the parameters of the model
transmitters can phase shift or othenvise change its
circadian oscillation. Eff~cts of ablation and hormones
on model oscillations are summarized. Observed oscil-
lations include regular periodic solutions, periodic
plateau solutions, rippled plateau solutions, period
doubling solutions, slow modulation of oscillations
over a period of months, and repeating sequences of
oscillation clusters. The model period increases in-
versely with the transmitter accumulation rate but is
insensitive to other parameter choices except near the
bre~kdown of oscillations. The model's clocklike na-
ture is thus a mathematical property rather than a

formal postulate. A singular perturbation approach to
the model's analysis is described. .

1 Introouction

A A Physiological Model of a Circadian Pacemaker

Circadian rhythms occur in a wide variety of mam-
malian physiological systems. Moore-Ede et al. (1982)
have, for example, written that ''as the documentation
of rhythms in various human physiological systems
proceeded apace, it became apparent that it was often
more significant to find no circadian rhythm in a physio-
logical variable than to find one" (p. 16). Despite the
widespread occurrence of circadian properties, the
physiological mechanisms that generate circadian
rhythms have yet to be characterized. In every mammal
studied so far, a pacemaker for the control of the wake-
sleep and activity-rest cycles has been located in the
pair of suprachiasmatic nuclei (SCN) of the hypo-
thalamus (Moore, 1973, 1974). This article defines and
analyses a behaviorally, physiologically, and anatomi-
cally predictive model of the SCN circadian pace-
maker. We call this mod~l the g(lted pace,naker mode!
due to the central role play~d by transmitter gating
actions in generating the model's circadian rhythm
(Carpenter and Grossberg, 1983a).

Some of the gated pacemaker's behavioral proper-
ties are the following. Although both nocturnal mam-
mals and diurn.al mammals possess a pacemaker with-
in their SCN, these animals react to the daily light-
dark cycle in a complementary fashion (Moore-Ede et
al., 1982). We show that the same model mechanisms
can be used to produce these complementary re-
actions, as well as the similar phase response curves of
nocturnal and diurnal fi1ammals in response to pulses
of light. The diurnal gated pacemaker can generate
approximately 48-h days (period doubling) when it is
placed into dim steady light, as occasionally happens
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as hypothalamically mediate:d rhythmic properties of
the eating cycle (Rosenwasser et aI., 1981; Moore-Ede
et al.,.1982).

to humans who live in caves for long periods of time
(Jouvet et al., 1974). The circadian rhythm of the
diurnal model can be suppressed by intense steady
light. Aschoff (1979, p. 238) writes about this property
that "at high intensities of illumination circadian sys-
tems often seem to break down, as primarily exem-
plified by arhythmicity in records of locomotor ac-
tivity." Biorhythms on a time scale of months have
been observed superimposed on the model's circadian
rhythm. Very complex breakdown of the model's
circadian rhythmicity, suggestive of chaos, have also
been observed. Some of these oscillatory waveforms
are of independent mathematical interest due to their
novel properties.

Since each of the model's mechanisms has a physio-
logical interpretation, the parameter ranges in which
the above behaviors occur suggest tests of the model
by predicting how prescribed physiological manipu-
lations may alter circadian properties of behavior. The
model's physiological interpretation suggests a set of
predictions that are of particular importance.
Chemical transmitte;rs form a part of the gated pace-
maker. Many neural transmitters are known to oscil-.
late with a circadian rhythm (Naber et al., 1981; Kafka
et al., 1981). The model's transmitters oscillate because
their gating action forms part of the pacemaker m~ha-
nism, not merely because they are driven by a separate
pacemaker. If chemical transmitters playa role in the
SCN pacemaker, then a pote:nt antagonist of these
transmitters should abolish the SCN rhythm. The role
of chemical transmitters in the gated pacemaker is also
compatible with the fact that antidepressant drugs can
alter the mood of manic-depressive patients by modify-
ing their wake-sleep circadian cycle (Wehr et al, 1979;
Kafka et al., 1982; Wehr and Wirz-Justice; 1982).

The model's anatomical interpretation suggests
another set of predictions. These predictions describe
effects on gated pacemaker activity of cutting out one
of the two SCN or part of each SCN, or of severing the
neural pathways that join the two SCN through the
optic chiasm (Carpenter and Grossberg, 1983b; Sisk
and Turek, 1982).

C .Wetabolic Feedback and Slow Gain Control

In this article, we focus on the model's circadian
pacemaker. The full circadian model augments the
gated pacemaker with two auxiliary processes. Each of
t1:tes~ auxiliary processes is driven by the pacemaker
and modulates the pacemaker activity via feedback
signalling (Carpenter and Grossberg, 1983a, b).

One of these processes regulates a metabolic feed-
back signal: the gated pacemaker generates behavioral
activity which, in turn, produces a feedback signal to
the pacemaker that serves as a metabolic index of
fatigue. We use this metabolic feedback signal to
explain how the circadian activity rhythm can split
into two components either due to appropriate light-
ing conditions (pittendrigb, 1960; Hoffman, 1971;
Earnest and Turek, 1982; Pickard and Turek, 1982) or
to honnones in the bloodstream (Gwinner, 1974). In
the hotl10logous model circuit that is used to analyse
eating behavior, the metabplic feedback signal is re-
placed by a satiety signal that also acts through the
bloodstream (Grossberg, 1982a, 1983a). Aschoffs rule
(Aschoff, 1979) is observed in the model due to two
factors operating together. The activation of nocturnal
model off~cells by light plus the action qf metabolic
feedback on the off.:cells leads to examples (Carpenter
and Grossberg, 1983b) wherein the duration of be.
havioral activity decreases and the total period in-
creases as the steady light level is parametrically
increased. The activation of diurnal model on-cells by
light pius the action of metabolic feedback on the off-
cells leads to ~xamples wherein the duration of be-
havioral activity increases and the tqtal period de.
creases as the steady light level is parametrically
increased. Exceptions to Aschofrs rule are more com-
mon in the diurnal mudel than in the nocturnal model,
as also occurs in vivo, due to the asymmetric role of
metabolic feedback r~latjve to the site of action of the
light input within the diurnal and nocturnal models
(Carpenter and Grossberg, 1983b). .

The second auxiliary process is a slowly varying
gain control process that buffers the model's reaction
to adventitious lighting changes, such as cloudy weath-
er, and alters the model's properties in response to
statistically reliable lighting changes~ such as seasonal
fluctuations. We use this slow gain control process to
explain the slow onset of sp1it rhythms and the several
types of long. term after-effects that prior lighting
conditions can hav~ on subsequent activity cycles
(Pittendrigh, 1974). In the homologous model circuit
that is used analyse eating behavior, the slow gain

B Multiple Oscillators from Similar Mechanisms

The model oscillators are built up from mechanisms
that have been used to analyse other phenomena, such
as eating and drinking (Grossberg, 1982a, 1983a), that
are known to be mediated by the hypothalamus (O.lds,
1977). We therefore suggest that the hypothalamic
circuits that control different types of emotion-related
behaviors may all built up from ~imilar physiological
components. This hypothesis may prove helpful in
characterizing the hypothalamic circuit that controls
the human temperature rhythm (Wever, 1979) as well
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that are activated by food-related cues.

The correspondences between the model SCN cir-
cuit and eating circuit support the hypothesis that
similar mechanisms are adapted to specialized func-
tions within the hypothalamus.
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Fig. 1. Anatomy and physiology of a gated pacemaker. The potential
X 1 of an on-cell (population) and the potential X 2 of an off-cell
(population) obey membrane Eqs. (1) and (2), respectively.
Transmitter substance 21 gates the positive feedback signal F(X J
from the on-ceH (population) to itself, and transmitter substance 22
gates the positive feedback signal F(X J from the off.cell (population)
to itself. Term I is the nonspecific arousal level, which is held
constant during the simulations reported herein. The off-cells inhibit
the on-cells via signal G(X 2) in (1), and the on-cells inhibit the off-
cells via signal G(X 1) in (2). The light input J(7') e.xcites the off-cells
(nocturnal model). The transmitter 21 in (3) accumulates via term
D(E -2 J and is released at rate -KF(X J2 1 by gating the signal
F(X 1). A similar law governs 22 in (4). Many basic model properties
persist in modified versions of equations (1)-;(4). Species-specific
variations and future data may support particular versions without
altering the qualitative explanations of model properties

hypothesize a light-sensitive coupling strength between
SCN oscillators. Instead, we show how the metabolic
feedback process, which plays a physically important
role, can cause splits under certain circumstances.

