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ABSTRACT

A theory is developed of how recognition categories can be learned in response to a
temporal stream of input patterns. Interactions between an attentional subsystem and an
orienting subsystem enable the network to self-stabilize its learning, without an external
teacher, as the code becomes globally self-consistent. Category learning is thus determined
by global contextual information in this system. The attentional subsystem learns bottom-
up codes and top-down templates, or expectancies. The internal representations formed
in this way stabilize themselves against recoding by matching the learned top-down tem-
plates against input patterns. This matching process detects structural pattern properties
in addition to local feature matches. The top-down templates can also suppress noise in
the input patterns, and can subliminally prime the network to anticipate a set of input
patterns. Mismatches activate an orienting subsystem, which resets incorrect codes and
drives a rapid search for new or more appropriate codes. As the learned code becomes glob-
ally self-consistent, the orienting subsystem is automatically disengaged and the memory
consolidates. After the recognition categories for a set of input patterns self-stabilize, those
patterns directly access their categories without any search or recoding on future recogni-
tion trials. A novel pattern exemplar can directly access an established category if it shares
invariant properties with the set of familiar exemplars of that category. Several attentional
and nonspecific arousal mechanisms modulate the course of search and learning. Three
types of attentional mechanism-priming, gain control, and vigilance-are distinguished.
Three types of nonspecific arousal are also mechanistically characterized. The nonspecific
vigilance process determines how fine the learned categories will be. If vigilance increases
due, for example, to a negative reinforcement, then the system automatically searches for
and learns finer recognition categories. The learned top-down expectancies become more
abstract as the recognition categories become broader. The learned code is a property of
network interactions and the entire history of input pattern presentations. The interactions
generate emergent rules such as a Weber Law Rule, a 2/3 Rule, and an Associative Decay
Rule. No serial programs or algorithmic rule structures are used. The interactions explain
and predict properties of evoked potentials (processing negativity, mismatch negativity,
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P300). Malfunction of the orienting system causes a formal amnesic syndrome analogous
to that caused by malfunction of medial temporal brain structures: limited retrograde am-
nesia, long-range anterograde amnesia, failure of memory consolidation, effective priming,
and defective reactions to novel cues. Comparisons with alternative theories of amnesia
are made.

1. Introduction: Self-Organization or Recognition Categories

A fundamental problem of perception and learning concerns the characterization of how
recognition categories emerge as a function of experience. When such categories sponta-
neously emerge through an individual's interaction with an environment, the processes are
said to undergo self-organization (Basar, Flohr, Haken, and Mandell, 1983). This article
develops a theory of how recognition categories can self-organize, and relates these results
to recent data about evoked potentials and about amnesias due to malfunction of medial
temporal brain structures. Results of evoked potential and clinical studies suggest which
macroscopic brain structures could carry out the theoretical dynamics (Section 19). The
theory also specifies microscopic neural dynamics, with local processes obeying membrane
equations (Appendix).

We focus herein upon principles and mechanisms that are capable of self-organizing
stable recognition codes in response to arbitrary temporal sequences of input patterns.
These principles and mechanisms lead to the design of a neural network whose parameters
can be specialized for applications to particular problem domains, such as speech and
vision. In these domains, preprocessing stages prepare environmental inputs for the self-
organizing category formation and recognition system. Work on speech and language
preprocessing has characterized those stages after which such a self-organizing recognition
system can build up codes for phonemes, syllables, and words (Grossberg, 1918, 1985a;
Grossberg and Stone, 1985). Work on form and color preprocessing has characterized those
stages after which such a self-organizing recognition system can build up codes for visual
object recognition (Grossberg and Mingolla, 1985a, 1985b).

Code Stabilization by Top-Down Exp~tancies
Mathematical analysis and computer simulations of the neural network described in the

present article show how the network can learn bottom-up codes and top-down expectancies
in response to a temporal stream of input patterns. The internal representations formed in
this way stabilize themselves against recoding in response to irrelevant input patterns by
using the matching properties of the learned top-down expectancies. This code-stabilizing
mechanism also suppresses noise in the input patterns, and can attentionally prime a
network to anticipate an input pattern or category of input patterns. Moreover, the
network automatically rescales its noise criterion to ~ach pattern context: A particular
mismatched feature which is processed as noise in a complex pattern with many features
may, in the context of a simple pattern with few features, signal a pattern mismatch.
Thus the theory shows that a definition of signal vs. noise which is sensitive to the global
structure of input patterns is an intrinsic property of the methanisms whereby recognition
codes for these patterns are learned in a self-stabilizing fashion.

Attentional and Orienting Subsystems
The class of networks that we consider develops the adaptive resonance theory. The

theory's relationships to a wide variety of interdisciplinary data and other models is d~
scribed in Grossberg (1976b, 1980, 1982, 1984a) and Grossberg and Stone (1985). In thIS
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theory, an interaction between two functionally complementary subsystems is needed to
process familiar and unfamiliar events. Familiar events are processed within a consum-
matory, or attentional, subsystem. This subsystem establishes ever more precise internal
representations of and responses to familiar events. It also builds up the learned top-down
expectations that help to stabilize the learned bottom-up codes of familiar events. By
itself, however, the attentional subsystem is unable simultaneously to maintain stable rep-
resentations of familiar categories and to create new categories for unfamiliar patterns.
An isolated attentional subsystem is either rigid and incapable of creating new categories
for unfamiliar patterns, or unstable and capable of ceaselessly recoding the categories for
familiar patterns (Section 12).

The second subsystem is an orienting subsystem that overcomes the rigidity of the
attentional subsystem when unfamiliar events occur and enables the attentional subsystem
to learn from these novel experiences. The orienting subsystem is essential for expressing
whether a novel pattern is "familiar" and well represented by an existing category, or
"unfamiliar" and in need of a new category.

All input events start to be processed by the attentiona~ subsystem. A familiar event
can activate a top-down template, or expectancy, which it tries to match within the at-
tentional subsystem (Figure 1). A successful approximate match can deform, amplify, and
sustain in short-term memory (STM) the activity pattern that was initially activated by
the input within the attentional subsystem. Amplified, or resonant, STM activities con-
stitute the fully elaborated recognition event. They inhibit the orienting subsystem and
engage the learning, or long-term memory (LTM), process. A familiar event can maintain
or modify its prior learning as its recognition takes place.

An unfamiliar event also starts to be processed by the attentional subsystem. Such an
event may also activate a category which thereupon reads-out a top-down template. If the
unfamiliar event can approximately match this template, then it can be recognized as an
exemplar of the category on its first presentation. If the unfamiliar event is too different
from familiar exemplars of the sampled category, then it cannot approximately match this
template (Figure 2). A mismatch within the attentional subsystem activates the orienting
subsystem. Activation of the orienting subsystem functionally expresses the novelty, or
unexpectedness, of the unfamiliar event. The orienting subsystem, in turn, rapidly resets
the active representation within the attentional subsystem as it simultaneously energizes
an orienting response.

The reset of the attentional subsystem by the orienting subsystem leads to the selection
of a new representation within the attentional subsystem. This new representation may
cause yet another mismatch, hence another STM reset event and the selection of yet
another representation. In this way, the orienting subsystem mediates a rapid search which
continues until a representation is found that does not cause a large mismatch. Then the
search ends, an STM resonance develops, and the learning process can encode the active
representation to which the search led. The system's recognition categories are her~by
altered in either of two ways. If the search leads to an established category, then learning
may change the criteria for accessing that category. If the search leads to uncommitted
cells, then learning can add a new category to the recognition code.

This search process, although unfolding serially in time, is not controlled by a serial
mechanism. Rather it is driven by the successive release of nonspecific orienting bursts
that are triggered by automatic processing of mismatch even.ts. The entire history. of
learning determines the order of search in the network and, m turn., the new. leaz:nmg
which can occur at the end of a search. Thus the search process adaptlvely modIfies Itself
as the knowledge encoded by the network evolves. By con.trast, a prewire~ search tree
could not, in principle, maintain its efficiency after unpredIctable c~an~es m k~owle~ge
occurred. Instead the novelty-sensitive orienting subsystem, through Its mteractlons WIth
the evolving kno~ledge of the attentional subsystem, defines an efficient, self-adjusting
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Figure 1. Interactions between the attentional subsystem and the orienting subsystem:
Adaptive bottom-up. signals and top-down signals between levels F 1 and F 2 determine
whether the input pattern will be matched or mismatched at Fl. A match inhibits the
orienting subsystem A.

search routine.
Tuning or Categories by Attention
The criterion of mismatch is also determined by a parallel mechanism. In particular, a

nonspecific vigilance, or attentional, parameter determines how fine the learned categories
will be. If, for example, vigilance increases due to negative reinforcement or other attention-
focussing agents, then the system will automatically search for and learn finer recognition
categories.

Direct Access to Familiar Categories and Memory Consolidation
Although an unfamiliar event may initially drive a search for an internal representation,

after this representation is learned, future presentation of the input pattern need not engage
the search process. Instead, the memory consolidates and a familiar input pattern can
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Figure 2. A mismatch at Fl between the bottom-up input pattern and the top-down
template, or expectancy, reduces inhibition from Fl to the orienting subsystem A. The
orienting subsystem can then release a burst of nonspeciAc arousal capable of resetting
short term memory (STM) at F2.

directly access its recognition category. That is, the familiar pattern can directly activate
its code with neither search nor recoding.

Top-Down Subliminal Priming
A familiar event may, however, also engage the search process (Figure 3). This can

occur when the system is primed to expect a different familiar event, so that a top-down
expectancy is already active when the familiar event occurs. The familiar input event
may mismatch this expectancy. A search will then be elicited leading to activation of
the familiar event's bottom-up code and top-down expectancy. Such a search resets the
erroneous code so that the correct code can be activated, but does not lead to learning of
a new category. By contrast, if the system is primed to expect a familiar event that then
occurs, a resonance can develop more rapidly than in an unprimed network. Consequently,
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anticipation of a familiar event can enhance recognition of that event by the network.

F2

LTM
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LTM
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Figure 3. Reset of a subliminal prime: (a) The top-down expectancy, or prime, sub-
liminally activates F) before the input pattern arrives. If the input pattern mismatches
the prime, then an arousal burst from A can reset STM at F 2 and thereby deactivate the
prime. (b) Then F) can access its correct F2 code. The subsequent match at F) between
the input pattern and a compatible top-down template prevents the input pattern from
activating A and thereby erroneously resetting the correct F2 code.

The ~odel's fiex~ble and dynamic relationship between matching, orienting, attention,
and learning proves Its worth by enabling efficient learning and self-stabilization of recog-
nition categories with any prescribed refinement. The coarseness of the categories is not
prewired. Nor is an identity match performed. In fact, the lea.rned top-down expectancies
become more abstract' as the categories become broader. Moreover, the network automat-
ically rescales its matching criterion so that even with a fi:xed level of attentional vigilance,
the network can both differentiate finer details of simple input patterns and tolerate la.rger
mismatches of complex input patterns. This same rescaling property defines the difference
between irrelevant noise and significant pattern mismatches. As with many other network
properties, the rescaling property also emerges from interactions between the attentional
subsystem and the orienting subsystem. H a mismatch within the attentional subsystem
does not generate a search, then the mismatched features are treated as noise in the sense
that they a.re eliminated from the critical feature pattern learned by the template. If
the mismatch does generate a search, then the mismatched features may be included in
the template of the category to which the search leads. Since the orienting subsystem is
sensitive to the relative degree of match between an input pattern and a template, finer
template mismatches with simple input patterns may drive a sea.rch, whereas larger mis-
matches with complex input patterns may not. Thus whole activity pattern3 across a field
of feature-selective cells, rather than activations of single cells or feature detectors, a.re the
computational units of the network.
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Short Term Memory and Long Term Memory
Although the top-down expei:tancies, or templates, that are learned by the network are

computed using deterministic laws, they support the recognition of categories whose degree
of fuzziness can be tuned by altering the level of vigilance. The coexistence of deterministic
computations with fuzzy, or seemingly probabilistic, rei:ognitions is made possible in the
network through interactions between short term memory (STM) and long term memory
(LTM) mei:hanisms. Using its fuzzy rei:ognition criteria, the network can transform a
continuum of possible input patterns into a discrete set of recognition categories.

Interaction of STM and LTM processes also enables the entire past learning experience
of the network to influence each of its future recognition and learning events. Thus the ap-
parently evanescent moment of recognition, or resonance, embodies all the knowledge that
the network has accumulated to that time. Recognition in such a network is intrinsically
context-sensitive.

Reconciling Local Features and Context-Sensitive Interactions
Using its context-sensitive interactions the network is able both to maintain stable in-

ternal representations against erosion by irrelevant environmental fluctuations and to learn
rapidly in a new environment. Although local properties of feature detei:tion are necessary
for building up such internal representations, local properties alone are insufficient to dis-
tinguish between relevant and irrelevant environmental inputs. The network's ability to
stabilize its learned codes against adventitious rei:oding is due to the same context-sensitive
~echanisID8 that make every recognition event reflect the network's global history of learn-

mg.
Thus we are led to consider how a single network can reconcile local features with global

context-sensitivity, serial search with parallel processing, discrete categories with continu-
ously varying events, deterministic computations with fuzzy sets, and stable memory with

rapid learning.

