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s we humans move through our
world, we can attend to both famil-
iar and novel objects. Part of what
makes us human is our ability to
rapidly recognize, test hypotheses
about,and name novel objects with-
outdisrupting our memories of familiar objects. This
article describes a way of achieving these human
characteristics in a self-organizing neural net-
work called fuzzy ARTMAP. This architecture is
capable of fast but stable on-line recognition
learning, hypothesis testing, and adaptive naming in
response to an arbitrary stteam of analog or bina-
ry input patterns.

The fuzzy ARTMAP neural network com-
bines a unique set of computational abilities that
are needed to function autonomously in a chang-
ing world (see Table 1) and that alternative mod-
els have not yet achieved. In particular, fuzzy
ARTMAP can autonomously learn, recognize,
and make predictions about rare events, large
nonstationary databases, morphologically vari-
able types of events, and many-to-one and one-
to-many relationships.

Fast Learning of Rare Events

A nautonomous agent must be able to learn about
rare events with important consequences,
even if such events are similar to many other
events that have differentconsequences (Fig. 1). For
example, a rare medical case may be the harbinger
of a new epidemic. A faint astronomical signal
may signify important consequences for theories
of the universe. A slightly different chemical
assay may predict the biological effects of anew drug.
Many traditional learning schemes use a form of slow
learning that tends to average similar event
occurrences. In contrast, fuzzy ARTMAP systems
can rapidly learn rare events whose predictions
differ from those of similar events.

Stable memory of Nonstationary Data

Rare events typically occur in a nonstationary envi-
ronment, such as a large database, in which event
statistics may change rapidly and unexpectedly.

Individual events may also occur with variable
frequencies and durations, and arbitrarily large num-
bers of events may need to be processed. Each of
these factors tends to destabilize the learning
process within traditional algorithms. New learn-
ing in such algorithms tends to unselectively wash
away the memory traces of old, but still useful, knowl-
edge. Learning a new face, for instance, could
erase the memory of a parent’s face, or learning a
new type of expertise could erase the memory of pre-
vious expert knowledge.

A fuzzy ARTMAP system can reconcile conflicting
properties and autonomously learn about:

Rare events
* requires fast learning
Large nonstationary databases
* requires stable learning
Morphologically variable events
* requires multiple scales of generalization
(fine/coarse)
One-to-many and many-to-one relationships
* requires categorization, naming, and expert
knowledge ‘

To realize these properties, ARTMAP system:s:

Pay attention
* ignore masses of irrelevant data
‘Test hypotheses * .
« discover predictive constraints hidden in data
streams
Choose best answers -
« quickly select globaily optimal solution at any
‘stage of learning’
Calibrate confidence
¢ measure on-line how well a hypothesis
matches the data
Discover rules
« identify transparent if-then relations at each
. _learning stage
Scale
"« preserve all desirable properties in arbitrarily
L large problems

8 Table 1. Autonomous learning and control in a
nonstationary world.
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Adaptive Fitting of Morphological
Variability

Many environments contain information that may
beeithercoarsely or precisely defined. [n other words,
the morphological variability of the data may change
through time. For example, it may be necessary mere-
ly to recognize that an object is an airplane, or that
it is a particular type of airplane that is flown for a
particular purpese by a particular country. Under
autonomous learning conditions, no teacher is
typically available to instruct a system about how
coarse the definition of particular types of data should
be. Multiple scales of generalization, from fine to
coarse, need to be available on an as-needed
basis. Fuzzy ARTMAP is able to automatically adjust
itsscale of generalization to match the morphological
variability of the data. It embodies a Minimax Learn-
ing Rule that conjointly minimizes predictive
error and maximizes generalization using only infor-
mation that is locally available under incremental
learning conditions in a nonstationary environment.