D Comparison with other Pacemaker Model$

Previous models of circadian rhythms have been de-
fined in terms of oscillators that were originally de-
veloped to explain non-circadian phenomena. A pair
of coupled van der Pol oscillators has been used to
model interactions between the activity~rest pace-
maker and the temperature pacemaker of humans
(Kronauer et al., 1982). Our results complement this
study by suggesting a physiological model for eachpacemaker. '

A pair of coupled FitzHugh-Nagumo oscillators
(FitzHugh, 1960; Nagumo et al., 1961) has been used
to analyse the splitting of the circadian rhythm
(Kawato and Suzuki, 1980). This model faces ~everal
difficulties. The FizHugh-Nagumo model is a sim-
plified version of the Hodgkin-Huxley model of nerve
impulse propagation. As such, its physical time scale is
in the millisecond range rather than the circadian
range. As Kawato and Suzuki have noted, "the BVP
(van der Pol) equation and Nagumo's equation were
derived for neural rhythms with much shorter periods
than 24 h. However, in the absence of information
regarding the state variables relevant to circadian
pacemakers, we use the abstract model" (p. 557).

A second difficulty of the FitzHugh-Nagumo cou-
pled oscillator model concerns its explanation of split
rhythms. Split rhythms are caused in the Kawato-
Suzuki model when its two oscillators become out-of-
phase with each other. This happens because light is
assumed to strengthen the inhibitory coupling between
the oscillators. In order to explain splitting in both
nocturnal and diurnal animals using this approach,
one would need to suppose that light strengthens the
inhibitory coupling between the oscillators of a noctur-
nal model and weakens the inhibitory coupling be-
tween the oscillators of a diurnal model. Moreover, the
inh,ibitory coupling between oscillators would have to
be weak when the nocturnal model is in the dark and
when the diurnal model is in the light, so that splitting
does not routinely occur under these conditions. These
formal hypotheses do not seem to play any role in the
model except to cause split rhythms.

The gated pacemaker model avoids these inter-
pretive difficulties as follows. The time scale difficulties
are avoided due to the role of slowly accumulating
transmitter substances in generating the gated pace-
maker rhythm. Our split rhythm explanation does not~

2. The Gated Pacemaker

The gated pacemaker model describes the dynamics of
on-cell/otT'"Cell pairs, called gated dipol.es, in which the
on-cells and the otT'"Cells mutually inhibit one another.
Populations of these gated dipoles are assumed to exist
in each SCN. The following processes define a gated
pacemaker (Fig. 1):

1) slowly accumulating transmitter substances are
depleted by gating the release of feedback signals;

2) the feedback signals are organized as an on-
center off-surround, or competitive, anatomy;

3) both on-cells and off-cells are tonically aroused;
4) light excites the on-cells of a diurnal model and

th~ off-cells of a nocturnal model;
5) the on.cells drive observable activity, such as

wheel-turning, in both the diurnal model and the
nocturnal model.

The model equations for a nocturnal gated pace-
maker are

dX1n- = -AX 1 +(B-X 1)[1 +F(X 1)21J

-(X1+C)G(XJ, (1)
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dX2n = -AX2+(B-X2)[J+P(X2)Z2+J(T)]

-(X 2 + C)G(X 1)' (2)
-(Xl +C3)C4g(XI), (6)

(3)
(7)

(4) and

dz2
~ =Cs[1-z2-C6!(xJzJ. (8)

The synlbols in the dimensionless system (5H8} are
related to the symbols in the defining system (lH4) by
the following identities:

Variables

XlXI=-'B

X2X2=-'B

..-~-1- E'

Z2Z,=-.~ E'

t=AT.

(9)

(13)

Constants

I
C] =-:c,

A

EFmaxC -.2= A

where

Gmax = max(G),

Variable X I in Eq. (1) is the patential of an on-cell
(population) VI. VariableX2 in Eq.(2) is the potential
of an off-cell (population) V2. Both XI and X 2 obey
membrane equations (Hodgkin, 1964; Katz, 1966;
Kuffier and Nicholls, 1976; Plonsey, 1969). In (1) and
(2), the parameter -A in the terms -AX 1 and -AX 2
determines the fast decay rate of the potentials X 1 and
X 2. Also in (1) and (2), term I represents the arousal
level that equally excites VI and V2. In (1), the transmit-
ter substance 21 gates the nonnegative feedback signal
F(.X 1) from VI to itself. Term F(X l)ZI is proportional
to the rate at which transmitter is released from the
feedback pathway from III to itself, tllereby re~exciting
.¥ 1. The ofT-cells Vi inhibit the on~cells VI via the
nonnegative signal G(X 2) in term -(X 1 + C)G(.X 2) of
(1). Equation (2) is the same as Eq. (I}, except that the
indices 1 and 2 are interchanged, and the light input
J(T) excites V2, but not VI, because system (lH4}
represents a nocturnal model.

Equations (3) and (4) define the transmitter pro-
cesses 21 and 22. In (3), the transmitter 21 accu-
mulates to its maximal level E at a slow rate D via the
term D(E -21), This slow accumulation process is
balanced by the release of 21 at rate KF(X 1)21,
leading to the excitation of X I in Eq. (1). A similar
combination of slow IiccumulatioD and gated release
defmes the dynamics of transmitter Z~ in (4).

In all,.system (lK4) describes a four-dimensional
fast-slow process in which two fast potentials interact
with two slow auxiliary processes. By comparison, the
Hodgkin-Huxley model of nerve impulse transmission
(Hodgkin and Huxley, 1952) is also a four-dimensional
fast-slaw process, but one in which just one potential
interacts with three auxiliary processes (Carpenter and
Grossberg, 1983a). Also the accumulation rate of the
two slow trartsmiUer processes in the gated pacemaker
model is assumed to be substantially slower than the
reaction rates of the ionic processes that couple to the
Hodgkin-Huxley potential.

The dimensionless model equations rorresponding
to Eqs.(1}-{4) are: D

Cs=A'

KFmax

C6=~

dx]dt = -Xl +(l-xl)[Cl +C2!(Xl)Zl]

-'-(Xl + C3)C4g(X2) , (5)

where

F max=max(F),

C
C 3 =-

B'
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L(t) = ~. (24)

Note that the feedback signals f(w) and g(w) in (22)
and (23) are scaled so that O~f~ 1 and O~g~ 1.
These signals are chosen to be either a sigmoid (S-
shaped) function of activity, such as
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Fig. 2. The family of positive feedback functions H.(w). At in-
termediate values of XI' H,,(xJ>C, ifz, is sufficiently close to 1,
whereas CI >H.,(XI) if Zl is sufficiently close to O. At small values of
xz' H,.(xJ~CI for all z" O~zz~l. Consequently, as Z"I decreases
from large to small values, the function H:,(XI)-H.,(x;) decreases
until a switch in the relative sizes of XI and X2 is initiated

~-;;;: if w ~Of(w) =

(25)0 if w<O,
This relative change can be understood more pre.

cisely by graphing the function

H.(w)=(l- w) [CI +Czf(w)z] (29)

at extreme values z = 0 and z = 1 of the parameter z
(Fig. 2). The function H o( w) decreases linearly from C 1
to 0 as w increases from 0 to 1, no matter how f( w) is
chosen. The functionf(w) is chosen so that the graph of
H I<w) increases from H 1(0)=C1 to a maximum before
decreasing to H 1(1)=0. For example, if

{w if W~O
f(w)= 0 if w:O, (30)

then these properties of H l(W) hold if and only if

Cl <Cz. (31)

By Fig. 2, if Xz is sufficiently small, then H JxJ ~ C I
no matter how zE [0,1] is chosen; In particular, if
z=zz~ 1, then H22(XZ)~Cl. By contrast, if XI is fairly
large, then the inequalities

H l(Xl» C1 (32)

and

HO(Xl)<C1 (33)

hold. In other words, if Xl and X2 remain approximate-
ly constant while Xl> Xz and X2 ~O, then the relative
sizes of (27) and (28) can reverse as z 1 is depleted.