2. Bottom-Up Adaptive Filtering and Contrast-Enhancement in Short Term

Memory
We now introduce in a qualitative way the main mechanisms of the theory. We do so

by considering the typical network reactions to a single input pattern I within a temporal
stream of input patterns. Each input pattern may be the output pattern of a preprocessing
stage. The input pattern I is received at the stage F 1 of the attentional subsystem. Pattern
I is transformed into a pattern X of activation across the nodes of F1 (Figure 4). The
tran!. formed pattern X represents a pattern in short term memory (STM). In Fl each
node whose activity is sufficiently large generates excitatory signals along pathways to
targe. t nodes at the next processing stage F ~. A pattern X of S TM activities across F 1
hereby elicits a pattern S of output signals from Fl. When a signal from a node in F 1 is
carried along a pathway to F2, the signal is multiplied, or gated, by the pathway's long
term memory (LTM) trace. The LTM gated signal (i.e., signal times LTM trace), not
the signal alone, reaches the target node. Each target node sums up all of its LTM gated
signals. In this way, pattern S generates a pattern T of LTM-gated and summed input
signals to F2 (Figure 5a). The transformation from S to T is called an adaptive filter.

The input pattern T to F 2 is quickly transformed by interactions among the nodes
of F2. These interactions contrast-enhance the input pattern T. The resulting pattern of
activation across F 2 is a new pattern Y. The contrast-enhanced pattern Y, rather than the

input pattern T, is stored in STM by F2.
A special case of this contrast-enhancement process, in which F 2 chooses the node which

receives the largest input, is here considered in detail. The chosen node is the only one that
can store activity in STM. In more general versions of the theory, the contrast enhancing
transformation from T to Y enables more than one node at a time to be active in STM.
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Figure 4- Stages of bottom-up activation: The input pattern I generates a pattern of
STM activation X across FI- Sufficiently active FI nodes emit bottom-up signals to Fz-
This signal pattern S is gated by long term memory (LTM) traces within the Fl -+ F2
pathways. The LTM-gated signals are summed before activating their target nodes in Fz-
This LTM-gated and summed signal pattern T generates a pattern of activation Y acr~
Fz-

Such transformations are designed to simultaneously represent in STM many subsets, or
groupings, of an input pattern (Cohen and Grossberg, 1985; Grossberg, 1985a). When F2
is designed to make a choice in STM, it selects that global grouping of the input pattern
which is preferred by the adaptive filter. This process automatically enables the network
to partition all the input patterns which are received by F 1 into disjoint sets of recognition
categories, each corresponding to a particular node in F2. The present article analyses in
detail the design of such a categorical mechanism. This special case is both interesting
in itself and a necessary prelude to the analysis of recognition codes in which multiple
groupings of X are simultaneously represented by Y.

Only those nodes of F2 which maintain stored activity in STM can elicit new learning
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Figure 5. Search for a correct F2 code: (a) The input pattern I generates the specific
STM activity pattern X at FJ as it nonspecifically activates A. Pattern X both inhibits A
and generates the output signal pattern S. Signal pattern S is transformed into the input
pattern T, which activates the STM pattern Y across F 2. (b) Pattern Y generates the top-
down signal pattern U which is transformed into the template pattern V. If V mismatches
I at F 1, then a new STM activity pattern X. is generated at Fl. The reduction in total
STM activity which occurs when X is transformed. into X. causes a decrease in the total
inhibition from F 1 to A. (c) Then the input-driven activation of A can release a nonspecific
arousal wave to F2, which resets the STM pattern Y at F2. (d) After Y is inhibited, its
top-down template is eliminated, and X can be reinstated at Fl' Now X once again
generates input pattern T to F2, but since Y remains inhibited T can activate a different
STM pattern Y' at F2. If the top-down template due to Y' also mismatches I at F1, then
the rapid search for an appropriate F2 code continues.
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at contiguous LTM traces. Whereas all the LTM traces in the adaptive filter, and thus
all learned past experiences of the network, are used to determine recognition via the
transformation I-+X-+S-+T-+ Y, only those LTM traces whose STM activities in F2 survive
the contrast-enhancement process can learn in response to the activity pattern X.

The bottom-up STM transformation I-+X-S-+ T-+ Y is not the only process that
regulates network learning. In the absence of top-down processing, the LTM traces within
the adaptive filter S-+T (Figure 5a) can respond to certain sequences of input patterns by
being ceaselessly recoded in such a way that individual events are never eventually encoded
by a single category no matter how many times they are presented. An infinite class of
examples in which temporally unstable codes evolve is described in Section 12. It was the
instability of bottom-up adaptive coding that led Grossberg (1976a, 1976b) to introduce
the adaptive resonance theory.

In the adaptive resonance theory, a matching process at F 1 exists whereby learned top-
down expectancies, or templates, from F2 to F1 are compared with the bottom-up input
pattern to Fl. This matching process stabilizes the learning that emerges in response to
an arbitrary input environment. The constraints that follow from the need to stabilize
learning enable us to choose among the many possible versions of top-down template
matching and STM processes. These learning constraints upon the adaptive resonance top-
down design have enabled the theory to explain data from visual and auditory information
processing experiments in which learnin~ has not been a. manipulated variable (Grossberg,
1980, 1985a; Grossberg and Stone, 1985). The present article develops these mechanisms
into a. rigorously characterized learning system whose properties ha.ve been quantitatively
analysed (Carpenter and Grossberg, 1985a, 1985b). This analysis has revealed new design
constra.ints within the adaptive resonance theory. The system that we will describe for
learned categorical recognition is one outcome of this ana.lysis.

3. Top-Down Template Matching and Stabilization of Code Learning

We now begin to consider how top-down template matching can stabilize code learning.
In order to do so, top-down template matching at F 1 must be able to prevent learning at
bottom-up LTM traces whose contiguous F2 nodes are only momentarily activated in
STM. This ability depends upon the different rates at which STM activities and LTM
traces can change. The STM transformation I-X- S-T- Y takes place very quickly.
By '"very quickly" we mean much more quickly than the rate at which the L TM traces in
the adaptive filter S-T can change. As soon as the bottom-up STM transformation X- Y
takes pl~ce, the STM activities Y in F 2 elicit a top-down excitatory signal pattern U back
to Fl. \)nly sufficien~ly large STM activities in Y elicit signals in U along the feedback
pathwa~'s F2 -Fl'

As in the bottom-up adaptive filter, the top-down signals U are also gated by LTM
traces before the LTM-gated signals are summed at F1 nodes. The pattern U of output
signals from F2 hereby generates a pattern V of LTM-gated and summed input signals
to Fl. The transformation from U to V is thus also an adaptive filter. The pattern V is
called a top-down template, or learned ezpeetation.

Two sources of input now perturb F 1: the bottom-up input pattern I which gave rise
to the original activity pattern X, and the top-down template pattern V that resulted from
activating X. The activity pattern X. across F 1 that is induced by I and V taken together
is typically different from the activity pattern X that was previously induced by I alone.
In particular, F 1 acts to match V against I. The result of this matching process determines
the future course of learning and recognition by the network.

The entire activation sequence

(1)I -X -S -+ T -Y -U -V-X'
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takes place very quickly rela~ive to the rate with which the LTM traces in either the
bottom-up adaptive filter S-+T or the top-down adaptive filter U -V can change. Even
though none of the LTM traces changes during such a short time, their prior learning
strongly influences the STM patterns Y and X. that evolve within the network. We now
discuss how a match or mismatch of I and V at F 1 regulates the course of learning in
response to the pattern I.

4. Interactions between Attentional and Orienting Subsystems: STM Reset
and Search .

This section outlines how a mismatch at F I regulates the learning process. With this
general scheme in mind, we will be able to consider details of how bottom-up filters and
top-down templates are learned and how matching takes place.

Level F 1 can compute a match or mismatch between a bottom-up input pattern I
and a top-down template pattern V, but it cannot compute which STM pattern Y across
F 2 generated the template pattern V. Thus the outcome of matching at F I must have a
nonspecific effect upon F2 that can potentially influence all of the F2 nodes, anyone of
which may have read-out V. The internal organization of F1 must be the agent whereby
this nonspecific event, which we call a reset wave, selectively alters the stored STM activity
pattern Y. The reset wave is one of the three types of nonspecific arousal that exist within
the network. In particular, we suggest that a mismatch of I and V within F I generates a
nonspecific arousal burst that inhibits the active population in F 2 which read-out V. In
this way, an erroneous STM representation at F2 is quickly eliminated before any LTM
traces can encode this error.

The attentional subsystem and the orienting subsystem work together to carry out
these interactions. All learning takes place within the attentional subsystem. All matches
and mismatches are computed within the attentional subsystem. The orienting subsystem
is the source of the nonspecific arousal bursts that reset STM within level F 2 of the
attentional subsystem. The outcome of matching within F 1 determines whether or not
such an arousal burst will be generated by the orienting subsystem. Thus the orienting
system mediates reset of F 2 due to mismatches within Fl.

Figure 5 depicts a typical interaction between the attentional subsystem and the ori-
enting subsy~tem.In Figure 5a, an input pattern I instates an STM activity pattern X
across Fl. The input pattern I also excites the orienting population A, but pattern X at
F 1 inhibits A before it can generate an output signal.

Activity pattern X als) generates an output pattern S which, via the bottom-up adap-
tive filter, instates an- STl.f activity pattern Y across F2. In Figure 5b, pattern Y reads
a top-down template pattern V into Fl. Template V mismatches input I, thereby signifi-
cantly inhibiting STM activity across Fl. The &mount by which activity in X is attenuated
to generate X. depends upon how much of the input pattern I is encoded within the tem-
plate pattern V.

When a mismatch attenuates STM activity across F 1, this activity no longer prevents
the arousal source A from firing. Figure 5c depicts how disinhibition of A releases a
nonspecific arousal burst to F 2. This arousal burst, in turn, selectively inhibits the active
population in F 2. This inhibition is long-lasting. One physiological design for F 2 proce:sing
which has these necessary properties is a dipole field (Grossberg, 1980, 1984a). A dIpole
field consists of opponent processing channels which are gated by habituating chemical
transmitters. A nonspecific arousal burst induces selective and enduring inhibition within
a dipole field. In Figure 5c, inhibition of Y leads to inhibition of the top-down temp~ate V,
and thereby terminates the mismatch between I and V. Input pattern I can thus reInstate
the activity pattern X across F 1, which again generates the output pattern S from F 1 and
the input pattern T to F2. Due to the enduring inhibition at F2, the input pattern T can
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no longer activate the same pattern Y at Fz. A new pattern Y. is thus generated at Fz
by I (Figure 5d). Despite the fact that some F2 nodes may remain inhibited by the STM
reset property, the new pattern Y. may encode large STM activities. This is because level
F 2 is designed so that its total suprathreshold activity remains approximately constant,
or normalized, despite the fact that some of its nodes may remain inhibited by the STM
reset mechanism. This property is related to the limited capacity of STM. A physiological
process capable of achieving the STM normalization property, based upon on-center off-
surround interactions among cells obeying membrane equations, is described in Grossberg
(1980, 1983).

The new activity pattern Y. reads-out a new top-down template pattern V'. If a
mismatch again occurs at F 1, the orienting subsystem is again engaged, thereby leading
to another arousal-mediated reset of STM at F2. In this way, a rapid series of STM
matching and reset events may occur. Such an STM matching and reset series controls the
system's search of L TM by sequentially engaging the novelty-sensitive orienting subsystem.
Although STM is reset sequentially in time, the mechanisms which control the LTM search
are all parallel network interactions, rather than serial algorithms. Such a parallel search
scheme is necessary in a system whose LTM codes do not exist a priori. In general, the
spatial configuration of codes in such a system depends upon both the system's initial
configuration and its unique learning history. Consequently, no prewired serial algorithm
could possibly anticipate an efficient order of search.

The mismatch-mediated search of LTM ends when an STM pattern across F2 reads-out
a top-down template which either matches I, to the degree of accuracy required by the level
of attentional vigilance, or has not yet undergone any prior learning. In the latter case, a
new recognition category is established as a bottom-up code and top-down template are
learned.

We now begin to consider details of the bottom-upjtop-down matching process across
Fl. The nature of this matching process is clarified by a consideration of how F 1 distin-
guishes between activation by bottom-up inputs and top-down templates.

5. AttentioDal G8in Control e.nd Attention8l Priming

The importance of the distinction between bottom-up and top-down processing be-
comes evident when one observes that the same top-down template matching process which
stabilizes learning is also a mei:hanism of attentional priming. Consider, for example, a
situation in which F 2 is activated by a level other than F 1 before F 1 is itself activated.
In such a situation. F 2 can generate a top-down template V to F 1. The level F 1 is then
primed, or ready, to "receive a bottom-up input that mayor may not match the active
expei:tancy. Level Fl can be primed to receive a bottom-up input without necessarily
eliciting suprathreshold output signals in response to the priming expectancy. If this were
not possible, then every priming event would lead to suprathreshold consequences. Such
a property would prevent subliminal anticipation of a future event.