Learning Many-to-One and
One-to-Many Maps
Autonomous agents must alsobe able tolearn many-
to-one and one-to-many relationships. Many-to-one
learning takes two forms: categorization and
naming (Fig. 2). Forinstance, during categorization
of printed letter fonts, many similar samples of
the same printed letier may establish a single
recognition category, or compressed representation.
Different printed letter fonts or written samples of
the letter may establish additional categories.
Each of these categories carries out a many-to-
one map of its exemplars. During naming, all of
the categories that represent the same letter may
be associatively mapped into the letter name or
prediction. There need be no relationship what-
soeverbetween the visual features that define a print-
ed letter A and a written letter A, yet both
categories may need to be assigned the same
name for cultural, not visual, reasons.
One-to-many learning is used to build up expert
knowledge about an object or event (Fig.3). A sin-
gle visual image of a particular animal, for exam-
ple, may lead to learning that predicts: animal,
dog, beagle, and my dog Rover. Likewise, a com-
puterized record of a patient’s medical check-up may
lead to a series of predictions about the patient’s
health; or a chemical assay of a sample of coal or
petroleum may lead to many predictions about its
uses as an energy source or material.
Inmanylearning algorithms, the attempt to learn
more than one prediction about an event leads to
unselective forgetting of previously learned pre-
dictions, for the same reason that these algorithms
become unstable in response to nonstationary data.

Error-Based Learning and
Alternatives

rror-based learning systems, including the

back propagation algorithm, find it difficult, if
not impossible, to achieve any of these computa-
tional goals [1-3]. Back propagation compares its
actual prediction with a correct prediction and
uses the error to change adaptive weights in a
direction thatis error-reducing. Fastlearning would
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B Figure 1. Fuzzy ARTMAP can make a different prediction for a rare event
than for all the similar events that surround it.
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zero the error on each learning trial, and therefore

cause massive forgetting. Statistical changes in

the environment drag the adaptive weights away

from their estimates of the previous environment.

Longer event durations zero the error further, also

destabilizing previous memories for the same reason

that fast learning does. The selection of a fixed num-

ber of hidden units tends to fix a uniform level of
generalization. Error-based learning also tends to

force forgetting of previous predictions under one- '
to-many learning conditions, because the present
correct prediction treats all previously learned pre-
dictions as errors. Ratcliff has noted, moreover, that
back propagation fails to simulate human cogni-
tive data about learning and forgetting [4].

Fuzzy ARTMAP exhibits the properties outlined
so far in this article because it implements a qual-
itatively different set of heuristics than error-
based learning systems. These heuristics are
embodied in the following types of processes:

Pay attention—A fuzzy ARTMAP systemcan learn
top-down expectations (also called primes, or queries)
thatenable the systemtoignore masses of irrelevant
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B Figure 3. One-to-many learning enables one input vector to be associated
with many output vectors. If the system predicts an output that is disconfirmed
at a given stage of learning, the predictive error drives a memory search for a
new category to associate with the new prediction, without degrading its previ-
ous knowledge about the input vector.

data. A large mismatch between a bottom-up
input vector and a top-down expectation can
drive an adaptive memory search that carries out
hypothesis testing and match-based learning.

Carry out hypothesis testing and match-based
learning—A fuzzy ARTMAP system actively search-
es for recognition categories, or hypotheses,
whose top-down expectations provide anacceptable
match to bottom-up data. The top-down expecta-
tion focuses attention upon and binds that cluster

Medical database-'mortality following coronary
bypass grafting (CABG) surgery _ '
Fuzzy ARTMAP sugmflcantly outperforms

= e Logistic regression = ¥ ;

+ Additive mode! o
< Bayesian assignment
* Cluster analysis - . . ™ A

* Classification and regressmn trees -
& Expert panél-derived sickness scores” |
_ ¢ Principal component analysis .. . . %

E

Mushroom database ,

"« Decision trees (90-95% correct)
‘¢ ARTMAP (100% correct)

Trammg set an order of magnltude smaller

Letter recognmon database -
" % e Genetic algorithm (82% correct)
« * Fuzzy ARTMAP (96% correct) _

Clrcle-m the-square task
"« Back propagation (90% ‘Correct) "
e Fuzzy ARTMAP (99.5% correct

Two-spiral task.,
* * Back propagatlon (10 00

%t + epochs) ¥
. -Fuzzy ARTMAP {1-5 training epochs)

| Table 2. ARTMAP benchmark studzes

of input features that it deems to be relevant. If
no available category or hypothesis provides a
good enough match, then selection and learning
of a new category and top-down expectation is
automatically initiated. When the search discov-
ersacategory that provides an acceptable match, the
system locks into an attentive resonance in which the
input pattern refines the adaptive weights of the cat-
egorybased on any new information that it contains.

Thus, the fuzzy ARTMAP system carries out match-
based learning, rather than error-based learning. A
category modifies its previous learning only if its top-
down expectation matches the input vector well
enough to risk changing its defining characteristics.
Otherwise, hypothesis testing selects anew category
on which to base learning of a novel event.