Due to the relatively large decrease in the positive
feedback term (27) in (5), Xl itself begins to decrease, as
does g(Xl) in (6). The positive feedback term

(1-.~J[C1+Czf(xJzJ (28)

from Vz to itself in (6) can therefore begin to overcome
the negative feedback term

'-(xZ+C3)C4g(Xl) (34)

3 Qualitative Basis of Oscillations

An intuitive understanding of why a gated pacemaker
oscillates, and of how to choose system parameters,
may be derived from the following qualitative remarks,
Suppose that the system starts out with Xl large and Xl
small, but with both transmitters fully accumulated, so
that 21 ~ 1 and Zz ~ 1. At first, Xl maintains its advan-
tage over Xz ,as follows. Because Xl is large and Zl ~ 1,
the feedback signal !(XI)ZI from VI to itself is large, as
is the negative feedback signal g(XI) from VI to Vz'
Because !(Xl) is large, however, Zl is slowly depleted at
the rate -CSC6!(XI)ZI' by (7). Consequently, the
gated signal !(Xl)ZI gradually becomes small despite
the fact that Xl remains large.

As this is going on, Xl and its feedback signal!(xz)
re~ain small, so that the transmitter release rate
-t"sC6!(xz)zz in (8) also remains small.
Consequently, Zz remains large as Zl is gradually
depleted. As a result of these changes, the positive
feedback term

(l-Xl)[Cl+CJ(Xl)ZJ (27)

in (5) diminishes relative to the positive feedback term

(l-xz)[Cl+Cz!(xz>zJ (28)

in (6), even though Xl remains larger than xz'

or a threshold-linear function (linear above a threshold
cut-ot!), such as
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Table 1. Typical parameter values for a threshold-linear nocturnal

pacemaker

C1 = 0.10
C1 = 2.00
C3 = 0.10
C4 = 500
C5 = 0.01
Co = 10.00

in (6), and X2 begins to grow. At first, the growth of X2
does not depend upon the size of Z2' because if X2 is
small then R%(X2)~Cl no matter how z is chosen. As
Xz begins to increase, however, the continued increase
of Xz depends crucially upon the fact that Z2 is large,
due to the different graphs of R1(w) and Ro(w) at
middle values of w. Since Z2 is large when xl begins to
grow, a switch in the relative sizes of Xl and X2 occurs.
As x2 becomes large, i1 suppresses Xl via the large
negative feedback signal g(X2)' Now X2 has the advan-
tage, and the competitive cycle starts to repeat itself as
z 2 is progressively depleted and z 1 is replenished.

4 Parameter Estimation

The parameters C1, C2, ""C6 are chosen to guarantee
that the qualitative properties described in Section 3
occur. The parameters need to be chosen so that no
one term in system (5}-{8) dominates any of the others.
It turns out that a broad range (;if parameters can
accomplish this goai. We first show that some simple
balancing rules lead to a successful choice of parame-
ters. Then we illustrate the robustness of this parame-
ter choice by varying each parameter separately while
the others are held fixed;

The parameters in Table 1 are arrived at as follows.
ConsIder the positive feedback term

(1-Xl}[C1+CJ(Xl}Zl] (27)

of (5). We want to balance the terms C1 and CJ(xJZl
to prevent either term from totally dominating the
other in all system states. To fIX ideas, let !(Xl)
=max(xl' O). Since by (5), -C3~x1~1, it follows
that O~!(Xi}~1.. Also by (7), O~Zl ~1.. In all, C2 is
multiplied by a variable term that is always less than 1..
As a first approximation, we therefore need to choose
C1 <C2, as in (31).

A more precise ~estriction upon C1 and C2 is
needed, because we want CJ(Xl}Zl to exceed C1 some
of the time but not all of the time. To achieve this
property, suppose on the average that Xl ~O.2,
X2~O..2, zl~O.7, and z2~O.7. These scalesetting es-
timates are suggested by the facts that xl-and Xl in (5)
and (6), respectively, are each affected by two negative

terms that tend to drive them towards zero, whereas Zl
and Z2 in (7) and (8), respectively, tend to accumulate
towards 1 when they are not being depleted by a gating'
action. These average estimates imply that

C2!(Xl)Zl ~(0.14)C2 (35)

on the average. In order to keep term C2!(Xl)Zl bigger
than C 1 some of the time, we choose

Ci =20C1, (36)

since then

CZ!(X1)Zl ~2.8Cl (37)

Qn the average.
In order to choose Cl, we consider term

-XI +(1- Xl) [Cl + C2!(XI)ZlJ (38)

of (5). We want the' positive feedback term (27) to
exceed the decay term -XI some of the time. If we
choose

C1 =0.1, (39)

and thus by (36}

C2=2, (40)

then using the average estimates Xl ~0.2 and Zl ~0.7,
(38) is approximately equal to

-0.2+0.3 >0, (41)

which achieves a satisfactory balance of terms. [In (39),
CI could be chosen significantly larger, provided sub-
sequent terms are balanced prope'rly. For example,
oscillations can also occur when Cl =0.5 and C2 = 10.J

The parameters C3 and C. in the negative feedback
term

-(X1 +C3)C4g(XJ (42)

are chosen as follows. By (17), parameter C3 = CIB. In
a membrane equation such as (1) or (2), parameter B
equals the sodium saturation point and C equals the
potassium saturation point. In vivo, B is often ten
tiIbes larger than C (Hodgkin and Huxley, 1952).
Hence we choose

C3=0.1. .,(43)
We choose C. so that the' positive feedback term

(27) and the negative feedback term (42) can alternately
be smaller or larger than one another~ ]Jetting
g(xJ = max(x2' 0) for definiteness, (42) is approximate-
ly (0.06}C.. If we let

C.=5 (44)

then (42) approximately equals 0.3, which balances the
estimate of (27) that appears in (41).
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To choose Cs' we observe by (20) that Cs is the
ratio of D to A. Since the transmitter accumulation
rate (D) is much slower than the decay rate (A) of the
potentials, C 5 ~ 1. For definiteness, we choose

Cs =0.01. (45)

Parameter C6 is chosen as follows. First, we want
the rate -CSC6 of transmitter depletion in (7) and (8)
to be slower than the unit decay rate of the potential;
that is

CSC6 = (O.Ol)C6 < 1. (46)

Second, we want the gated signal CJ(Xl)ZI in (5) to
decrease significantly as Z I is maximally depleted and
Xl remains large. By (7), if Zl equilibrates to !(XI)' then

1
Zl ~ 1 + C6!(XI). (47)

If Xl is estimated by its maximum value of 1, then

1
Zl=~. (48)

If we choose

C6=10, (49)

then (46) is valid because O.i < 1. Also a significant
decrease in Cz/(Xl)Z, can be achieved since, by (48),
the minimal value of z, is approximately Q.O9.
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Fig. 3a-.c. Three ways to plot gated pacemaker trajectories.
a Functions x\(t) and ZI(t) are plotted through time. b The phase
portraits or (XI (t). ZI (t) and (X2(t). Zz(t») are plotted through time in
(x, z) coordinates. c Functions Xt(t) and X2(t) are plot.ted through
time. Parameters are chosen as in Table 1
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tinct initial values in (x, z) space. Figure 3c shows that
the Xl and X2 potentials are out-or-phase with each
other near this limit cycle. In particular, the rapid
decay of Xl occurs during the rapid rise of Xl' and
conversely.

6 Phase Response Curves in Diurnal and Nocturnal
Gated Pacemakers

In the gated pacemaker model, the assumption that
light inputs excite the on-cells of diurnal animals and
the off-cells of nocturnal animals is compatible with
the familiar day activity of diurnal animals and night

5 A Typical Oscillation in the Dark

This section describes the oscillations that occur with
parameters chosen as in Table 1 and no light inputs
(free-run in the dark). Due to the fact that system
(5)-(8) is four'-dimensional, we plot its solutions in
three different ways. In Fig. 3a, each of the variables Xl
and Z I is plotted through time. In Fig. 3b, both pairs
(x I' Z t) and (X2' z J are ploued in the (x, z) coordinate
plane through time. In Fig. 3c,each oftbe variables Xl
and X2 is ploued through time.