On the other hand, an input pattern I must be able to generate a suprathreshold
activity pattern X even if no top-down expei:tancy is active across F] (Figure 5). How does
F 1 know that it should generate a suprathreshold reaction to a bottom-up input pattern
but not to a top-down input pattern? In both cases, an input pattern stimulates Fl cells.
Some auxiliary mechanism must exist to distinguish between bottom-up and top-down
inputs. We call this auxiliary mechanism attentional gain t'ontrol to distinguish it from
attentional priming by the top-down template itself. The attentional priming mei:hanism
delivers spet'ific template patterns to Fl. The attentional gain control mechanism has a
nonspecifit' effect on the sensitivity with which F 1 responds to the template pattern, as
well as to other patterns received by Fl. A ttentional gain control is one of the three types
of nonspecific arousal that exist within the network. With the addition of attentional gain
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control, we can explain qualitatively how F 1 can tell the difference between bottom-up and
top-down signal patterns.

The need to dissociate attentional priming from attentional gain control can also be
seen from the fact that top-down priming events do not lead necessarily to subliminal reac-
tions at Fl' Under certain circumstances, top-down expectancies can lead to suprathresh-
old consequences. We can, for example, experience internal conversations or images at will.
Thus there exists a difference between the read-out of a top-down template, which is a
mechanism of attentional priming, and the translation of this operation into suprathreshold
signals due to attentional gain control. An "act of will" can amplify attentional gain con-
trol signals to elicit a suprathreshold reaction at F 1 in response to an attentional priming
pattern from F 2.

Figures 6 and 7 depict two schemes whereby supraliminal reactions to bottom-up
signals, subliminal reactions to top-down signals, and supraliminal reactions to matched
bottom-up and top-down signals can be achieved. Figures 6d and 7d show, in addition, how
competitive interactions across modalities can prevent F 1 from generating a supraliminal
reaction to bottom-up signals, as when attention shifts from one modality to another.

Both of the attentional gain control schemes in Figures "6 and 7 satisfy the same func-
tional requirements. Both schemes are formally equivalent; that is, they obey the same
system of differential equations. Both schemes can also explain the same body of psy-
chological data. Each scheme can, for example, be used to clarify and modify the dis-
tinction between "automatic activation" and "conscious attention" that has arisen from
psychological experiments on word recognition and related phenomena concerning human
information processing (Grossberg and Stone, 1985). Physiological data are needed to
choose one scheme over the other. In particular, within Figure 1, but not Figure 6, the
bottom-up input pattern activates an attentional gain control channel. Thus in the scheme
of Figure 6, bottom-up inputs activate two nonspecific processing channels, the attentional
gain control channel within the attentional subsystem and the nonspecific arousal channel
within the orienting subsystem. Herein, we will often motivate our formal constructions
by considering the scheme in Figure 6, but its should not be forgotten that both schemes
are formally, if not physiologically, equivalent.

6. Matching: The 2/3 Rule

We can now outline the matching and coding properties that are used to generate
learning of self-stabilizing recognition categories. Two different types of properties need to
be articulated: the bottom-up coding properties which determine the order of search, and
the top-down matching properties w:1ich determine whether an STM reset event will be
elicited. Order of search is determinerJ entirely by properties of the attentional subsystem.
The choice between STM reset and ~TM resonance is dependent upon whether or not
the orienting subsystem will generate a reset wave. This computation is based on inputs
received by the orienting subsystem from both the bottom-up input pattern I and the STM
pattern which Fl computes within the attentional subsystem (Figure 5). Both the order of
search and the choice between reset and resonance are sensitive to the matched patterns as
a whole. This global sensitivity is key to the design of a single system capable of matching
patterns in which the number of coded features, or details, may vary greatly. Such global
context-sensitivity is needed to determine whether a fixed amount of mismatch should be
treated as functional noise, or as an event capable of eliciting search for a different category.
For example, one or two details may be sufficient to differentiate two small but functionally
distinct patterns, whereas the same details, embedded in a large, complex pattern may be
quite irrelevant.

We first discuss the properties which determine the order of search. Network interac-
tions which control search order can be described in terms of three rules: the 2/3 Rule,
the Weber Law Rule, and the Associative Decay Rule.
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Figure 6. Matching by 2/3 Rule: (a) In this example, nonspecific attentional gain control
signals are phasically activated by the bottom-up input. In this network, the bottom-up
input arouses two different nonspecific channels: the attentional gain control channel and
the orienting subsystem. Only F 1 cells that receive bottom-up inputs and gain control
signals can become supraliminally active. (b) A top-down template from F2 inhibits the
attentional gain control source as it subliminally primes target Fl cells. (c) When a
bottom-up input pattern and a top-down template are simultaneously active, only those
F 1 cells that receive inputs from both sources can become supraliminally active, since the
gain control source is inhibited. (d) Intermodality inhibition can shut off the gain control
source and thereby prevent a bottom-up input from supraliminally activating F 1. .
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Figure 1. This figure differs from Figure 6 only in that the attentional gain control source
is tonically active.
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The 2/3 Rule follows naturally from the distinction between attentional gain control
and attentional priming. It says that two out of three signal sources must activate an F 1
node in order for that node to generate suprathreshold output signals. In Figure 6a, for
example, during bottom-up processing, a suprathreshold node in F 1 is one which receives
a specific input from the input pattern I and a nonspecific attentional gain control signal.
All other nodes in F 1 receive only the nonspecific gain control signal. Since these cells
receive inputs from only one pathway they do not fire.

In Figure 6b, during top-down processing, or priming, some nodes in F 1 receive a
template signal from F2, whereas t>ther nodes receive no signal whatsoever. All the nodes
of F 1 receive inputs from at most one of their three possible input sources. Hence no cells
in Flare supraliminally activated by a top-down template.

During simultaneous bottom-up and top-down signalling, the attentional gain control
signal is inhibited by the top-down channel (Figure 6c). Despite this fact, some nodes of
F 1 may receive sufficiently large inputs from both the bottom-up and the top-down signal
patterns to generate suprathreshold outputs. Other nodes may receive inputs from the
top-down template pattern or the bottom-up input pattern, but not both. These nodes
receive signals from only one of their possible sources, hence do not fire. Cells which receive
no inputs do not fire either. Thus only cells that are conjointly activated by the bottom-
up input and the top-down template can fire when a top-down template is active. The
2/3 Rule clarifies the apparently paradoxical process whereby the addition of top-down
excitatory inputs to F 1 can lead to an overall decrease in F l'S STM activity (Figures 5a
and5b).

7 Direct Access To Subsets 8nd Supersets

The \\'eber Law Rule can be motivated by considering the following situation. Suppose
that a bottom-up input pattern 1(1) activates a network in which pattern 1(1) has already
been perfectly coded by the adaptive filter from F1 to F2. Suppose. moreover, that another
pattern 1(2) has also been perfectly coded and that V2) contains VI) as a subset; that is, V2)
equals VI) at all the nodes where 1(1) is positive. If VI) and V2) are sufficiently different.
they should have access to distinct categories at F2. However. since V2) equals 1(1) at
their intersection, and since all the F1 nodes where 1(2) does not equal 1(1) are inactive
when 1(1) is presented, how does the network decide between the two categories when VI)
is presented? This question suggests that, in response to an input pattern pI) that is
perfectly coded, the node VI in F 2 w hich ~;pdes VI) should receive a bigger signal from the
adaptive filter than the node v2 in F2 which codes a superset V2) of VI) (Figure Sa). In
order to realize this constraint, the LTM traces at v2 which filter VI) should be smaller
than the LTM traces at VI which filter 1(1). Since the LTM traces at V2 were coded by the
superset pattern 1(2), this constraint suggests that larger input patterns are encoded by
smaller LT~1 traces. Thus the absolute sizes of the LTM traces projecting to the different
nodes t.J and V2 reflect the overall sizes of the input patterns 1(1) and 1(2) coded by these
nodes.

The relative sizes of the LTM traces projecting to a single node reflect the internal
structuring of the input patterns coded by that node. Consider, for example, the LTM
traces in pathways between F 1 cells where 1(1) equals zero and the F 2 node VI (Figure 8b).
During learning of 1(1), these LTM traces decay toward zero. By contrast, consider the
LTM traces to V2 in pathways from F1 cells that are activated by 1(2) but not 1(1). These
LTM traces become large as learning of p2) proceeds.

The preceding discussion suggests a constraint that enables a subset 1(1) to selectively
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Figure 8. Weber law and associative decay rules for long term memory: When input 1(1)
activates F 1, node VJ at F 2 is chosen. When input 1(2) activates F 1, node V2 at F 2 is chosen.
(a) Because r(2) is a superset of r(I), the LTM traces in pathways to VI from F} nodes that
are activa"ted by 1(1) are larger than the LTM traces to V2 in pathways from these same
F1 nodes. (b) Consider F1 nodes that are activated by {t2) but not r(I). The LTM traces
in their pathways to VI are small. In contrast, the LTM traces in their pathways to V2 are
large, as are all the other LTM traces to V2 whose pathways are activated by 1(2).

activate its node VI rather than the node corresponding to a superset 1(2).On the other
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hand, the superset VZ) should be able to directly activate its node v2 rather than the node
VI of a subset I( 1). However, the positive L TM traces of VI are larger than the corresponding
LTM traces of V2, and presentation of 1(2) activates the entire subset pattern VI). The fact
that V2) is filtered by more positive LTM traces at v2 than it is at VI must be able to
compensate for the larger size of the LTM traces at VI- By establishing a proper balance
between the size and the number of positive LTM traces, the Weber Law Rule allows both
1(1) and 1(2) to have direct access to their respective nodes VI and V2-

8. Weber Law Rule and Associative Decay Rule for Long Term Memory

We now describe more precisely the two learning rules whereby the LTM traces allow
direct access to both subset and superset F2 codes. The conjoint action of a Weber Law
Rule and an Associative Decay Rule for the learned sizes of LTM traces has the desired
properties. To fix ideas, suppose that each input pattern I to F 1 is a pattern of D's and 1 'So
Let I I I denote the number of 1 's in the input pattern I. The two rules can be summarized
as follows.

Associative Decay Rule
After learning of I has taken place, LTM traces in the bottom-up coding pathways

and the top-down template pathways between an inactive F 1 node and an active F 2 node
equal 0, or at least are very small. Associative learning within the LTM traces can thus
cause decreases as well as increases in the sizes of the traces. This is a non-Hebbian form
of associative learning.

Weber Law Rule
After learning input pattern I, LTM traces in bottom-up coding pathways correspond-

ing to active F 1 and F 2 nodes equal
Q

13+

11

By (2), the size of each positive LTM trace which codes 1 decreases as I I I increases.

Consider again the subset 1(1) and the superset r(2). By (2), the positive LTM traces
which code r(l) have size

a

/3+11(1)1

and the positive LTM traces which code 1(2) have si ~e

a
(4)fJ+ I [(2) I'

where 11(1) 1<11(2) I. When 1(1) is presented at FI' I [11) I nodes in Fl are suprathreshold.
Thus the total input to VI has size

(5)

and the total input to V2 has size

(6)
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Because I [(I) 1<1 [(2) I, it follows that JII > J12. Thus pI) activates VI instead of V2.

When I(Z) is presented at F I, I I(Z) nodes in Flare suprathreshold. Thus the total
input to Vz is

(7)J22 =
.8+ I ](2) "

We now invoke the Associative Decay Rule. Because 1(2) is a superset of 1(1), only those
FI nodes in 1(2) that are also activated by 1(1) project to positive LTM traces at VI. Thus
the total input to VI is

~J~!J

JZ1 = p+ 1(1) T"

Both JZ2 and J21 are expressed in terms of the function

CtF.W( F.) = 73+1'

which is an increasing function of';. Since I [(I) 1<1 [(~) I, JZ2 > J21. Thus the superset
I(Z) activates its node V2 more than the subset node VI.

Thus the conjoint action of a Weber Law Rule and an Associative Decay Rule for
bottom-up learning permits direct access to the F~ nodes of both subset and superset input
patterns. The Weber Law Rule is the outcome of mass action competitive interactions, as
we will illustrate in the Appendix. These competitive interactions may occur among the
nodes of FI or among the LTM traces abutting each F2 node. We hereby suggest how the
functional problem of direct access to subset and superset codes may be mechanistically
solved by nonlinear neural interactions.

o. Fast Learning and Slow Learning: The Direct Access Rule

In order to characterize the course of learning, the rate of change of the LTM traces on
each learning-trial must be specified. In this article, we consider cases in which, on every
learning trial, the LTM traces can reach the new equilibrium values imposed by the input
pattern on that trial. We call these fast learning cases. We have also considered cases in
which the LTM traces change too slowly to reach the new equilibriuD:' values imposed by
the input pattern on a single trial. We call these the slow learning cases.

During both fast learning and slow learning, the STM traces change more quickly than
the LTM traces, and the learning process eventually self-stabilizes. However, the system
is more sensitive to the ordering of the input patterns during fast learning than during
slow learning. During slow learning, each LTM trace averages across time intervals that
are much longer than a single trial. and thereby becomes less sensitive to the ordering of
the inputs. In the next section, we will show how the input order can influence the choice
of coding categories in the fast learning case. Slow learning is considered in Carpenter and

Grossberg (1985b).
We note, finally, that the 2/3 Rule and the Weber Law Rule suggest how the initial

values of STM traces and LTM traces should be chosen. The choice of initial STM traces
is simple: the system starts out at equilibrium, or with zero STM traces, and the STM
traces quickly return to equilibrium after each input pattern shuts off.