Choose the globally best answer—Inmany learn-
ing algorithms local minima or less-than-optimal
solutions are selected to represent the data as
learning proceeds. In fuzzy ARTMAP, at any
stage of learning, an input exemplar first selects
the category whose top-down expectation pro-
vides the globally best match. A top-down expec-
tation thus acts as a prototype for the class of all
the input exemplars that its category represents.
Before learning self-stabilizes, familiar events
gaindirect accessto the “globally best” category with-
out any search, even if they are interspersed with
unfamiliar events that drive hypothesis testing for
better matching categories. After learning self-
stabilizes, every input directly selects the globally
best category without any search.

Calibrate confidence—A confidence measure
called vigilance calibrates how well an exemplar
matches the prototype thatit selects. In other words,
vigilance measures how well the chosen hypothe-
sis matches the data. If vigilance is low, even poor
matches are accepted. Many different exemplars can
then be incorporated into one category, so com-
pression and generalization by that category are high.
If vigilance is high, then even good matches may
be rejected, and hypothesis testing may be initiated
to select a new category. In this case, few exem-
plars activate the same category, socompression and
generalization are low. A high level of vigilance
canselectaunique categoryforarare event that pre-
dicts an outcome different from that of any of the
similar exemplars that surround it.

The Minimax Learning Rule isrealized by adjust-
ing the vigilance parameter in response to a pre-
dictive error. Vigilance is increased just enough
toinitiate hypothesis testing to discover abetter cat-
egory, or hypothesis, with which to match the
data. In this way, a minimum amount of general-
izationissacrificed tocorrect the error. This process
is called match tracking because vigilance tracks
the degree of match between exemplar and pro-
totype in response to a predictive error.

Perform rule Extraction—At any stage of learn-
ing, a user can translate the state of a fuzzy
ARTMAP system into an algorithmic set of rules.
From this perspective, fuzzy ARTMAP canbe inter-
preted as a type of self-organizing expert system.
These rules evolve as the system is exposed to
new inputs. This featare is particularly important
inapplications such as medical diagnosis fromalarge
database of patient records. Some medical and other
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benchmark studies that compare the perfor-
mance of fuzzy ARTMAP with alternative recog-
nition and prediction models are summarized in
Table 2. One of the benchmarks is discussed below,
and others are described in two references [5-6].

Properties Scale—One of the most serious defi-
ciencies of many artificial intelligence algorithms
is that their desirable properties tend to break
down as small-scale problems are generalized to
large-scale problems. In contrast, all of the desirable
properties of fuzzy ARTMAP scale to arbitrarily
large problems. However, fuzzy ARTMAP is meant
to solve a particular type of problem — it is notintend-
ed to solve all problems of learning or intelli-
gence. The categorization and prediction problems
that ARTMAP does handle well are core prob-
lems inmany intelligent systems, and have been tech-
nology bottlenecks for many alternative approaches.

A summary is now given of Adaptive Reso-
nance Theory, or ART, networks for unsupervised
learning and categorization. Then a connection
between certain AR T systems and fuzzylogicis noted.
Fuzzy ART networks for unsupervisedlearning and
categorization are next described. Finally, fuzzy ART
modules are combined into a fuzzy ARTMAP sys-
tem that is capable of supervised learning, recog-
nition, and prediction. A benchmark comparison
of fuzzy ARTMAP with genetic algorithms is then
summarized.

A Review of Unsupervised
ART Systems

T he Adaptive Resonance Theory, or ART, was
introduced asa theory of human cognitive infor-
mation processing [7-8]. The theory has since led
to an evolving series of real-time neural network
models for unsupervised category learning and
pattern recognition. These models are capable of
learning stable recognition categories in response
to arbitrary input sequences with either fast or
slow learning. Model families include ART 1 [9],
which can learn to categorize binary input pat-
terns presented in an arbitrary order; ART 2 [10],
which can learn to categorize either analog or
binaryinput patterns presented in an arbitrary order;
and ART 3 as in [11], which can carry out parallel
searches by testing hypotheses about distributed
recognition codes ina multilevel network hierarchy.
Variations of these models adapted to the demands
of individual applications have been developed by
a number of authors.