Figure 3a illustrates bow ZI accumulates while Xl is
small. Tbis figure also shows that the graph of Xl
exhibits an overshoot shortly after Xl reaches its
maximum. This overshoot is du.e to the multiplicative
form of the feedback signal !(Xt)Zl (Carpenter and
Grossberg, 1981; Grossberg, 1968, 1981, 1983a). Term
!(Xt)Zl reaqhes its maximum value when Xl and Zt are
large.. Then Zt starts to deplete so the product !(Xl)Zl
also decreases. As a result, X 1 decreases to a plateau
value until the balance of terms that was described in
Sect. 3 causes a rapid switch to occur in the relative
sizes of Xt and X2'

Figure 3b shows that the two pairs (x t' z 1) and
(X2' zJ approach the same limit cycle from their dis-
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Fig. 4a-c. Phase response curves of nocturnal and diurnal gated pacemakers. a A typical phase response curve for a noctllmal pacemaker.
Parameters are chosen as in Table 1. ex~pt that Cl =0.13. Light pulses of dimensionless intensity 0.1 were flashed for 30rnin. b A typical phase
response curve for a diurnal pacemaker. Parameters are chosen as in a. c The on-cell potential Xl (t) of a nocturnal pacemaker is plotted as a
function of time. Small values correspond to sleep(xl(t)~C8) and large values correspond to the waking state. The model is asleep during the
day and awake atnight. The "subjective day" (SD), "early subjective night" (ESN), and "late subjective night" (LSN) of the model are defined

accordingly'

activity of nocturnal animals. Although these hy-
potheses generate complementary activity cycles in
response to a daily cycle of light-dark episodes, they
also imp)y that isolated light pulses delivered to an
animal living in the dark reset the phases of both
diurnal and npctumal models in a similar way, as the
data demand' (DeCoursey, 1960; Pittendrigh, 1960;
Kramm, 1971; Daan and Pittendrigh, 1976; Pohl,
1982). This property of gated pacemakers contrasts
with the explanation of phase resetting that is suggest-
ed when van der Pol oscillators are used to model the
pacemaker. The latter approach suggests that com-
plementary reactions to light of diurnal and nocturnal
animals are controlled by interactions that occur
beyond the SCN pacemaker stage. As Moore-Ede,
Sulzman, and Fuller (1982, pp.. 81-82) have noted:

"The circadian systems of diurnal and nocturnal spe-
cies must be organized differently to account for the
dramatic differences in the phase relationships of their
rhythms to the light-dark cycle (i.e., day-active vs.
night.active). It is possible that the differences lie in the
coupling between zeitgeber and pacemaker. However,
...the similarities between nocturnal and diurnal,
species in the way that. light resets circadian pace-
makers (i.e., the phase response curves) makes it more
likely that the difference in the phase relationships of
the rhythms of nocturnal and diurnal animals actually
depends on differences in the coupling mechanisms
between the circadian pacemaker and the rhythms it
drives."

Figure '4 depicts the phase response curves of
diurnal and nocturnal gated pacemakers in response to



Fig. Sa and b. Phase response curves of
nocturnal and diurnal gated pacemakers
with light attenuation during sleep. a A
typical phase response curve for a noctur-
nal pacemaker with 0=0.1. All other
parameters are chosen as in Fig. 4. b A
typical phase response curve for a diurnal
pacemaker with all parameters chosen as
in a

light pulses. These curves indicate that complementary
light-dark cycles and similar phase response curves can
coexist at the SCN level if these structures are built up
from gated pacemakers. The similar phase response
curves of diurnal and nocturnal models are intuitively
explained as follows.

During the "early subjective night" of a model
diurnal animal, a light pulse that excites the on-cell
prolongs its active phase, delays the rest cycle, and
thereby causes a phase delay. During the "early sub-
jective night" of a model nocturnal animal, a light
pulse that excites the off-cell prolongs its active phase,
delays the ensuing acti\ity cycle, and again creates a
phase delay. During the "late s~bjective night" of a
diurnal animal, a light pulse that excites the on-cell
induces a premature onset of on-cell activity, thereby
causing a phase advance in the onset of activity.
During the "late subjective night" of a nocturnal model
animal, a light pulse that excites the off-cell induces a
premature onset of off-cell activity, thereby causing a
phase advance in the onset of the next activity cycle. A
light pulse during the "subjective day" of either a
diurnal or a nocturnal model has relatively little effect.

One way to test whether ,a gated pacemaker con-
trols phase resetting in vivo is to parametrically excite
or inhibit the pacemaker transmitter while the phase
resetting light pulse is active. A combination of drugs
and light pulses may accomplish this joint manipu-
lation. Then predictable changes in the phase response
curves beyond those obtainable with a light pulse
alone should occur. Such an experimental result could
not be explained by a formal oscillator model.

Some details about how the phase response curves
are generated are worthy of note. During a diurnal

Figure 4 depicts the case in which 8= 1. The case
8 = 1, however, corresponds to the unphysical assump-
tion that light is equally effective whether or not the
animal's eye are closed. When () is chosen less than 1,
some subtle but important differences in the phase
response curves of nocturnal and diurnal models oc-
cur. Figure 5 depicts these phase respo nse curves when
8=0.1. Analogous differences have been reported in

animal's subjective night, for example, both phase
advances and phase delays can be caused by light
pulses (Kramm, !971; Pohl, 1982). Thus light pulses
that occur while the animal is asleep can alter its
circadian rhythm, so that light can affect the animal's
pacemaker even when its eyes are closed.

The gated pacemaker model incorporates this
property in terms of the following hypothesis. If L *(t) is
the light signal that reaches the SCN when the eyes are
open, we define the light input L(t) in Eq. (6) at all
times by

L(t) = {L *(t) if model is awake (50)
()L *(t) if model is asleep,

where O<O~ 1: In Fig. 4, 0= 1. The form of the phase
response curves is quite insensitive to the absolute size
of 0 just so long as 0 < e ~ 1. The definition of L(t) in
(50) is made more precise by characterizing whether or
not the animal is awake in terms of the on-c;ell activity
Xl(t). We assume that the animal wakes tip whenever
x1(t) exceeds a constant threshold Ca. Then (50)
becomes
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curves of nocturnal and diurnal animals parametri-
cally depend upon the intensity of light pulses.

7 Parametric Structure of Oscillations: TbrE:shold-
Linear Si~al Function

In this section and the next; we describe how system
oscillations d~pend on choices of the numerical param-
eters c1' Cz, ...,C6 in Eqs. (5H8). We choose both the
positive feedback function f(w) and the negative feed-
back function g(w) to be linear above a zero threshold;
i.e., f(w) =g{w) =max(w, 0). In Sect. 9 we show how our
conclusions are altered wh~n f("') is an S-shaped
function; To emphasize properties of endogenous os-
cillations, we shut the light off (L(t) =0) and observe
the model's free-running behavior in the dark. For all
choices of the parameters; the symmetry of Eqs.. (5H8)
during free-run implies that solutions that start out
"on the diagonal" remain on the diagonal for all future
time. That is, if x\(O)=xz(O) and zl(O)=ZZ(O), then
Xl(t)=XZ(t) and z\(t)= zz(t) for all t ~O. The parametric
studies reported below illustrate the fact that the
diagonal (Xl =Xz and Zl =Z2) is unstable for some, but
not all, choices of paramet~rs. In the ensuing di&-
cussion, all conclusions are stated for solutions that
start off the diagonal:

IX1(0)- xz(O)!. +lz1(0)- zz(O)1 *0. (52)

In this section, we vary each of the parameters C \'
Cz, C3, C4, and C6 separately while holding all the
other parameters fixed at the values given in Table 1.
The effects of varying C s will be djscussed in Sect. 8
because they are qualitati,'ely different from the effects
of varying the other five parameters.

Figure 6 and Table 2 depict the effects of varying
parameters CI, Cz, C3, C4, and C6. Figure 6 depicts the
effects of decreasing the arousal parameter C 1 .In
Fig. 6a, a large Cl value causes the system to approach
a "diagonal limit" such that Xl (00) = X2( 00) and
Zl(OO)=Z2(00). This is because the large and equal
arousal signals to Vl and Vz overcome the influence
that the feedback signals f(X1)Z1 and f(Xl)Z2 can have
on system dynamics. As C 1 is parametrically de-
creased, the system undergQes a bifurcation leading to
small amplitude oscillations near the diagonal
(Fig.6b). As C 1 is further decreased, the small ampli-
tude oscillations become large amplitude oscillations
(Fig.6c) that eventually develop a long plateau phase
followed by sudden switching between Xl and Xl
(Fig. 6d). At still smaller C 1 values, all oscillations are
quenched, and the system approaches an "off-diagonal
limit" (Fig.6e). That is, one <;Jf the potentials wins out
over the other potential, in such a way that

[Xl(OO)-XZ(OO)] [Zl(00)-Z2(00}] <0. (53)

data about nocturnal and diurnal rodents (pohl, 1982,
pp. 341-342). Poh] suggests that these differences have
an "important adaptive va]ue" (p. 342). This may in-
deed be the c~se, but in our model the differences are
due simp]y to the attenuation of a ]ight pulse when the
mode] anima] is asleep.