Initial LTM traces need to be chosen differently in the bottom-up adaptive filter than
in the top-down adaptive filter. Due to the Weber Law Rule, the individual bottom-up
LTM traces that are learned in response to large input patterns will be relatively small. In
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order for presentation of a. perfectly coded large pattern to directly a.cceS8 its coded node
rather than an uncoded node, the initial values of the bottom-up LTM traces must b~
smaller than the learned LTM values corresponding to la.rge input patterns. In addition
a.lthough some bottom-up LTM traces ma.y initially equal zero, other LTM traces a.buttin~
each F 2 node must initially be positive in order for F 1 to excite that node at a.ll.

Due to the 2/3 Rule, the initial top-down LTM tra.ces cannot be too small. When an
input pattern first chooses an FJ node, the LTM traces that gate the top-down template
of that node must satisfy the 2 3 Rule even before any template learning occurs. If the
top-down LTM tra.ces started out. too small, no Fl node would receive enough top-down
input to satisfy the 2/3 Rule. Consequently, the whole system would shut down. Top-down
learning is thus a type of learning-by-selection.

In summary, bottom-up LTM tra.ces start out small, where&! top-down LTM tra.ces
start out large. Bottom-up learning and top-down learning sculpt the spatial distribution
of their LTM traces, as well as their overall sizes, through time. The constraint that
the initial sizes of the top-down LTM traces be large is a. consequence of the 2/3 Rule.
The constraint that the initia.l sizes of the bottom-up LTM traces be small is needed to
guarantee direct access to perfectly coded F2 nodes. We therefore call this latter constraint
the Direct Access Rule.

10. Stable Choices in Short Ternl Memory

We can now begin to characterize the order of search in a network that obeys the
following constraints: (1) Fast learning occurs (Section 9); (2) Input patterns are composed
of D's and l's; (3) The 2/3 Rule holds (Section 6); (4) The Weber Law Rule holds (Section
8); (5) The Direct Access Rule holds (Section 9).

This discussion of search order does not analyse whether or not an STM reset event will
stop the search at any given step. The criteria for STM reset are provided in Section 15.
Other things being equal, a network with a higher level of vigilance will require better F 1
matches, and hence will search more deeply, in response to each input pattern. Thus when
an input pattern is presented, the set of learned filters and templates depends upon the
prior levels of vigilance. The same ordering of input patterns may thus generate different
LTM encodings due to the prior settings of the nonspecific vigilance parameter. The
present discussion considers the order in which search will occur in response to a single
input pattern which is presented after an arbitrary set of filters and templates has been
learned.

A simple function determines the order in which encoded F 2 nodes v, are searched in
response to an input pattern I. This function, which we call the )rder Function, is defined
as follows.

Order Function

(10)

In equation (10), VIi) denotes the top-down template pattern that is read-out by node vi
of F 2. Since only one node a.t a time is active in F 2, the total template rea.d-out by F ~ is
the template corresponding to the node which is active at that time.

After I ha.s been presented to F1, but before F2 becomes active, function Ti in (10)
is the total bottom-up input to node vi. As in Section 8, term a({3+ I V(i) 1)-1 in (10)
is a consequence of the Weber Law Rule. This term describes the size of the positive
learned LTM traces which abut vi. Term I v(i) n I I describes the number of pathways
abutting node vi which have positive lea.rned LTM traces and which carry positive signals
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when input I is presented. The. total number of pathways abutting vi which have positive

learned LTM traces is I V(j) I. This is true because a bottom-up LTM trace from node
Vi in F 1 to node vi in F 2 grows due to learning if and only if the corresponding top-down
LTM trace from vi to Vi grows due to learning. There are 8S many positive learned LTM
traces in pathways leading to vi as there are in pathways leading from vi' At times when

input I is registered by F 1, only I V(i) n I I of these I V(i) I pathways are activated. The
total input to node tJj in F2 is thus given by Ti in (10).

Level F2 chooses that node vi which receives the largest input Tj. If we order the
inputs in terms of decreasing size, as in

T,"} > Tj2 > T'J > .., ,

then node vi} is initially chosen by F 2. After viI is chosen, it reads-out template y(il) to
F I' When. Y (11) and I both perturb F},. a new activity pattern X. is registered at F I, as in
(1) and FIgure 5b. A new bottom-up sIgnal pattern from F} to F2 may then be registered
at F2. How can we be sure that vi} will continue to receive the largest input from F} after

its template y(il) is processed by F l? The 2/3 Rule provides this guarantee as follows.
The 2/3 Rule shuts off those active F} nodes whose top-down LTM traces from viI are

zero due to prior learning of y(il). A top-down LTM trace becomes zero if and only if the
corresponding bottom-up LTM trace becomes zero. Thus Fl nodes which are deactivated
by the 2/3 Rule connect to bottom-up pathways whose LTM traces abutting VJ} are zero.
Hence, these pathways make no contribution to the total input Ti} to node vil" Thus the

total input Tj} is not altered due to read-out of the template y(it).

All other inputs T i are either unchanged or decrease due to deactivation of some F}

nodes by the 2/3 Rule. In general, after the template y(it) acts at F1, the total input to
node vi at F2 is

(12)

By (11), TJI 'was the maximal input to F2 before template V(il) was read-out. By (10)
and (12) Ti1 remains the maximal input to F2 after V(i1) is read-out. In summary, the 2/3
Rule stabilizes the STM choice at F 2 before and after read-out of a top-down template.

Were the 2/3 Rule not operative, read-out of the template V(i1) might supraliminally
activate many r 1 nodes that had not previously been activated by the input I alone. These
new Fl activations could cause a different F2 node to be chosen, and its template could
cause yet another F2 node to be chosen. A rapid and non-terminating series of F3 choices
could hereby be generated by an input I. Later F 2 choices in this series could be activated
by Fl nodes which receive no inputs whatsoever from I. The 2/3 Rule prevents this type
of chaotic result from occurring. In other words, it instates a type of pattern matching
within F 1 which ensures that the choice of F2 nodes remains linked to the input pattern I.

11. Order of Search and the Subset Recoding Property

Because F2 can make choices which are not changed by read-out of the chosen node's
template, the ordering of the bottom-up signals
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by size, n~LInely
r,"J > T'2 > TjJ > ...,

(11)

determine:s the order

Vil'Vi2'Vi3"" (13)

of search. Thus simple algebraic computations enable one to predict the order of search
in this network.

SUI~SET
TE.~PLA TE

SUPERSET
TEMPLATE

MIXED
TEMPLATE

(0)

(b)

Figure D. Three types of relationships between input pattern I and template pattern V:
(a) Subset template. (b) Superset template. (c) Mixed template.

To disc:uss the order of search in response to the input pattern I, we define three types
of learned templates: subset templates, superset templates, and mixed templates. The
LTM trac~!s of a subset template V are large only at a subset of the F 1 nodes which are
activated by the input pattern I (Figure 9a). The LTM traces of a superset template V
are large a't all the F 1 nodes which are activated by the input pattern I, as well as at some
F 1 nodes v,hich are not activated by I (Figure 9b). The L TM traces of a mixed template
V are largE! at some, but not all, the Fl nodes which are activated by the input pattern I,
as well as 2~t some FI 'nodes which are not activated by I (Figure 9c).

H a se.uch ends when a prescribed template v(i) = V is being read-out by the F2
node vi, then this template's LTM traces recode to the new te!Dplate vIi) = V n I. This
conclusion follows from the conjoint action of the 2/3 Rule and the Associative Decay
Rule. Onl~{ Fl nodes in the set V n I can remain supraliminal due to the 2/3 Rule, and
the LTM traces of pathways between t'j and inactive F 1 nodes converge to zero due to
the Associ:a.tive Decay Rule. Thus, after learning occurs, the active template v(j) = V,
whether it began as a subset template, a superset template, or a mixed template, is recoded
into the sulbset template V (i) = V n I by the input pattern I. This subset recoding property
is a key requirement for code stability.

12. E)(ample of Code Instability

We no'~ illustrate the importance of the subset recoding property by describing how
its absence can lead to a temporally unstable code. In the simplest type of code instability
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example, the code becomes unstable because neither top-down template nor reset mech-
anisms exist (Grossberg, 1976a). Then, in response to certain input sequences that are
repeated 1;hrough time, a given input pattern can be ceaselessly recoded into more than
one category. In the example that we will now describe, the top-down template signals
are active and the reset mechanism is functional. However, the inhibitory top-down at-
tentional i~ain control'signals (Figures 6c and 7c) are chosen too small for the 2/3 Rule to
hold at Fl.' We show also that a larger choice of attentional gain control signals restores
code stability by reinstating the 2/3 Rule. These simulations also illustrate three other
points: how a novel exemplar can directly access a previously established category; how
the category in which a given exemplar is coded can be influenced by the categories which
form to encode very different exemplars; and how the network responds to exemplars as
coherent groupings of features, rather than to isolated feature matches or mismatches.

Figure lOa summarizes a computer simulation of unstable code learning. Figure lOb
summariz«~s a computer simulation that illustrates how reinstatement of the 2/3 Rule can
stabilize code learning. The format used in this figure will also be used in displaying our
other com]puter simulations. We therefore describe this figure in detail.

The first column of Figure lOa describes the four input patterns that were used in the
simulation. These input patterns are labeled A, B, C, and D. Patterns B, C, and Dare
all subsets of A. The relationships among the inputs that make the simulation work are as
follows:

Code Instability Example

D c C C A, (14)

(15)BtA,

B n c = <1>, (16)

I D 1<1 B 1<1 c I (17)

These results thus provide infinitely many examples in which an alphabet of just four input
patterns cct.nnot be stably coded without the 2/3 Rule. The numbers 1, 2, 3, ...listed
in the secolnd column itemize the presentation order. The third column, labeled BU for
Bottom-Up, describes the input pattern that was presented on each trial. In both Figures
lOa and 101b, the input patterns were periodically presented in the order ABCAD.

Each o:r the Top-Down Template columns in Figure 10 corresponds to a different node
in F 2, withl column 1 .corresponding to node VI, column 2 corresponding to node V2, and
so on. Eac:f1 row summarizes the network response to its input pattern. The symbol RES,
which stands for resonance, designates the node in F2 which codes the input pattern on
that trial. For example, v2 codes pattern C on trial 3, and VI codes pattern B on trial
7. The patterns in a given row describe the templates after learning has occurred on that
trial.

In Figtlre lOa, input pattern A is periodically recoded: On trial 1, it is coded by VI;
on trial 4, jlt is coded by V2; on trial 6, it is coded by VI; on trial 9, it is coded by V2. This
alternation in the nodes VI and v2 which code pattern A repeats indefinitely.

Violation of the 2/3 Rule occurs on trials 4,.6, 8, 9, and so on. This violation is
illustrated by comparing the template of V2 on trials 3 and 4. On trial 3, the template of
V2 is coded by pattern C, which is a subset of pattern A. On trial 4, pattern A is presented
and directly activates node v2' Because the 2/3 Rule does not hold, pattern A remains
supralimini~l in FI even after the subset template C is read-out from v2. Thus no search
is elicited "by the mismatch of pattern A and its subset template C. Consequently the
template ojt V2 is recoded from pattern C to its superset pattern A.
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Figure 10. Stabilization of categorical learning by the 2/3 Rule: In both (a) and (b),
four inpu1; patterns A, B, C, and D are presented repeatedly in the list order ABCAD.
In (a), the 2/3 Rule is violated because the top-down inhibitory gain control mechanism
be weak (Figures 6c and 7c). Pattern A is periodically coded by VI and V2. It is never
coded by a single stable category. In (b), the 2/3 Rule is restored by strengthening the
top-down inhibitory gain control mechanism. After some initial recoding during the first
two presentations of ABCAD, all patterns directly access distinct stable categories.
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In Figure lOb, by contrast, the 2/3 Rule does hold due to a larger choice of the
attention;a.l gain control parameter. Thus the network experiences a sequence of recodings
that ultiD[lately stabilizes. In particular, on trial 4, node V2 reads-out the subset template
C, which mismatches the input pattern A. The numbers beneath the template symbols
in row 4 describe the order of search. First, V2'S template C mismatches A. Then VI'S
template B mismatches A. Finally A activates the uncommitted node v3, which resonates
with F I as it learns the template A.

ScaruJ.ing the rows of Figure lOb, we see that pattern A is coded by VI on trial 1; by
V3 on tria.1s 4 and 6; and by v4 011 trial 9. On all future trials, input pattern A is coded
by v4. M:oreover, all the input patterns A, B, C, and D have learned a stable code by
trial 9. TJ~US the code self-stabilizes by the second run through the input list ABCAD. On
trials 11 through 15, and on all future trials, each input pattern chooses a different node
(A -+ V4; B -+ VI; C -+ V3; D -V2). Each pattern belongs to a separate category because
the vigil&J1ce parameter was chosen to be large in this example. Moreover, as explained in
Section 7, after code learning stabilizes, each input pattern directly activates its node in
F 2 withouLt undergoing any additional search. Thus after trial 9, only the "RES" symbol
appears under the top-down templates. The patterns shown in any row between 9 and 15
provide a complete description of the learned code. Examples of how a novel exemplar
can activ~Lte a previously learned category are found on trials 2 and 5 in Figures lOa
and lOb. On trial 2, for example, pattern B is presented for the first time and directly
accesses t]tie category coded by VI, which was previously learned by pattern A on trial 1.
In termin4Jlogy from artificial intelligence, B activates the same categorical "pointer," or
"marker," or "index" as in A. In so doing, B does not cha.nge the categorical "index," but
it may ch:mge the categorical template, which determines which input patterns will also
be coded 1by this index on future trials. The category does not change, but its invariants

may chanl~e.
An example of how presentation of very different input patterns can influence the

category of a fixed input pattern is found through. consideration of trials 1, 4, and 9 in
Figure 101,. These are the trials on which pattern A is recoded due to the intervening
occurrenc.~ of other input patterns. On trial 1, pattern A is coded by VI. On trial 4, A is
recoded b~, V3 because pattern B has also been coded by VI and pattern C has been coded
by v2 in the interim. On trial 9, pattern A is recoded by V. both because pattern C has
been recocled by V3 and pattern D has been coded by V2 in the interim.