Pohl describes differences in the phase respol1se
curves of nocturnal and diurnal rodents as follows. "In
contrast to nocturnal rodents, which are mostly irres-
ponsive to light pu]ses during rest time (subjective
day)~ the day-active rodents do not show a particu]ar
"dead zone" of the PRC" (1982, p. 342). This difference
between nocturnal and diurna] animals is explained by
our model as follows.

Consider the subjective day of a nocturnal model;
that is, the time when the model is asleep (Fig. Sa, left
haJf). When 0 = 1 (Fig,4a), the nocturnal animal is
relatively insensitive to a light pulse during the early
subjective day because the light pulse excites the off.
cells while they are already excited. A small phase
advance is noneth~less visible iI1 response to such a
pulse. When 0=0.1 (Fig. Sa), by contrast, hardly any
phase shift is evident because the large atteI1uation of
the light pulse oqcurs at a time when the off-cells are
already iI1seI1sitive to light. When 0 = 1 (Fig.4a), the
nocturnal animal is more ~ensitive' to a light pulse
during the late subjective day because such a light
pulse excites the off-cells while the pacemaker on-cells
are becoming active. A sigI1ificaI1t phase delay there-
fore occurs. When 0=0.1 (Fig. Sa), by contrast, the
phase delay during the late subjective I1ight is sig-
nificantly attenuated. The flattening of the phase re-
sponse curve during the subjective day of a nocturnal
model is analogous to the "dead zone" of which Pohl
speaks. Wh~n the nocturnal model is awak~;(itssub-
jective l1ight), its phase response curves are the same
when o=:: 1 (Fig.4a, right half) and wheI1 0=0.1
(Fig. Sa, right half).

Similar reasoning explains why the phase response
curves of an awake diurnal model are the same
whethe'r 0 = 1 (Fig.4b, left ha]f) or (J =0.1 (Fig. Sb, left
half). During the subjective night of a diurnal model,
its phase response curve wheI1 0=0.1 (Fig. Sb, right
half) is compressed relative to its phase respoI1se curve
when 0 = 1 (Fig. 4b, right half). Because a diurnal
model is asleep while its on-cells are very sensitive to
light pulses, the residual phase shift during the sub-
jective night of a diurnal model is greater than the
residual phase shift during the subjective day of a
nocturnal model. Thus the "adaptive value" of these
differences between nocturnal and diurnal animals
arise in our model from the simple fact that nocturnal
animals go to sleep in respoI1se to daylight. These
differences can be more quantitatively assessed when
more data are collected about how phase response
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8 Circadian Period and the Transmitter Decay Rate

Parameter Cs essentially determines the dirnensionless
period of the freerunning gated oscillator. Figure 7a
shows that for sufficiently small C s' the period of the
oscillation varies linearly with Cs 1. Thus the slow rate
of transmitter accumulation determines a long period
of the oscillation.

By contrast with the linear dependencc: of period
on c; 1, the model period is insensitive to the choice of
the other parameters within a wide range. This impor-
tant property of our model, which is the basis of its
claim to being a "clock", is often assumed as a
postulate in other circadian models. Figure 7b illus-
trates the insensitivity of the period by plot~ing the
period as a function of parameter C l' Over most of the
parameter range of C 1 values that cause oscillations,
the period is approximately constant. At the small C 1
values that border the parameter range gi~ing rise to
off-diagonal limits, the period increases rapidly. At the
large C 1 values that approach the range of diagonal
limits, the period remains approximately constant
until C1 attains a value where the solution bifurcates to
diagonal limits.

In summary, given any fixed choice of Cs' the
period of the oscillator is essentially determined no
matter how the other parameters are chosen, except
near the limiting parametric values where the oscil-
lation is quenched.

An increase of Cs from zero causes the following
sequence of solutions to occur, When Cs =0, Z1 and Z2
are constant by (7) and (8). The system approaches off-
diagonal limits except possibly when z 1 = Zl' As soon
as Cs >0, large amplitude oscillations occur. At suf-
ficiently large C s values, diagonal limits ocl;ur.

9 Dependence of Solution Types on Signal Function:
The Sigmoid Case

All of the above properties hold when the positive
feedback signal f(w} and the negative feedb,ack signal
g(w} equal a threshold-linear signal function max(w,O).
When f(w) is chosen instead to be the sigmoi,d function

w2 if w~O

The choice of initial data determines which potential
will win. Oscillations are quenched at small C 1 values
for the following reason. Suppose that C 1 is small and
that the pair (x l' Z 1) has the initial advantage over the
pair (X2' z 2); e.g., Xl> X2 and z 1 > Z2. Then the initially
large term CJ(Xl)Zl' which gives positive feedback to
VI, is never offset by the small arousal C 1 to V2 as Z 1
depletes. That is, although z 1 is eventually depleted by
the large signal [(Xl)' thereby reducing positive feed-
back from Vl to itself, X2 can never recover because its
only sources of excitatory input come from its own
positive feedb~ck signal, which is small due to Xl'S
initial advantage, and from the small arousal level C 1.
Thus Xl remains larger than X2 for all time.

Varying each of the other parameters Cv C3, C4,
and C6 causes a similar bifurcation series to occur with
diagonal and off-diagonal limits flanking out-of-phase
oscillations. Table 2 depicts whether an increase or a
decrease of a given parameter moves the system from
diagonal to off-diagonal limits. An increase in C2
causes such a transition because it magnifies the
positive feedback signals that help Vl and V2 dominate
each other. An increase in C2 thus has an effect similar
to a decrease in C1. An increase in C3 or C4 causes
similar transitions because it enables a negative feed-
back signal of fixed size to have a larger inhibitory
effect on its target population. The case wherein C 4 = 0
deserves special mention. Then, by Eqs. (5) and (6), no
inhibition couples the two-dimensional system (Xl,Zl)
and (X2,ZJ. Then, each system (Xl,Zl) and (X2,ZJ
approaches a unique limit. Consequently, due to the
symmetry of Eqs. (5) and (6) and (7) and (8), the 4-
dimensional system (5H8) approaches a limit on the
diagonal. We emphasize this fact because of its physi-
cal importance: inhibitory coupling between on-cells
and off-cells in necessary in order for any oscillations
to occur. Thus the present model does not take the
existence of oscillators for granted and then go on to
study how coupling between such oscillators alters
their properties, as many contributions based on
classical oscillators have done. Instead. we study in
detail the mechanisms that generate the oscillatory
properties of each pacemaker.

A decrease in C6 causes ~similar oscillation series
for a more subtle reason. Large values of C6 cause both
of the positive feedback signals J(Xl)Zl and J(XJZ2 to
decay so much that the arousal term C 1 can drive the
system to a diagonal limit. Small values of C6 prevent
transmitters from being depleted. Consequently, the
transmitters can only accwrtulate towards their max-
imal value of 1. Then an initial advantage of (say) Xl
over X2 tends to be preserved by the large positive
feedback signal function J(xJ, since Zl never depletes
enough to cause a significant reduction in J(Xl)Zl'

!(W)={;i + w"
(25)

w<o,if

then a much ri<:her family of solution types can occur.
Sigmoid signal functions play an important role in

competitive feedback networks whose feedback signals
are not modulated by slow gates. In such networks, the
sigmoid signal function attenuates small activities
(noise suppression) and amplifies large acti',ities (con-





47

II.
;

1='
"-

e=-- fa

II

tt..~. &on ~.. ~. &0. I~. 10" ~.. ocrr ..
II 1&(5

Fig. 6a-e. Oscillation sequence in response to a decrease in dimensionless arousal C1 (threshold-linear case). a Diagonal limits (C1 =0.18).
b Small amplitude oscillation (C1 =0.17). c Large amplitude oscillation (C1 =0.1: Table 1). d Plateau oscillation (C1 =0.0895). e Off-diagonallimit (C I = 0.0893). The same time scale is used on all the graphs .

Table 2. Oscillation sequences due to individual parametric variations (Cs' = 0.01; threshold-linear case)

b da c

limit on the diagonal
.~1 = Xl and
z. = Z..

Large amplitude
oscillations,
withC1...C.as
in Table 1

Large amplitude
oscillations
with long plateau

Limit ofT the diagonal
.~I wins 01:
.~2 wins

Small amplitude
oscillations
near the diagonal

Large C1:
C1 >0.177

Small C2:
C2< 1.28

Small C3:
C3 <0.062

Small C4:
C4<3.46

Large C6:
C6>23.0

Small C\:
0.0895> C1

Large C~:
2.24<Cz

LargeC3:
0.lO6<C:r

Large C4:
5.34< C4

Small C/I:

8.34>C/I

C1=O.1
.

decreasing C 1

.
increasing Cz

.
increasing C 3

I

increasing C4

.
decreasing C6

Cz = 2

C3 = 0.1

C4 = 5

C. 

= 10

mean threshold value, then the total population signal
is a sigmoid function of its mean activity.

In the following examples, the nonlineal: curvature
of f(w) causes the new oscillatory types, ra.f:her than a
rescaling of numerical paTameters. This claim is illus-
trated in Fig. 8, which graphs the previous choice of
threshold-linear signal function and the pre:sent choice
of sigmoid signal function. In the threshold-linear case,
w~ chose C2=2 so that CJ(w)=2w when w~O. In the
sigmoid case, we choose C2 = 1 and C 7 =0.2, so that

trast enhancement) before storing the contrast en-
hanced activity pattern in short term memory via
feedback (Grossberg, 1982b). When slow gates can
modulate sigmoid feedback signals, as in a gated
pacemaker, then the storage process is replaced by a
wide variety of oscillatory possibilities.

Sigmoid signal functions also have a simple physi-
cal interpretation that is of independent interest.
Suppose that f(w) is the total output of a large
population of cells. Let each cell fire a signal of unit
intensity when its activity exceeds a threshold r;
otherwise let the cell output equal zero. Suppose that
the number p(T) of cells having a fiXed threshold r is a
bell-shaped function of r. Then

w

f(w)= S p(t)dr (54)
0

(55)
W2C2!(W) = O.04+W2

ifw~O, which remains very close to 2w throughout the
inten'al [0,0.4] wherein the graphs of Xl (t) and X2(t)
are concentrated. Note that at very small values of
WE [0, 0.4], the sigmoid signal is smaller than 2w,
whereas at larger values of wE [0, 0.4], the sigmoid

is a sigmoid function of w. Thus if the signal thresholds
of a cell population are randomly distributed about a

I
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Table 3. Typical parameter values for a sigmoid nocturnal pace.
makerOFF

DIAGONAL
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LIMITS c) = 0.10
C 2 = 1.00
C3= 0.10
C4 = 5.00
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Fig. 7a and .b. Cir~ian period (threshold-linear case). a For small
values of the dimensionless transmitter accumulation rate (:5' the
period varies linearly with c; 1. When C5 >0.143, the system goes to
diagonal limits, b The period is relatively insensitive to the dimen-
sionless arousal level C 1 exccpt near its extreme values where
oscillations break down

signal exceeds 2w, Thus 2w closely interpolates the
sigmoid signal throughout the interVal of interest, In
particular, we choose C7 =0.2 so that W2/(C; +w2)=t
when \",=0.2. Thus the sigmoid signal function attains
half its maximum value at the estimated average value
0.2 of Xl and Xl' Table 3 summarizes the choice of
parameters off which. we will perturb to study the
sigmoid case, Parameters C I' C3, C4, Cs, and C6 have
the same values as in Table 1, and paraij1eters Cz and
C7 are chosen so that the sigmoid function interpolates
the threshold-linear function.

10 Parametric Structure of Oscillations: Si!gmoid
Signal Function

In this section, we will summarize the oscillation
sequences that can occur when the parameters C1' C2'
C3' C4, ~nd C6 are separately varied. The next s:ectioD
will consider the remarkable oscillation sequeno~s that
can occur when C7 is varied. These new sequenc:es can
also occur when anyone of the other parameters is
varied, albeit in a region of parameter space othe:r than
that summarized in Table 3.

A decrease in the arousal parameter C i generates
an oscillation sequence much like that described in
Sect. 7 and illustrated in Fig. 6, with one n,otable
exception. In Sect. 7, a decrease in C 1 transformed
large amplitude oscillations into plateau oscillations in
which Xl and X2 overshot and then decreased to a
plateau level before being inhibited (Fig.6d). As Cl
decreased in: this parameter range, the period of the
oscillation increased continuously (Fig..7b). By con-
trast, in the sigmoid case, a decrease of C I transforms a
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Fig. 9a-c. Rippled plateau solutions in response to a decrease in dimensionless arousal C I (sigmoid case). a At C I =0.076048, a large amplitude
oscillation occurs. b At C I =0.076047, a second bump occurs during each cycle. c At C I =0,066, the plateau contains four ripples. At slightly
smaller C I values, ofT-diagonal limits occur
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large amplitude oscillation (Fig. 9a) into an oscillation
in which a second bump occurs in the graphs of x 1 and
x., instead of a smooth plateau (Fig.9b). As this bump
appears, a discontinuous increase of the period also
occurs. A further decrease of C 1 eventually causes a

second, then a third, etc., bump to occur in the graphs
of x I and x2 (Fig.9c). Each new bump is accompanied
by a discontinuous increase of the period. At suf-
ficiently small values of C I' these oscillations are
replaced by off-diagonal limits, as in the threshold-
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linear case. These rippled plateau solutions have never
'been observed during our numerical studies of the
threshold-linear case and are thus presumably due to
the nonlinear form of the sigmoid signa1 function.

Changing each of the parameters C2' C3, C4, and
C6 in the direction described in Table 2, while holding

;; the other parameters at their values in Tab1e 3, also
,,'; generates the sequence of diagonal limits, small ampli-

tude oscillations, large amplitude oscillations, ripp1ed
plateau oscillatiQns, and off-diagona1limits.

c) larger amplitude oscillations, monotone in-
cre~se in period

d) smal)er amplitude oscillations, levelling off of
period

e) mittens (period doubling)
f) oyster shells (slowly modulated mittens)
g) sequence clusters (periodic sequences of oscil-

lation clusters)
h) complex transitions, chaos1
i) unstable small amplitude oyster shells
j) diagonal limits.

Figure 10 illustrates these solution types.
The diagonal limits (Fig. lOa) that are found when

C 7 is very small are due to the fact that the positive
feedback signals !(Xl) and !(Xz) are approximately
equal and constant in this range. The large amplitude
oscillations (Fig. lOb) that occur at slightly lar8er C1
values are due to the fact that !(wyapproximates a step
function with a transition from approximately 0 10 1 as

11 Mittens, Oyster Shells, Sequence Clusters, and
Chaos

When C7 is increased with the parameters C1, ..., C6
fixed at their values in Table 3, then the following type
of oscillation sequence is observed:

a) diagonal limits
b) large amplitude, small period oscillations

a

I..

b

I..

~~
Mil'.

1I

~

t:
' ~ ,~~~~.. ~. ~. ~a ~a L&'I I:. a:~ a:C1 _: .:. ,'.~ ,:n c r..

Xl 1.cS
Fig. 10a-j. Oscillation sequence in response to an increase in the half-maximum argument ~'= C7 of the sigmoid signal .{(w). a Diagona.llimit
(C7 =0.0577). b Fast large amplitude oscillation (C7 =0.0578). In this case, the values of Z1 are so small that the graphs of x1(r) :md =1(r)
intersect. c Longer period and larger amplitude oscillation (C7..O.17). d Smaller amplitude oscillation and same period as in c (C7 zO.25).
e Mittens (C7=0.348). rOyster shells (C7=O.35). g (8,5,5) seqpence clpster (C7 =0.36). b Triplets (C7 =0.363). i Unstable small amplitude
oyster shells become regular periodic (C7 ..0.368). j Diagonal limit (C, =0.375). The phase portraits have been enlarged in rand g
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w exceeds C7 (Fig.lla). The longer periods of large
amplitude oscillations (Fig. lOc) that are found at
larger C7 values (Fig. llb} can be explained as follows.
The reversal of the relative sizes of Xl and X2 occurs
relatively quickly. This reversal is called a jump in the
terminology of singular perturbation theory (Sect.l2).
At larger values of C7, the maximal difference between
Xl and X2 is also larger. Hence Zl and Z2' which change
slowly (SectS), take longer to equilibrate to the Xl and
X2 values. In the terminology of singular perturbation
theory, this slow process is said to take place on the
slow manifold (Sectl2). The longer duration of the
slow manifold process is the major factor determining
how the period cart increase with C ,.