In all 4)f these transitions, the global structure of the input pattern determines which
F 2 nodes v~ill be activated, and global measures of pattern match at F I determine whetherthese nodE!S will be reset or allowed to resonate in STM. .

IS. S4!8rch of Subsets, Supersets, and Mixed Sets

Before the code in Figure lOb finally stabilizes, it searches the network in the order
cha.racteri.~ed by (13). We now describe implications of this search order in a CMe of
special interest, which includes the example described in Figure lOb. This is the case
wherein pllrameter jJ in (10) is "small." By small, we mean that parameter .8 satisfies the

inequality
I 1

.I {3 < I I lmu -l' (18)

where I I lmu is the largest number of F 1 nodes that are activated by any input pattern
I. The following assertions are proved in Carpenter and Grossberg (1985b).

A. Sul:lset Templates
Suppose that there exist learned templates which are subsets of the input pattern I

(Figure 9a). Then, if inequality (18) holds, the first node in F] to be chosen corresponds
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to the larJ~est subset template V. Whether or not template V can match the input ][ well
enough to prevent STM reset of F 2 depends upon the choice of the vigilance parametl~, as
well as upon how much smaller V is than I. If V = I, then reset never occurs. In this case,
the Direct Access Rule (Section 9) implies that the node corresponding to V is chosen first.
This node's template V covers I at Fl' Consequently, no reduction in FI activity ~ ca.used
by the 2/:1 Rule, and STM reset does not occur.

][f the first chosen node does :!lot cover I, then reset may occur. If reset does 04~cur,
then the network continues to se;uch F 2 nodes which possess subset templates. Se!arch
order pro<:eeds from larger to smaller subset templates. This search order follows :&om
(10), (11), and (13), because, whenever V(j) C I, then v(j) n 1= V(j), so that the order
function Tj satisfies

Thus the order in which subset teJ:nplates are searched is determined by the relative ~;izes
of I y(j) I ~LCross all subset templates. Figure lOb illustrates these subset search properties.
On trial 9., for example, in response to the input pattern A, the nodes corresponding to
the subset templates C, B, and D are searched in order of decreasing template size, as in
(17).

B. Superset Templates and No Mixed Templates
Suppo~le that the network has searched all learned subset templates corresponding to

the input pattern I. We now con..,ider the subsequent search order by breaking up the
possibilities into several cases. In this section, we suppose that no mixed templates have
been learned, but that at least one! superset template has been learned.

Our mj~in conclusion is that, if all subset templates have already been reset, then the
system will code input I using the F2 node vi with the smallest superset template y(j) == Y.
Due to thul coding event, y(i) will be recoded to

The netwoJ~k chooses the smallest superset template first because

(21) .

whenever V. :) I. Thus the smallest of the superset templates generates the largest botttDm-
up input 7i. The network does not reset this choice because the superset templatle V
completely covers the input pattern I at Fl. By the 2/3 Rule, the Fl activity pat1jern
caused by [ alone persists after the superset template takes effect. No reduction of Fl
activity is caused by the superset template. Hence its Fz code is not reset by the orienting
subsystem. Thus the same property which guarantees stable choices in STM (Section 10)
also implie~; that search ends if it can reach the smallest superset template.

It remains to explain why subsets are searched before supersets, and why supersets are
searched bE~fore uncommitted node~;.

Given 8, subset template y(i) aJld a superset template y(j) of the input pattern I,
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(24)

It follows :rrom (18), (22), (23), and (24) that

~ > Tj, (25)

and hence that subset templates ,are searched before superset templates. This property
depends cJ~itically on the small choice of.B in (18).

N odes with superset templates are searched before uncommitted nodes due to the same
property that guarantees direct access to perfectly coded nodes. In Section 9 we n'Dted
that initial bottom-up LTM values must be chosen small enough to permit direct access
to nodes which perfectly code any input pattern. In particular,

a
Zo < (3+ I VI;) I (26)

where Zo i~1 the maximal size of any initial bottom-up LTM trace, and a(.a+ I y(j) 1)-1 is
the learnecl L TM value corresponding to the superset template V(j). The total bottom-up
input to aIL unc=ommitted node in response to input I is thus at most Zo I I I, which is less
than the total bottom-up input a I I I (,8+ I vIi) 1)-1 to a superset node vi'

C. Superset Templates and Mixed Templates
Suppos,e that the network has already searched its subset templates. Suppose also that

both superset templates and mixed templates have previously been learned. Section 13B
showed th~,t, if a node with a superset template is activated, then the input pattern will
be coded b,y that node. In particular, the node's template will be recoded to match the
input pattE!m perfectly. We now characterize the circumstances under which the network
will search mixed templates before it searches superset templates.

Consid,!r nodes Vi which code mixed templates V(i) with respect to the input pattern
I. Also let V(J) be the smallest superset template corresponding to I. Then

(27)

(28)

A mixed template y(i} will be searched before the superset template VIi} if and only if

Ti > TJ. (29)

When parameter B satisfies (18), inequality (29) holds if and only if

(30)

This fact is proved in Carpenter and Grossberg (1985b).
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Since a search always ends when a superset node is chosen, only nodes Vi whose mixed
templates satisfy (30) can possibly be searched. These nodes are searched in order of

decreasinl~ I y(i) n I II y(i) 1-1. If two nodes have the same ratio, then the one with the
larger mb:ed template is searched first. If the search reaches the node v J with the smallest
superset template, then it terminates at v J.

D. Mixed Templates But No .5uperset Templates
Suppo'se that the network has already searched its subset templates. Suppose that

mixed tenlplates, but no superset templates, have previously been learned. In this situa-
tion, the search can end by choosing either a node Vi with a mixed template y(i) or a node
which has not previously been chosen. For example, a node Vi with mixed template will
be chosen before a new node if

I I I, (31)

where Zo i~) the maximal initial size of the bottom-up L TM traces. Recall that

(26)

for all temLplates V(i) in order to enable perfectly coded nodes to be directly accessed.
Inequality (31) can thus hold when I V(i) n II is not too much smaller than Ill.

E. Neii:ber Mixed Templates Nor Superset Templates
In this case, after all subset nodes are searched, the previously uncommitted nodes

are searchE~d. Their initial bottom-up input sizes to Fz depend upon the choice of initial
LTM traces. Thus the order of search among the uncommitted nodes is. determined by a
random fac:tor. The first uncommitted node that is activated ends the search and codes
the input pattern I. This is true because all initial top-down LTM traces are chosen large
enough to !;atisfy the 2/3 Rule (Section 9).

In case there are no uncommitted nodes to be searched after all committed nodes
are rejected, then the input pattern cannot be coded by the network. This property is
a consequence of the network's ability to buffer, or protect, its codes against persistent
recoding b~r unappropriate events.

Figures 11 and 12. depict two coding sequences that illustrate the main points in the
preceding cliscussion. In Figure 11, each of nine input patterns was presented once. We
consider the order of search that occurred in response to the final input pattern I that was
presented on trial 9. By trial 8, nodes VI and V2 had already encoded subset template~s of
this input pattern. On trial 9, these nodes were therefore searched in order of decrea..,ing
template si:~e. Nodes V3, V4, Vs. and V6 had encoded mixed templates of the input pattern.
These nodes were searched in the order V3 -+ Vs -+ V4. This search order was not deter-

mined by tE!mplate size per Be, but was rather governed by the ratio ) v(i) nIl! v(i) 1-1 in
(30). ThesE ratios for nodes V3, vs, and V4 were 9/10, 14/16, and 7 8, respectIvely. Since
14/16 = 7 /:~, node Vs was searched before node v~ because I V(5) 1= 16> 8 =1 V(~) I. The
mixed template node V6 was not searched. After searching vs, the network activated the
node v7 which possessed the smallest superset template. A comparison of rows 8 and 9 in
column 7 shows how the superset template of v7 was recoded to match the input pattern.

-1Node V7 was searched before node v6 because the ratio 1111 V(7) I = 17/21 was larger
than I V(6) n III V(6) ,-I = 14/18. .
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Figure 11. Computer simulati()n to illustrate order of search: On trial 9, the input
pattern first searches subset templates, next searched some, but not all, mixed templates,
and finally recodes the smallest su:perset template. A smaller choice of vigilance paraDleter
could have terminated the search at a subset template or mixed set template node.

The eight input patterns of F'igure 12 were chosen to illustrate a search followed by
coding of cion uncommitted node. The last input pattern I in Figure 12 was the same 8JS the
last input pattern in Figure 11. lJ[l Figure 12, however, there were no superset templates
corresponding to input pattern I. 'Consequently I was coded by a previously uncommitted
node Vs 0:11 trial 8. In particular, on trial 8, the network first searched the nodes- with
subset tenlplates in the order V2 VI' Then the mixed template nodes were searched in
the order v. -;. v6 -;. vs -;. V7' The mixed template node V3 was not searched becausie its
template badly mismatched the iJtlput pattern I. Instead, the uncommitted node Vs was
activated ciond learned a template 1that matched the input pattern.

If parameter a is not small enough to satisf)' inequality (18), then mixed templates or
superset t.~mplates may be searchled before subset templates. The order of search when
.a violates (18) is characterized in Carpenter and Grossberg (1985b). In all cases, direct
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Figure 12. Computer simulation to illustrate order of search: On trial 8, the input pat1;ern
first search4~s subset templates and then searches some, but no all, mixed templates be:tore
choosing an uncommitted node, whose template learns the input pattern.

access of a perfectly coded pattern is achieved.

14. The Nature of Categorical Invariance during Learning

The preceding discussion casts new light on the issue of how invariant properties of
a category can persist even while new learning takes place. Two main cases need to be
differentiated. In the first case. a novel input pattern is coded by a node whose bottom-up
filter and top-down template have previously undergone learning. In the second Cas4~, a
novel input pattern is coded by a previously unchosen node. Our remarks herein will fo,cus
on the first case.

In this case, presentation of thE~ novel input pattern does not immediately change the
number of categories that are coded by the network, nor the set of nodes which code
these categories in STM at F2. Ou1;put signals from F2 generate the network's observ~Lble
responses. :Hence, in this case, the novel pattern is assimilated into the previously estab-
lished set of categorical alternatives and observable responses. At least two different types
of learning can accompany such an assimilation process: learning that is external to the
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categorica,l recognition process .and learning that is internal to this process.
As an example of external learning, suppose that the novel input is associated with a

different reinforcement schedule tJl1an previous inputs in the same category. New leaJ~ning
between the category in F 2 and reiJrlforcement mechanisms may alter the network's resJ:lonse
to all the inputs in the category. Thus the very fact of membership in the same catE!gory
may force forgetting of old external contingencies as new category exemplars are associated
with new external contingencies.

As an example of internal learning, we consider the following facts. Even if a novel
input patt;ern is coded by an "old" F 2 node, this input pattern may alter the bottom-up
filter and top-down template corresponding to that node. In so doing, the novel i:nput
pattern may alter the categorical boundaries of the network as a whole. Input patt;erns
which were coded by prescribed nodes on previous trials may no longer be coded by the
same nodE!s when they are presented later on. Thus, even if the number of categories and
their path'ways to overt responses do not change, the categorical invariants may change.

The 2/3 Rule implies, however, that the filters and templates of a category are subsets
of all the i:rlput patterns that are cloded by that category. Adding a new input pattern to a
category through learning can on I), refine further the filters and templates of the category.
Thus, after a template becomes a. subset of an input pattern by coding that pat1;ern,
the templlLte remains a subset of the input pattern for all future time, no matter how
many timES the template is refined as other input patterns join the same category. As a
template b,ecomes progressively fiIJler, the mismatch between the template and the laI'gest
input patterns coded by its cate~~ory becomes progressively greater. If this mismatch
becomes too great, then some of these large input patterns may eventually be recoded.
For example, in Figure lOb, pattern B is coded by node VI on trial 2, and no new categories
are establi:shed. Later, however, vvhen pattern A is next presented on trial 4, it can no
longer adequately match the template from node VI, as it did after triall. Hence pattern
A establishes a new category.

Two main conclusions follow from these considerations. First, the code learning process
is one of progressive refinement of distinctions. The distinctions that emerge are the
resultant or all the input patterns v~hich the network ever experiences, rather than of some
preassigned features. Second, the matching process compares whole patterns, not just
separate features. For example. t~,o different templates may overlap an input pattern to
F I at the !iame set of feature dete(:tors, yet the network could reset the F 2 node of one
template yet not reset the F2 node of the other template. The degree of mismatch of
template a:rld input as a whole det«~rmines whether recoding will occur. Thus the learning
of ~ategoric:.al inv~iants resolv.es tv~.o opposing tendencies.. As categories grow larger, and
heIl~ce code Increasmgly global mvaJ~lants, the templates whIch define them become smaller,
and hence base the code on sets of critical feature groupings. This article shows how
these two opposing tendencies can be resolved, leading to dynamic equilibration, or self-
stabilization, of recognition catego]~ies in response to a prescribed input environment.