As C7 increases further, one might expect, as in
Sect 7, that small amplitude oscillations will be gener-
ated, because an increase in C7 acts in much the same
way as an increase in Cl or a decrease in C2 (Fig.lla).
However, this is not all that happens. The amplitude of
oscillations does begin to decrease as the period levels
off (Figs. lOd and lib). As C7 increases further, how-
ever, period doubling occurs (Fig.1Oe) due to the

attenuation of alternate peaks in the graphs of each Xi
and z" i = 1, 2 ("mittens"). When this occurs, the largest
peaks and troughs of Xl(t) are aligned with the largest
troughs and peaks of X2(t), respectively. Consequently
the graphs of Xl(t) and X2(t) are out of phase, but no
longer 1800 out of phase.

At larger C7 values, the envelopes of the mittens
are modulated on a slow time scale (Fig. lOt). We call
this oscillation type an oyster shell due to the ap-
pearance of its (Xl,Zl) phase portrait. A striking fea-
ture of the oyster shell is that a periodic modulation of
the envelope of oscillation peaks coexists v/ith a per-
iodic modulation of the envelope of oscillation
troughs. This type of envelope modulation differs, say,
from the modulation that occurs during the beats of a
harmonic oscillator, where the peaks and troughs
share a common envelope.

At larger C7 values, periodic sequences of oscil-
lation clusters appear. Figure 109 depicts an oscillation
in which a cluster of eight peaks is followed by two
repetitions of a different cluster of five peaks, after
which the (8; 5, 5,) sequence repeats itself. Interspersed
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of f(w) acts much like a large CI or small C2 value
(Sect. 7).

Why does a series of complex oscillation types
occur instead of just a steady reduction in the ampli-
tude of a regular periodic solution, as when f(w) is a
threshold-linear signal function (Sect. 7)? A math-
ematical explanation of this phenomenon is not yet
available, but the following facts indicate that the
quadratic nonlinearity in f(w) at small w values causes
the phenomenon.

In all of our numerical studies of these oscillations,
Xl(t) and X2(t) remain smaller than C7 at all times t~O.
Within this range of values, f( w) is well approximated
by w2jC;. To test whether a quadratically nonlinear
signal function can generate Fig. lOa-j, we replacc~d the
sigmoid f(w) by w2jC; and verified that a co1.nplex
oscillation sequence was in fact generated using this
quadratic signa:l function.

An indication of how mittens (Fig. lDe) aI1d the
modulated mittens, or oyster shells (Fig. lOt), may be
generated is contained in the following intuitive argu-
ment. Mittens consist of small amplitude peaks that
alternate with large amplitude peaks. The large ~unpli-
tude peaks are analogous to the large amplitude peaks
of a regular periodic solution (Fig. lad). Our problem
is to understand why the smaller peaks are not full size.
Consider the time t=cx in Fig.l2a at which Xl(t)
attains a minimum. At this time, Xl and X2 begin to
switch because Z2 is sufficiently depleted to mal.e

.
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Fig. Ila and b. Dependence of sigmoid signal function and oscil-
lation period on C7, a A family of sigmoid signal functions param-
eterized by C7, b Period as a function of C7" Note the constancy of
th~ period except where the ~igmoid approximates a 0-1 switch
(small C7) or near where complex oscillations occur (large C7) ,:

despite the fact that !(Xl)~O (Sect. 3). Consequently xi
begins to grow. A complete switch ftom Xl to Xl is
caused when, as Xl grows, also !(Xl)Zl grovls suf-
ficiently qtucklyto support this regenerative reaction.
Figure 12b indicates, however, that when Xl is in this
range of values, and numerically approximates 0.1, the
value 6f x~/C; is very small. By"very small", WC~ mean
small compared to a linear signal function 1.3Xl at
which small amplitude; regular periodic oscillations
are found (Table 2). The insufficient positive fel~dback
from x~/c; prevents Xl from completing a full switch
with Xl'

Que to Xl'S partial growth, Zl continues to deplete,
thereby causing a decrease in !(Xl)Z 1 that accolItpanies
a decrease in Xl between times t=.8 and t=y. During
these times, Zl attains an intermediate set of values,
neither maximal nor minimal, because Xl itself :aas not
reached its extrema. As Xl continues to decrf:ase, Zl
begins to accumulate again,' this time starting from a
larger initial value than is attained at time t= IX. Thus
when the next opportunity for switching betvreen Xl
and Xl occurs at time t=y, !(X1)Zl is bolsterl~d by a
large Zl value. This boost enables Xl to move towards

among the modulated solutions are relatively simple
patterns, such as the unmodulated triplets depicted in
Fig. lOb. This complex sequence of patterns suggests
that chaotic solutions may be present for some C7
values.

Only after these complex waveforms are generated
does the system experience a progressive decrease in
the amplitude of oyster shells (Fig.1.0i). Figure 1.0i
indicates that the small amplItude oyster shell is
unstable, since the solution eventually approaches a
small amplit)Jde regular periodic solution. At still
larger C7 values, diagonal limits are obtained. The
diagonal limits occur because a sufficient attenuation
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a value of approximately 0.2. By Fig. 12b, xf/c~ is
much larger when Xl =0.2 than is the comparison
linear signal function 1.3x 1. Thus a better switch
between Xl and X2 is assured than in the threshold-
linear case, where small amplitude oscillations
occurred.

12 Singular Perturbation Analysis

This section outlines a singular perturbation analysis
of how a gated pacemaker oscillates. The analysis can
be expanded into a formal proof using known tech-
niques for building isolating blocks in four-
dimensional fast-slow dynamical systems (Carpenter,
1977a, b). The discussion will focus on system (5H8)
when f(w)=g(w)=max(w,O) and L(t) =0 '(free-run).
We consider this system in the singular limit where Cs
is very small. Then z 1 and Z2 change very slowly
compared to Xl and X2 except near the set fI' where
both Xl =0 and X2 =0. The set

g={(Xl,X2,Zl,ZJ:Xl=O and X2=O} (57)

is called the slow manifold of the system. Off the set 9',
Zl and Z2 can be approximated by constants along
system trajectories.. Then the four-dimensional system
(5}-(8) is approximately described by the two-
dimensional fast system ff

Xl = -Xl +(l'-Xl)[Cl +CJ(XI)Zl]

-(Xl + C3)C4U(XJ

and

X2= -X2 +(1-Xi)[Cl +Czf(X2)Zz]

-(X2+C3)C4g(Xl) (59)

in which Zl and Zi are constant. The fast s;{stem (58)
and (59) can be rewritten in the form

>'1 =al<Y1) [b1<Y1)-C(Yl' Y2)] (60)

and

>'2 =a2<Y2) [bZ(Y2)- c(y l' Y2)] (61)

in tenDS of the variables }'i=Xi+C3, i=1,2.
When a competitive system has this form, it is

called an adaptation level system. Adaptation level
systems have the property that all their traje(:tories are
attracted to equilibrium points (Grossbe:rg, 1978,
1982b). Consequently, the trajectory approaches the
slow manifold .9'. When this occurs, Xl ~O ~lnd X2 ~O
so that even if C 5 is small, the rates of change: of z 1 and
Z2 become significant. Then the motions of Zl and Z2
are studied while the trajectory remains on ,9', In other
words, we consider e~uations

7.1 = Cs[l- Zl- C6!(Xl)Zl] (7)

and

7.2 =Cs[1-z2- C6!(Xz}Z2] (8)

given the hypothesis that Xl and .'<2 satisfy the simul-
taneous equations

07 -Xl +(l-xJ[Ct +Czf(xt)z\]

-(Xl+CJC4g(xz} (62)(58)
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Suppose for definiteness that the trajectory is not in
Y at time t=O. Figure 13 indicates how the trajectory
moves in F. Figure 13 is an (Xl'XZ) phase poru'aitin
which ~wo curves intersect. One curve describes the set

.S"j(ZI) = {(Xl,X2):Xl =O}. (68)

This set is the solution curve of (62) under the hy-
pothesis that Zl remains constant. The other curve
describes the set

9'2(ZJ={(Xl,X2):X2=0}. (69)

This set is the solution curve of (63) under the hy-
pothesis that Z2 remains constant The values of ;~l and
Z2 can be held fixed because the trajectory is not near
9' at the outset.