The ne:lCt section describes how a sufficiently large mismatch between an input pattern
and a temJ:llate can lead to STM reset, while a sufficiently good match can terminate the
search and enable learning to OCCUJr.

15. Vigilance, Orienting, aIld Reset

We now show how matching within the attentional subsystem at F 1 determines whether
or not the orienting subsystem will be activated, thereby leading to reset of the attentional
subsystem .Bot F 2' The discussion c~1.n be broken into three parts:

A. Distinguishing Active Mismatch from Passive Inactivity
A severe mismatch at F 1 activates the orienting subsystem A. In the worst possible

case ofmisJnatch, none of the Fl nodes can satisfy the 2/3 Rule, and thus no supraliminal
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activation of Fl can occur. Thus in the worst case of mismatch, wherein Fl becomes totally
inactive, the orienting subsystem must surely be engaged.

On the other hand, F 1 may bl~ inactive simply because no inputs whatsoever are being
processed. In this case, activation of the orienting subsystem is not desired. How does the
network (:ompute the difference b,etween active mismatch and passive inactivity at F1?

This question led Grossberg (1.980) to assume that the bottom-up input source activates
two para:llel channels (Figure 5a). The attentional subsystem receives a specific input
pattern a't Fl. The orienting subsystem receives convergent inputs at A from all the active
input pathways. Thus the orienting subsystem can be activated only when F 1 is actively
processinl~ bottom-up inputs.

B. Competition between the Attentional and Orienting Subsystems
How, then, is a bottom-up input prevented from resetting its own F2 code? What

mechanism prevents the activation of A by the bottom-up input from alwa'J8 resetting the
STM representation at F 2? Clearly inhibitory pathways must exist from F 1 to A (Figure
5a). When F1 is sufficiently active, it prevents the bottom-up input to A from generating
a reset si~~nal to F2. When activity at F1 is attenuated due to mismatch, the orienting
subsystem, A is able to reset F2 (~"igure 5b,c,d). In this way, the orienting subsystem can
distinguish between active misma'tch and passive inactivity at Fl'

Within this general framework, we now show how a finer analysis of network dynamics,
with particular emphasis on the 2/3 Rule, leads to a vigilance mechanism capable of
regulating how coarse the learned categories will be.

C. Collapse of Bottom-Up Acl~ivation due to Template Mismatcb

Suppo:~e that a bottom-up input pattern has activated F 1 and blocked activation of A
(Figure 5a). Suppose, moreover, that F1 activates an F2 node which reads-out a template
that badly mismatches the bottom-up input at F1 (Figure 5b). Due to the 2/3 Rule, many
of the F 1 ILodes which were activa1;ed by the bottom-up input alone are suppressed by the
top-down 1~emplate. Suppose that this mismatch event causes a large collapse in the total
activity across F 1, and thus a larg:e reduction in the total inhibition which F 1 delivers to
A. If this reduction is sufficiently large, then the excitatory bottom-up input to A may
succeed in generating a nonspecific: reset signal from A to F 2 (Figure 5c).

In order to characterize when ;~ reset signal will occur, we make the following natural
assumptions. Suppose that an input pattern I sends positive signals to I I I nodes of Fl.
Since ever:,. active input pathway projects to A, I generates a total input to A that is
proportional to I I I. We suppose that A reacts linearly to the total input 1 I I I. We also
assume thcLt each active F 1 node ~~enerates an inhibitory signal of fixed size to A. Since
every activ.e F 1 node' projects to .It, the total inhibitory input 6 I X 1 from F 1 to A is
proportional to the number I X 1 of active F 1 nodes. When 1 I I I> 6 I X I, A receives a
net excitat'Dry signal and generate!1 a nonspecific reset signal to F 2 (Figure 5c).

In response to a bottom-up iII.put pattern I of size I I I, as in Figure 5a, the total
inhibitory jinput from F1 to A equll.ls 6 I I I, so the net input to A equals (1 -6) I I I. In
order to prevent A from firing in this case (Figure 5a), we assume that 6 ~ 1. We call

1
P=K (32)

the vigilan(~e parameter of the orienting subsystem. The constraints 15 ~ 1 ~ 0 are equiv-
alent to 0 ::; p :s: 1. The size of p determines the proportion of the input pattern which
must be m~Ltched in order to prevent reset.

When both a bottom-up input I and a top-down template V(j) are simultaneously
active (Fig'llre 5b), the 2/3 Rule implies that the total inhibitory signal from Fl to A
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equals 0 I V(i) n I I. In this case, the orienting subsystem is activated only if

'1111> () I V(iJ n Iii

that is, if

The funct:ion which determines ~,hether or not F 2 will be reset in response to an input
pattern I is called the Reset Function. Inequality (34) shows that the Reset Function
should be defined as follows.

Reset Function

(35)

The Reset Function Ri and the Order Function

determine how the search will prolceed.
This line of argument can be intuitively recapitulated as follows. Due to the 2/3

Rule, a be.d mismatch at Fl causes a large collapse of total F] activity, which leads to
activation of A. In order for this ,~o happen, the system must maintain a measure of the
prior level of total F] activity and compare this criterion level with the collapsed level of
total F 1 &i:tivity. The criterion IE!vel is computed by summing bottom-up inputs at A.
This sum c:an provide a criterion because it is proportional to the initial activation of F 1
by the bot,tom-up input, and yet it, remains unchanged as the matching process unfolds in
real-time.

Figure 13 summarizes the tota:1 network architecture. It includes the modulatory pro-
cesses, such as attentional gain control, which regulate matching within F 1, as well as the
modulator:" processes, such as orienting arousal, which regulate reset within F2. Figure
13 also inclu~~s an attentional gain control process at F 2. Such a process enables offset
of the inp1.1t i attern to terminate all STM activity within the attentional subsystem in
preparation for the next input pa1~tem. In this example, STM storage can persist after
the input pattern terminates only i:f an internally generated or intermodality input SO'llrce
maintains 1;he activity of the atten'~ional gain control system.

16. Distinguishing Signal trom Noise in Patterns of Variable Complexity:
Weighing the Evidence

A variety of important properties follow from the conception outlined in Section 15 of
how the orienting system is engaged by mismatch within the attentional subsystem. These
properties all address the fundamen.tal issue of how a system can distinguish between signal
and noise as it processes inputs of'variable complexity.

We no,v indicate how the net'work automatically rescales its noise criterion as the
complexity of the input pattern varies. In particular, even with fixed parameters, the
network can tolerate larger misma,tches in response to larger input patterns. Suppose,
for exampl~~, that the network processes two input patterns at different times. One input
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Figur~ 13. .-\natomy of tht' attt'ntional-orienting ~ystern: This figure describes all the
intE:'rartioIl~ of tht' model \vithout regard to which components arE' active at any given
time.

pattern 1(1) activates just a few F 1 feature detectors. whereas the other input pattern 112)
activates m.any F1 feature detectors; that is.

I ](1) 1<1 ](2) I Iftft\
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In other v/ords, both input patterns overlap their templates by the same amount. Due to
(36), howl~ver,

(38)

By inequ~~lities (34) and (38), the network is more likely to reset v2 in response to I{2)
than it is to reset VI in response to 1(1). Thus a fuced amount of match with a large input
pattern p]~ovides less evidence for, coding than the same amount of match with a small
input patt;ern. H (37) holds, theIJL the larger pattern I{2) disagrees with the template at
more features than does the smaller pattern I{I). Hence, by (38), V2 may be reset whereas
VI may not be reset; this will, in f:act, be the case when p lies between RI and R2.

The rescaling property shows that the network processes input patterns as a whole. The
functional units of the network Rrle activation patterns across a field of feature detectors,
rather tharl individual activations of feature detectors.

If the :rletwork does not reset VI in response to 1(1), then the template of VI is refined
to equal the intersection y(I) n 1(1). In other words, given that the network accepts the
evidence that VI) should be coded by VI, it then suppresses as noise the features at which
1(1) disagrees with y(I), both in S~rM and in LTM.

Using this property, the network can also distinguish finer differences between small
input patterns than between large input patterns. Suppose that the amount of mismatch
between a small input pattern 1(1) and its template y(I) equals the &mount of mismatch
between a large input pattern 1(2) and its template y(2); that is,

/(1)- V(I) n 1(1) 1= 1(2)- y(2) n ](2)

By (36) and (39),

Thus VI is more likely to be reset by 1(1) than is Vz to be reset by 1(2). This shows that a fixed
amount of mismatch offers more e,'idence for reset when the input pattern is simple than
when it is c:omplex. Othe-:wise expressed, since the network is reset by smaller mismatches
when procE!ssing smalfer input patterns, it automatically makes finer distinctions between
smaller input patterns than betweE!n larger input patterns.

The simulation in Figure 14 illustrates how the network automatically rescales its
matching criterion. On the first foul' presentations, the patterns are presented in the order
ABAB. By trial 2, coding is complete. Pattern A directly accesses node VI on trial 3,
and patterJQ B directly accesses node V2 on trial 4. Thus patterns A and B are coded
within diffE~rent categories. On trials 5-8, patterns C and D are presented in the order
CDCD. Pa'tterns C and D are cons'~ructed from patterns A and B, respectively, by adding
identical uJ;>per halfs to A and B. Thus, pattern C differs from pattern D at the same
locations ,",'here pattern A differs from pattern B. However, because patterns C and D
represent many more active features than patterns A and B, the difference between C and
D is treated as noise, whereas the dlifference between A and B is considered significant. In
particular, both patterns C and D are coded within the same category on trials 7 and 8.

The ne1:work's different categorization of patterns A and B vs. patterns C and D can
be understood as follows. The core issue is: why on trial 2 does B reject the node VI which
has coded A, whereas D on trial 6 accepts the node v3 which has coded C? This occurs
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Figure 14. Distinguishing noise from patterns of inputs of variable complexity: Input
patterns A and B are coded by the distinct category nodes VI and V2, respectively. Input
patterns C and D include A and B as subsets, but also possess idential subpatterns of
additional features. Due to this additional pattern complexity, C and D are coded by the
same category node v3. At this viJ~ilance level (p = .8), the network treats the difference
between C and D as noise, and suppresses the discordant elements in the v3 template. By
contrast, it treat! the difference between A and B as informative, and codes the difference
in the VI &:ad v2 t!.mp-lates, respec1,ively.

despite thE~ fact that the mismatch between B and V(l) equals the mismatch between D
and V(3):

I B -.V(l) n B 1= 3 =1 D I -I V(3) n D I, (41)

as in equation (39). The reason caD be seen by comparing the relevant reset functions:

I ~r(l) n B I.RJ.B = I B I = :- f.i?I8

and
14-I V(3) n D I -

R3D -I D I -17'

In this simulation, the vigilance pa.rameter p = .8. Thus

RiB < P < R3D- (44)
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By (34), pattern B resets vI bu1; D ?oes not reset v3' Consequently, B is coded by a
different c:ategory than A, whereas D 18 coded by the same category as C.

17. Vigilance Level Tunes Categorical Coarseness: Enviromnental Feedback

The previous section showed ]~ow, given each fixed vigilance level, the network auto-
matically rescales its sensitivity to patterns of variable complexity. The present section
shows that changes in the vigilance level can regulate the coarseness of the categories that
are learned in response to a fixed sequence of input patterns.

A low vigilance level leads to learning of coarse categories, whereas a high vigilance
level lead! to learning of fine cate:~ories. Suppose, for example, that a low vigilance level
has led tCI a learned grouping of inputs which need to be distinguished for successful
adaptation to a prescribed input environment. Suppose, moreover, that a punishing event
occurs as a consequence of this erroneous grouping. Such a punishing event may have
multiple ejIects on the organism. In addition to its negative reinforcing effects, we suppose
that it also has a direct cognitive effect; namely, it increases attentive sensitivity to the
environment. Such an increase in sensitivity is modelled within the network by an increase
in the vig:ilance parameter, p. Increasing this single parameter enables the network to
discriminate patterns which previously were lumped together. Once these patterns are
coded by different categories in F2, the different categories can be associated with different
behavioral responses.

In this way, environmental feedback such as a punishing event can act as a "teacher"
for a self-clrganizing recognition s~,stem. This teaching function does not take the form
of an algorithm or any other type of pattern-specific information. Rather, it sets a single
nonspecific: parameter whose inteJraction with the internal organization of the network
enables the network to parse mOrE! finely whatever input patterns happen to occur. The
vigilance parameter will be increasl~d, for example, if all the signals from the input pattern
to A are n'Dnspecifically amplified, so that parameter 'Y increases. A nonspecific decrease
in the size of signals 6' from Fl to A will also increase p. Alternatively, reinforcement-
activated nonspecific excitatory input to A can also facilitate mismatch-mediated activation
of A. The process whereby the level of vigilance is monitored is one of the three types of
nonspecific arousal that exist within the network.