The set

.S"(Zl' zJ=.S"1(z.)n.S"2(z2) (70)

and

0= -X2 +(1- Xl) [Cl + C2!(XZ>Z2]

-(X2+C3)C4g(XI)' (63)

In this case, Xl and X2 satisfy equations of the form

Xl =hl(ZI,Z2) (64)

and

describes the subset of S'" that is reachable fr()1n oF
given the initial values Zl and Z2' The set S"'~:Zl,Z2)
consists of three points PI, Pi, P3 in Fig. 13. These
points are equilibrium points of (Xl' X2) in th~: two-
dimensional fast system !i'. To determine how
[/(z l' Z 2) is approached, we need to know the stibility
of these equilibrium points.

To analyse stability, noie that set S"'l(Zl) is a set of
points (Xl,X2) which satisfy an equatia;n of the form

Xl =H(X2,Zl)' (71}

Similarly, the set S"'2(Z2) satisfies an equation of the
form

XZ=hZ(Zl'Zz} (65)

which represent a single-valued branch of the solution
of (62) and (63). Then (7) and (8) become

Zl = Cs[{ -Zl"- C6!(h1(Zl' ZJ)Zl] (66)

x2=R(Xl,Z2)' (72)

The same function R(x, z} appears in both eq\Jations
due to the symmetry of (62) and (63). H(x.z) is single-
valued if and only if

C2~1+C1+C1/C3. (73)

The parameter values in Table 1 satisfy (73). If (73) is
satisfied, then

~ ~O. (74)
uX

An ~quilibrium point is stable if

oR oR
7j;(Xl' zz)7j;(xz, Zl)< 1 (75)

and is a saddle poin1if

oR oR ,-~,

and

z2=C;[1-Z2-C6!(h2(Zl,ZJ)ZJ. (67)

This two-dimensional system determines the motion of

(z l' Z J unless a phase point is reached at which a

solution (Xl' X2) of (66) and (67) no longer exists on .:fl.

At such a: time, the trajectory jumps off .:fl. Then ~

controls system dynamics until Xl and X2 approach .:fl

once again.
A singular solution of the system is constructed

from alternating solution segments on ~,.:fl,~,.:fl, Singular perturbation techniques can be used to show

that solutions of the full system exist close to a singular

solution when C 5 is very small. The following de-

scription indicates how the phase portraits of ~ and.:fl

can generate a singular periodic solution.

-;;-(Xl,Z2)-;;-(X2,Zl» 1. (/0)
ox ox

Using inequalities (75) and (76), we verify below that
P z is a saddle point, whereas P 1 and P 3 are stable
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equilibrium points. Thus all trajectories that start off
the one-dimensional stable manifold of P 2 will be
attracted to one of the stable equilibrium points P 1 or

P3,
Equilibrium point P I is stable because the graph of

.9'2(Z2) is flat near PI; hence its slope ~(Xl,Z2)=O at
U.X

P I' Equilibrium point P 2 is a saddle point because the
oH

graph of .9'2(Z2) has a slope -:;-(Xl' Z2) with respect to
uX

Xl' whereas the graph of .9'l(Zl) has a slope

1 (77)
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motion in [I' that starts at P 3 to continue for all time.
This will happen if [l'l(Zl) and [l'2(Z2) never become
tangent, as in Fig. 14a. Then instead of jumping off [I'
into::F, the sets [l't(Zl) and [l'2(Z2) can continue to shift
slowly as the system approaches an off-diagonal limit.

By contrast, an intersection of [l'l(Zl) and [l'fzz)
such as that depicted in Fig. 15 may also allse. Then
[I'(Zt' zJ contains a single ~table equilibrium point of
::F. If this portrait persists, then an equilibrium point

oR ,--,

a; (X2' Zl)

when it is considered as a function of Xl' Figure 13
shows that

oR 1
a;(Xl'ZZ)< oR (78)

~(X2' Zl)
uX

at P2' Since both slopes in (78) are negative, (78)
implies (76). The stability of P 3 can be similarly
determined.

Consider a trajectory that starts away from the set
{P1,P2,P3} and quickly jumps towards P3. -In the
singular solution, the trajectory then lies in .9'(Zl' Zz),
Once the trajectory is in .9'(z l' Z2)' the equations (66)
and (67) governing the slow manifold.9' take over and
Zl and Z2 slowly change. These changes cause the
trajectory to move within .9'. By Fig. 13, P3 lies at an
(Xl' x,,) position where Xl is large and X2 is small. If Zl
and Z2 start at moderate values, then (66) causes a
decrease in Zl while (67) causes an increase in Zv These
changes tend to cause an upward shift in the set .9'z(zJ
and a downward shift in the set ..9"l(Zl)' As this shift in
the sets takes place, the singular trajectory
(Xl,X",Zl,ZJ continues to satisfy the constraint that

(Xl' X,,)E.9'(Zl' zJ.
The motion in.9' can continue until the sets .9'l(Zl)

and .9'2(ZZ) become tangent (Fig. 14a} and then separate
(Fig. 14b). When this occurs, the trajectory suddenly
leaves .9'. Its motion is then controlled by ~, By
Fig. 14b, there is only one equilibrium point P in ~
that can attract the trajectory at this time, By (75), P is
a stable equilibrium point. A rapid jump of (Xl,X2) to
P thus occurs, Then the system is in .9' again, but now
Xl is small and X2 is large. Hence Zl tends to increase,
thereby tending to drag..9"l (Zl) upward, and Z2 tends to
decrease, thereby tending to drag ..9"2(Z2) downward
until the trajectory is forced off .9' onto ~, and the
cycle repeats itself.

Two other outcomes are easily interpreted using
this type of geometric description. It is possible for a
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== mechanistic components (OIds, 1977). Thus the results
herein about the cit:cadia~ wake-sleep and activity.,rest
cycle may find application in studies of motiv~ltional
rhythms (Rosenwasser et al., 1981). Gated dipole cir-
cuits have also been used to help artalyse (;ertam
perceptual and cognitive phenomena (Grossberg, 1980,
1982b, 1983a, b). Although the rhythms that oc:cur in
these contexts are much faster than circadian rh:ythms,
the same gated pacemaker circuit can be made to
generate rhythms of essentially any period jllst by
altering the dimensionless gain Cs of its tran~,mitter
gating prQcess (Sect. 8). Thus the parametric !;tudies
reported hereirt may find their way irtto discussions of
fast perceptual and cognitive rhythmic phenomena
that seem to be unrelated to circadian rhythms, 'but on
a mechartistic level may be properties of gatcd pace-
maker circuitry.
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Fig. 1.5. A switch from' to Y is followed by approach to a diagonal
equilibrium point on Y. Parameters C2' C3, and C4 are chosen as in
Table 1. Parameter C1 =0.2

0.00

on the diagonal is approached. Only a finite number of
equilibrium points exist when the signal functions are
threshold-linear.

The above geometrical description indicates the
issues that need to be resolved to prove rigorous
theorems about this system. For example, a complete
understanding of how the sets S"l(Zl) and S"2(zi)
change as functions of Zl and Z2' given all possible
choices of parameters, is needed. One also needs to
know the location of the stable equilibrium points in
.9'(Zl'ZZ) when L<I'l(Zl) and .9'2(Z2) are tangent, and
whether a jump in :;; between a pair of these equilib-
rium points will cause Zl and %2 to increase or to
decrease during the next motion within S".

13 Concluding Remarks: Interdisciplinary Applications

This article analyzes the parametric structure of osci]-
lations that c~n be generated by a gated pacemaker.
Othel articles in this series augment the gated pace-
maker model with metabolic feedback and slow gain
control processes that together help to explain difficult
data such as split rhythms, several types of after-effects.
Aschoffs: rule and its exceptions, results of ablation
studies and hormonal manipulations, and relation-
ships between antidepressants and circadian rhythms
(Carpenter and Grossberg, 1983a, b). The augmented
circadian model is homologous to a mode] of the
hypothalamic eating circuit (Grossberg, 1982a, 1.983a).
We believe that this homology illustrates how different
hypothalamic circuits ma:y be constructed from similar
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