Figure 15 describes a series of simulations in which four input patterns-A, B, C,
D-are coded by a network with .~ nodes in F2. In this simulation, A C B c C c D.
The different parts of the figure sh'Dw how categorical learning changes with changes of p.
The simula.tion shows that any CoDi'~utive pair of patterns-(A, B), (B, C), (C, D)--can
be coded in the same category at ~d fferent vigilance levels. When p = .8 (Figure I5a), 4
categories It.re learned: (A)(B)(C)(D). When p = .7 (Figure ISb), 3 categories are learned:
(A)(B)(C,D). When p = .6 (FigurE! lSc), 3 different categories are learned: (A)(B,C)(D).
When p = .5 (Figure 15d), 2 categories are learned: (A,B)(C,D). When p = .3 (Figure
lSe), 2 different categories are leaJrned: (A,B,C,)(D). When p = .2 (Figure 15f), all the
patterns are lumped together into a single category.

18. UIuversal Recognition ]Design across Modalities

The properties that we have dE~monstrated using illustrative simulations generalize to
the coding of arbitrary sequences of input patterns. The ability to group arbitrary inputs
is needed, ~~e suggest, because the same mechanisms of grouping are used across modali-
ties. Each modality, such as speech and vision, undergoes multiple stages of preprocessing
through wllich different invariant :properties of its environmental inputs are abstracted.
These abstJract representations theJrl feed, as input patterns, into an attentional-orienting
system. WE! suggest that the attentional-orienting system obeys the same processing rules
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across modalities. In this sense, 1;he attentional-orienting system realizes a universal pro-

cessing d.~ign.
In order to illustrate how such a network codifies a more complex series of patterns,

we show in Figure 16 the first 20 trials of a simulation using alphabet letters as input
patterns. In Figure 16a, the vigilance parameter p = .5. In Figure 16b, p = .8. Three
properti~1 are notable in these siDlulations. First, choosing a different vigilance parameter
can determine different coding histories, such that higher vigilance induces coding into
finer cate~~ories. Second, the net\\'ork modifies its search order on each trial to reflect the
cumulati'V'e effects of prior learning, and bypasses the orienting system to directly access
categories after learning has taken place. Third, the templates of coarser categories tend
to be mo]~e abstract because the~r must approximately match a larger number of input
pattern e):emplars.

Given p = .5, the network groups the 26 letter patterns into 8 stable categories within
3 presenta~tions. In this simulatio:!l, F 2 contains 15 nodes. Thus 7 nodes remain uncoded
because the network self-stabilizE~s its learning after satisfying criteria of vigilance and
global code self-consistency. Given p = .8 and 15 F2 nodes, the network groups 25 of the
26 letters into 15 stable categorie!3 within 3 presentations. The 26th letter is rejected by
the network in order to self-stabili2:e its learning while satisfying its criteria of vigilance and
global code self-consistency. These simulations show that the network's use of processing
resources depends upon an evolving dynamical organization with globally context-sensitive
properties" This class of networks is capable of organizing arbitrary sequences of arbitrarily
complex iI1lput patterns into stable categories subject to the constraints of vigilance, global
code self-clonsistency, and number of nodes in F 1 and F 2. If slow learning rather than fast
learning ra~tes are used (Section 9), then the categorical code may be learned more slowly
but it still enjoys the critical proplerties just listed.

19. IIJlterdisciplinary Relationships: Word Recognition, Evoked Potentials,
and Mern.al Temporal Amnesia

In this article, we have described the formal properties of a neural network which is
capable of self-stabilizing its learning of recognition categories. The theory which this
networ k dE!velops arose from an aJlalysis of several types of data, and is currently being
refined thr'Dugh its use in explaining other types of data.

For example, the adaptive resonance theory acticipated the discovery of the processing
negativity evoked potential and has successfully predicted several important properties
of the processing negativity, mism;~tch negativIty, and P300 evoked potentials. A review
of these ap'plications is found in C:rossberg (1£.84a). This article is contained in a book
(Karrer, Cohen, and Tueting, 1984) which includes detailed descriptions of relevant evoked
potential data. The attentional-ori'~nting network enhibits properties that are homologous
to those of evoked potentials. In p,articular, the process whereby a top-down attentional
prime is matched against a bottODl-UP input pattern at F 1 may be compared with data
about the J7rocessing negatiuitI/ evoked potential. The process whereby the orienting sub-
system is activated at A when a mismatch occurs may be compared with data about the
mismatch r!egativity evoked potential. The process whereby STM is reset at F 2 in response
to an unex]~ected event may be compared with data about the P900 evoked potential.

The bo,ttom-up and top-down interactions within the attentional subsystem have also
been used to explain and predict data about word recognition and recall in normal subjects
(Grossberg" 1984b, 1985a; Grossberg and Stone, 1985). In these data analyses, concepts
such as attentional gain control and attentional primimg, which we have here related
to code stabilization via the 2/3 Rule (Section 12), have enabled us to clarify and modify
empirical m.odels of "automatic activation" and "conscious attention" (Neely, 1977; Posner
and Snyder, 1975a, 1975b).
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Certa,in abnormal learning. and recognition phenomena are strikingly similar to prop-
erties of a damaged attentional-orienting system. In considering this comparison it is
necessary to keep in mind that the attentional-orienting system is only one compon~nt in
a larger n.eural theory of learning and memory. In particular, we do not herein extend this
comparison to consider theoretic~LI circuits for learned cognitive-motivational interactions,
for serially ordered language utterances, or for sensory-motor coordination. Despite these
limitations, it is of interest that iJrljury to the orienting subsystem generates a type of am-
nesia tha't is reminiscent of amnE!sia in human patients, such as H.M., who have suffered
inju.rY to their medial temporal b]:a~ strlI;ctures (Lynch, McGaugh, and Weinberger, 1984;
Squire and Butters, 1984). In ma:kmg thIS comparison, we will focus on issues relating to
retrograd,e and anterograde amn«~sia, memory consolidation, impaired reactions to novel
events, aIJLd differences between priming and recognition capabilities.

SuppCtse that the orienting sllbsystem ceases to function. Then the network cannot
genera~e, a search for new recog~ition categories. Consequently it cannot build up new
recognition codes that would requlre a depthful search. On the other hand, well-established
recognition categories can be directly accessed. Since they do not require intervention
of the oriE!nting subsystem, recognition codes which were established before the orienting
subsysteIEl failed are still accessible. Codes which were partially learned when the orienting
subsystemL failed may suffer variable degrees of impairment. Thus, failure of the orienting
subsystem~ generates an amnesic syndrome with temporally limited retrograde amnesia and
a tempora.lly prolonged anterogra,de amnesia.

This a.mnesic syndrome is, in some respects, consistent with the following statement
of Squire and Cohen (1984). "Th«! medial temporal region establishes a relationship with
distributed memory storage sites UI neocortex and perhaps elsewhere; it then maintains the
coherence of these ensembles until, as a result of consolidation, they can be maintained and
can support retrieval on their OWIJ. ..the amnesic deficit is due to impaired consolidation"
(p.45). Ir:l a normal attentional-orienting system, memory consolidation occurs as the
system progresses from searching the attentional subsystem via the orienting subsystem to
directly accessing its learned codes without engaging the orienting subsystem. During this
consolidati.on process, the orienting subsystem is disengaged as unfamiliar environmental
events gain familiarity by building learned recognition categories. The amnesic syndrome of
the attentional-orienting subsysteIIl is thus due to "impaired consolidation," in agreement
with Squire and Cohen (1984). ;fiowever, the orienting subsystem does not "maintain
the coherence of these ensembles." Rather, when these ensembles become coherent and
globally self-consistent, they disen:~age the orienting subsystem.

The raJe played by the orienting subsystem in drivi1g a search for a globally self-
consistent code coexists with its equally important role ill enabling the network to react
to the mismatches generated by tLnexpected and/or unfamiliar events. This latter role
is the basis for calling this systeJ~ the orienting subsystem (Grossberg, 1982, 1984a).
The theory' thus shows how memo]~ consolidation and novelty detection can be mediated
by the sanLe structure, which is stLggested to be a medial temporal brain structure such
as hippocampus. This interpretation is consistent with data concerning the inability of
hippocampectomized rats to orient to novel cues (O'Keefe and Nadel. 1978) and with
the progre~isive reduction in noveI1;y-related hippocampal potentials as learning proceeds
(Deadwyl~]~, West, and Lynch, 1979; Deadwyler, West, and Robinson, 1981). In summary,
ablation of the orienting subsystenl, and by interpretation medial temporal brain regions
such as hippocampus, can interfere both with reactions to novel cues and with memory
consolidation.

The attentional-orienting subsystem clarifies how normal priming and abnormal recog-
nition can coexist in amnesia. In brief, the attentional priming mechanism may be intact
even if the orienting subsystem is J:1ot working. An attentional prime can improve recog-
nition by facilitating direct access to the correct learned category. These properties are
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consisten1; with data showing effective priming in amnesic patients (Cohen, 1984; Graf
Squire, and Mandler, 1984; Mattis and Kovner, 1984; Warrington and Weiskrantz, 1970:
1974) .

The clynamics of the attentional-orienting system also shed new light on concepts
about thE~ properties of multiple memory systems (Lynch, McGaugh, and Weinberger,
1984; Squire and Butters, 1984). These memory systems have been given different names
by different authors. Ryle (1949) distinguished "knowing that" from "knowing how;"
Bruner (1009) discussed "memor;y with record" and "memory without record;" Mishkin
(1982) analysed "memories" and "habits;" Squire and Cohen (1984) contrasted "declara-
tive memory" and "procedural m,emory." The attentional-orienting system may be clas-
sified, at least qualitatively, as a "declarative memory" system because it governs "the
storage of or access to memory ordinarily acquired during the learning experience" (Squire
and Cohen, 1984, p.39). Recent th.eoretical progress has enabled such a learned recognition
system to be clearly distinguished, on the level of neural mechanism, from the learning sys-
tems whic:h govern the acquisition of se~sory-motor coordinations and plans (Grossberg,
1985a, 19:85b; Grossberg and Kuperstem, 1985). These sensory-motor learning circuits
provide e~:amples of "procedural memory" systems.

When analysed on the level of mechanism', however, different types of memory systems
cannot be neatly separated. For example, Squire and Cohen (1984) assume that atten-
tional priJDing mechanisms form part of a procedural memory system becau8e they are
effective in amnesics whose recognition memory is impaired. In an attentional-orienting
system, priming mechanisII1S form part of the attentional subsystem. The attentional sub-
system, however, governs "the storage of or access to memory ordinarily acquired during
the learniJrlg experience" (Squire and Cohen, 1984, p.39). Hence, by this criterion, at-
tentional priming mechanisms should be included in a declarative memory system, not a
procedural memory system. This: difficulty reflects the general proposition that "proce-
dures" cannot be separated from ,the contents, or "facts," that they manipulate, either in
recognitio]rl systems or sensory-motor systems. This proposition in necessitated by the fact
that the contents are learned, and, thus the procedures must be defined interactively with
respect to the evolving contents i:rl order to be effective. In a sensory-motor system, the
contents may not be "facts" that Jrepresent recognition events. They may represent differ-
ent types of information, such as t;erminal motor maps, or short term memory patterns of
temporal order information over item representations (Cohen and Grossberg, 1985; Gross-
berg and :Kuperstein, 1985). ThE~e contents define the "procedures" which govern how
the sensor:y-motor systeII1S will operate.

Anoth,er example of this interdependence can be seen in the attentional-orienting sys-
tem. This system, on the level of mechanism, exhil its both "procedural" and "declarative"
elements. Moreover, it is a defect of its procedures that leads to amnesia for its facts. The
"procedurles" of the attentiona.l-orienting system are the search routines that are mediated
by the orienting subsystem. The orienting subsystem cannot search except through its
interactions with the attentional subsystem, in keeping with the goal of the search to pre-
serve old "'facts" while learning new "facts" within the attentional subsystem. Thus there
can be no 8earch program8-no independently definable procedure8-within the orienting
subsystem because the global or~~anization of the codes being searched changes during
learning.

In sun:L1D.ary, the processing terms w}{ich have- been chosen to emphasize the separate-
ness of multiple memory systeII1S--such as procedures and facts-become less clear-cut on
the mechanistic level. Both types of process seem to exist in each memory system. This
observation does not deny the bas;ic fact that different memory systems react to environ-
mental inp,uts in different ways, so that a patient may be able to learn a sensory-motor skill
withou t b~~ing able to recognize a person's face. However, it does clarify how an amnesic
can use faJmiliar visual recognition codes as the inputs which trigger new learning within
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a sensory,. motor system, without also generating new visual recognition codes within the
very objfi:t recognition system which processes the visual signals. In other words, these
results su,ggest how H.M. may USE~ familiar "facts" to generate novel "procedures" without
also learning to recognize the unfamiliar "facts" that are perceptually grouped in new ways
during th~e "procedures."

We conclude with a predictioI:l. If the data about evoked potentials and medial tempo-
ral amnesics both reftect a common level of neural processing, then the mismatch negativ-
ity a.nd P:300 evoked potential of medial temporal amnesic patients should be much more
impaired ,than their processing ne~~ativity evoked potentials during attentional priming ex-
periments, with the processing negativity tested in a match situation and the mismatch
negativity and P300 tested in a mismatch situation.
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APPENDIX
NE~rWORK EQUATIONS

STM Eq'uations

The STM activity of any nodE: vk in F 1 or F 2 obeys a membrane equation of the form

where J: and J; are the total eJccitatory input and total inhibitory input, respectively,
to Vk and A, B, C, D are nonneg!~tive parameters. If C > 0, then the STM activity Zj;(t)
remains w:ithin the finite interval [0, BC-l] no matter how large the inputs J[ and J; are
chosen.

We de:llote nodes in Fl by Vi, where i = 1,2,..., M. We denote nodes in F2 by v"
where j = M+ I,M + 2,... ,N. 1rhus by (AI), .

:A2)

and

The in]put Ji+ is a sum of the bottom-up input Ii and the top-down template

~ = L I(Xi)Zji,
}

'A4)

that is,
J:+ = Ii + Vi,

8 (AS)

where !(z,) is the signal generated by activity x,' of vi, and Zji is the LTM trace in the
pathway fr,om vi to Vi-

The inhibitory input Ji- contrc)ls the attentional gain:

Ji- = FL /(.2';).
;

Thus Ji- = 0 if and only if F2 is inactive (Figures 6 and 7).

The inputs and parameters of STM activities in F2 were chosen so that the F2 node
which r~ived the largest input from Fl wins the competition for STM activity. Theorems
in Ellias all.d Grossberg (1975), Grossberg (1973), and Grossberg and Levine (1975) show
how these parameters can be chosE!n. The inputs J ,7 and J j- have the following form.

Input ..1j+ adds a positive feed,back signal g(Xj) from Vj to itself to the bottom-up
adaptive filter input
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that is,
JT = g(X,) + Tj,,

where h{Xi) is the signal emitted by t,'i and Zij is the LTM trace in the pathway from Vi to
Vj- Input J; adds up negative feedback signals g(Xk) from all the other nodes in F2:

Jj- == L g(Xk).

k:t:l

Such a network behaves approxim;it,ely like a binary switching circuit:

if T] > max(Tk
otherwise.

k # j)Xi = { ~

(AID)

LTM Equations

The L TM trace of the bottom-up pathway from Vi to Vj obeys a learning equation of
the form

datZij == [(Xj) [-Hi}Zij + Kh(Xi)]' (All)

In (All), term [(x}) is a postsynaptic .sampling, or learning, signal because [(xi) = 0

implies 9tZtj = O. TE'rm [(xi) is also the output signal ofVj to pathways from Vj to Fl, as

in (.-\4).
ThE' LTM tract' of the top-dow:rl pathway from Vj to Vi also obeys a learning equation

of the form

(A12)

--d iltZji =: f(x,') [-HjjZji + Kh(xj)].

In the present simulations. the simplest choice of H ji was made for the top-down LT~
traces:

(A13)1"[ ji = H = constant.

A more complex c}loic(' of H ji was made for the bottom-up LTM traces. This \,,.as done
to directly generat(' the \\"eher Law Rule of Section 8 via the bottom-up LTM process itself.
The \\"eber Law Rulc c.an also be generated indirectly by exploiting a Weber Law property
of ("onlpetitive ST~I iilterCl("tions ac:ross Fl. Such an indirect instantiation of tr..e \'"eber
La\\" Rule enjoy~ ",c'\.{-f1i1 n.1\'antages and will be developed else\...here. In particular. it
\vould enable u~ to ,lI...(I ,}!oo.-;e H]i = H = constant. Instead, we allowed the bottom-ur
LT~I traces at each !!()oe (', to compete among themselves for synaptic sites. ~Ialsburg
'111'1 \'":ll"llaw (195-1 ll;I" ,;,('d a related idea in their model of retinotectaI d<,vf'!()I'lll( Ii;,
III tl:.' l)r('sent USll~( li "':,1"' essential to choose a shunting competition to gen('rat(' tiJ('
\\(,i" r Lil\V Rul~. 111,;:K\ th\ ~lalsbllrg and Willshaw usage. Thu~ we let

A14)Hij = Lh(Xi) + L h(Xk)'
k#i

(A15)
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By (A15), when the postsynaptic signal f(xj} is positive, a positive presynaptic signal
h(Xt} commits receptor sites to 1;he LTM process Zti at a rate (K -Lztj)h(Zi)f(Xi}' Si-
multane<Jlusly, signals h(Xt}, k 1= i, which reach vi at different regions of the vi membrane
compete for sites which are alreacly committed to zii via the mass action competitive terms
-zijf(Xj)h(Xt}. When Zti equilibrates to these competing signals,

Kh(Zi)Zij := (L -l)h(Zi) + Lt h(Zt). (A16)

The sign~~l function h( w) was chosen to rise quickly from 0 to 1 at a threshold activity
level woo Thus if Vi is a suprathrE!shold node in Fl! (A16) approximates

K
Zij =: (L -1)+ I x I (A17)

where I X I is the number of active nodes in Fl. Thus Zij obeys a Weber Law Rule if
L > 1. By comparison with (2), D' = K and {3 = L -1.

STM Reset System

The simplest possible misma1:ch-mediated activation of A and STM reset of F 2 by
A were ir:[1plemented in the simulations. As outlined in Section 15, each active input
pathway sends an excitatory sign.al of size "Y to A. Potentials Xi of F 1 which exceed a
signal threshold T generate an inhibitory signal of size -0 to A. Population A, in turn,
generates a nonspecific reset wave to F 2 whenever

;-1 ~ -"'--'-

"'Ylll-oIXI>O, (A18)

where I is the current input patteJ~ and I X I is the number of nodes across F 1 such that
Xi > T. The nonspecific reset wave shuts off the active F2 node until the input pattern I
shuts off. Thus (AID) must be modified to shut off all F2 nodes which have been reset by
A during the presentation of I.

-46-



REFERENCES

Basar, E., Flohr, H., Haken, H., and: Mandell, A.J. (Eds.), Synergetics of the bra.in. New
York: Springer-Verlag, 1983.

Bruner, J.S., Modalities of memory. In G.A. Talland and N.C. Waugh (Eds.), The pa.tho].
ogy of memory. New York: AcEl.demic Press, 1969.

Carpenter, G.A. and Grossberg, S., Neural dynamics of adaptive pattern recognition: Prim-
ing, search, attention, and categ<Jlry formation. Society for Neuroscience Abstracts 111985 (a). ' ,

Carpenter, G.A. and Grossberg, S.., Self-organization of neural recognition categories. In
preparation, 1985 (b).

Cohen, M.A. and Grossberg, S., Neural dynamics of speech and language coding: Develop-
mental programs, perceptual grouping, and competition for short term memory. Human
Neurobiology, in press, 1985. .

Cohen, N.J., Preserved learning capacity in amnesia: Evidence for multiple memory systems.
In L. Squire and N. Butters (Edfi.), The neuropsychology of memory. New York:
Guilford Press, 1984, pp.83-103.

Deadwyler, S.A., West, M.D., and L:fnch, G., Activity of dentate granule cells during learn-
ing: Differentiation of perforant pELth inputs. Brain Research, 1979, 169, 29-43.

Deadwyler, S.A., West, M.D., and Robinson, J.H., Entorhinal and septal inputs differentially
control sensory-evoked responses in the rat dentate gyrus. Science, 1981, 211, 1181-1183.

Ellias, S..~. and Grossberg, S., Patt~!rn formation, contrast control, and oscillations in the
short term memory of shunting on-center off-surround networks. Biological Cybernetics,
1975, 20, 69-98.

Graf, P., Sql1ire, L.R., and Mandler, G., The information that amnesic patients do not
forget. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1984, 10,
164-178.

Grossberg, S., Contour enhancement, short-term memory, and constancies in reverberating
neural networks. Studies in Applied Mathematics, 1973, 52, 217-257.

Grossberg, S., Adaptive pattern classification and universal recoding, I: Parallel development
and coding of.neural feature detectors. Biological Cybernetics, 1976, 23, 121-134 (a).

Grossberg, S., Adaptive pattern classification and universal recoding, II: Feedback, expecta-
tion, olfaction, and illusions. Biolo~~ical Cybernetics, 1976, 23, 187-202 (b).

Grossberg, S., A theory. of human memory: Self-organization and performance of sensory-
motor codes, maps, and plans. In R.. Rosen and F. Snell (Eds.), Progress in theoretical
biology, Vol. 5. New York: Academic Press, 1978, pp.233-374.

Grossberg, S., How does a brain build a cognitive code? Psychological Review, 1980, 87,
1-51.

Grossberg, S.. Processing of expected and unexpected events during conditioning and atten-
tion: A psychophysiological theory. Psychological Review, 1982, 89, 529-572.

Grossberg, S., The quantized geometry of visual space: The coherent computation of depth,
form, and lightness. Behavioral and Brain Sciences, 1983,6, 625-692.

Grossberg, S., Some psychophysiological and pharmacological correlates of a developmen-
tal, cogniti,'e, and motivational thE!ory. In R. Karrer, J. Cohen, and P. Tueting (Eds.),
Brain and information: Event related potentials. New York: New York Academy
of Sciences, 1984 (a).

Grossberg, S., Unitization, automaticity, temporal order, and word recognition. Cognition
and Brain Theory, 1984, 7, 263-28~: (b).

-l..7-



Grossberg, S., The adaptive self-organization of serial order in behavior: Speech, language
and motor control. In E.C. Schwab and H.C. Nusbaum (Eds.), Perception of speech
and visual form: Theoretical jissues, models, and research. New York: Academic
Press, 1985 (a).

Grossberg, S., The role of learning in sensory-motor control. Behavioral and Bram Sciencesin press, 1985 (b). '

Grossberg, S. and Kuperstein, M., .Al.daptive neural dynamics of sensory-motor con-
trol: Ballistic eye movements. Amsterdam: North-Holland, 1985.

Grossberg, S.. and Levine, D.S., Some developmental and attentional biases in the contrast
enhancement and short term memory of recurrent neural networks. Journal of Theoretical
Biology, 1975, 53, 341-380.

G~ossberg, S. and Mingolla, E., Neur.a.l ~ynamics of form perception: Boundary completion,
illusory figtlres, and neon color spr«!admg. Psychological Review, 1985,92, 173-211 (a).

Grossberg, S. and Mingolla, E., Neural dynamics of perceptual grouping: Textures bound-aries, and emergent segmentations. Submitted for publication, 1985 (b). '

Grossberg, S. and Stone, G.O., Neural dynamics of word recognition and recall: Attentional
priming, learning, and resonance. Psychological Review, in press, 1985.

Karrer, R., Cohen, J., and Tueting, :P. (Eds.), Brain and information: Event related
potentials. New York: New York Academy of Sciences, 1984.

Lynch, G., McGaugh, J.1., and Weinberger, N.M. (Eds.), Neurobiology or learning and
memory. New York: Guilford Pre!IS, 1984.

Malsburg, C. von der and Willshaw, D.J., Differential equations for the development of
topological nerve fibre projections. In S.Grossberg (Ed.), Mathematical psychology
and psychophysiology. Providenc:e, RI: American Mathematical Society, 1981.

Mattis, S. and Kovner, R., Amnesia is as amnesia does: Toward another definition of the an-
terograde aI:l1nesias. In L. Squire anld N. Butters (Eds.), Neuropsychology or memory.
New York: (::;uilford Press, 1984.

Mishkin, M., A memory system in the monkey. Philosophical Transactions of the Royal
Society of London, 1982, B298, 85-95.

Neely, T .H., Semantic priming and ret:rieval from lexical memory: The roles of inhibitionless
spreading activation and limited capacity attention. Journal of Experimental Psychology:
General, 1917, 106, 226-254.

O'Keefe, J. and Nadel, 1., The hippoc8.IDpus as a cognitive map. Oxford: Oxford
University Press, 1978.

Posner, M.I. and Snyder, C.R.R., Attention and cognitive control. In R.1. Solso (Ed.),
Information processing andco~;nition: The Loyola symposium. Hillsdale, NJ:
Erlbaum, 1975 (a).

Posner, M.l. and Snyder, C.R.R., Fa(:ilitation and inhibition in the processing of signals.
In P.M.A. Rabbitt and S. Dornic (l~ds.), Attention and performance V. New York:
Academic Press. 1975 (b).

Ryle, G., The concept of mind. San Francisco: Hutchinson, 1949.
Squire, L.R." and Butters, N. (Eds.), Neuropsychology of memory. New York: Guilford

Press, 1984.
Squire, L.R. and Cohen, N.J., Human Inemory and amnesia. In G. Lynch, J. McGaugh, and

N.M. Weinberger (Eds.), NeurobioIogy of learning and memory. New York: Guilford
Press, 1984, pp.3-64.

Warrington, E.K. and Weiskrantz, 1.. The amnesic syndrome: Consolidation or retrieval?
Nature, 1970, 228, 628-630.

-48-



Warrington, E.K. and Weiskrantz, L., .The effect of prior learning on subsequent retention
in amnesic patients. NeuropsycbologJa, 1974, 12, 419-428.

tSupported in part by the National Science Foundation (DMS-84-13119) and the Office of
Naval Research (ONR NOOO14-83..KO337).

~Supported in part by the Air FOrCE! Office of Scientific Research (AFOSR 85-0149) and the
Office of Naval Research (ONR NIOOO14-83-K0337).

Acknowledgements: We wish to thank Cynthia Suchta for her valuable assistance in the
preparation of the manuscript.

-49-