An example from the family of ART 1 models and
a typical ART search cycle are illustrated in Figs.
4 and 5, respectively. Level F in Fig. 4 contains a
network of nodes, each of which represents a par-
ticular combination of sensory features. Level F; con-
tains a network of nodes that represent recognition
codes that are selectively activated by patterns of
activation across F1. The activities of nodesin F; and
F, are also called short term memory (STM)
traces. STM is the type of memory that can be
rapidly reset without leaving an enduring trace.
For instance, it is easy to reset a person’s STM of
a list of numbers by distracting the person with an
unexpected event. STM is distinct from LTM, or long
term memory, which is the type of memory that we
usually ascribe to learning. For example, we do not

Figure 4. Typical ART I neural networl;;

i

o ﬂiﬂ&(a)%f

£

% -
E . E

Tl s . . 3 £
et L. T A Ee

L TV R N &

W Figure 5. ART search for an F; code: (a) The input pattern I generates the

specific STM activity pattern X at F) as it nonspecifically activates the orient-
ing subsystem A. Pattern X both inhibits A and generates the output signal
pattern S. Signal pattern 8 is transformed into the input pattern T, which acti-
vates the STM pattern Y across F,. (b) Pattern Y generates the top-down signal
pattern U which is transformed into the prototype pattern V. If V mismatches I
at Fj, then a new STM activity pattern X* is generated at F;. The reduction in
total STM activity that occurs when X is transformed into X* causes a
decrease in the total inhibition from F; to A. (c) If the matching criterion fails
to be met, A releases a nonspecific arousal wave to F;, which resets the STM
pattern at F>. (d) After Y is inhibited, its top-down prototype signal is eliminat-
ed, and X can be reinstated at F;. Enduring traces of the prior reset lead X to
activate a different STM pattern Y* at F,. If the top-down prototype due to Y*
also mismatches I at F,, then the search for an appropriate F, code continues.
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2/3 Rule
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dimensionless
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vigilance.

forget our parent’s names when we are distracted
by an unexpected event.

As shown in Fig. 5a, an input vector I registers
itself as a pattern X of activity across level F;. The
Fj output vector S is then transmitted through the
multiple converging and diverging adaptive filter
pathways emanating from F. This transmission event
multiplies vector S by a matrix of adaptive weights,
or LTM traces, to generate a net input vector T to
level F,. The internal competitive dynamics of F,
contrast-enhance vector T. A compressed activity
vectorYistherebygenerated across F,. In ART 1, the
competitionis tuned so that the 5 node that receives
the maximal F; — F; inputisselected. Only one com-
ponent of Y is nonzero after this choice takes
place. Activation of such a winner-take-all node
defines the category, orsymbol, of I. Such a category
represents all inputs, I, that maximally activate
the corresponding node. So far, these are the
rules of a self-organizing feature map, also called
competitive learning or learned vector quantization.
Such models were developed by Grossberg [12-
16] andvon der Malsburg[17-18]. Cohen and Gross-
berg [19-20], Grossberg and Kuperstein [21], and
Kohonen [22] have applied them extensively to prob-

.lems in speech recognition and adaptive sensory-

motor control, among others.

Activation of an F, node may be interpreted as
“making a hypothesis” about input I. When Y is
activated, it generates an output vector U that is
sent top-down through the second adaptive filter.
After multiplication by the adaptive weight matrix
of the top-down filter, a net vector V is input to F;
(Fig. 5b). Vector V plays the role of a learned top-
downexpectation. Activation of Vby Y may be inter-
preted as “testing the hypothesis” Y, or “reading out
the category prototype” V. The ART 1 network is
designed tomatch the “expected prototype” Vofthe
category against the active input pattern, or
exemplar, I. Nodes that are activated by I are
suppressed if they do not correspond to large
LTM traces in the prototype pattern V. Thus F;
features not “expected” by Vare suppressed.
Expressed in a different way, the matching pro-
cess may change the Fj activity pattern X by sup-
pressing activation of all the feature detectorsin I
that are not “confirmed” by hypothesis Y. The resul-
tant pattern X* encodes the cluster of features in
I that the network deems relevant to the hypothe-
sis Y, based upon its past experience. Pattern X*
encodes the pattern of features to which the network
“pays attention.”

If Vis close enough to the input I, then a state
of resonance develops as the attentional focus
takes hold. Pattern X* of attended features reac-
tivates hypothesis Y which, in turn, reactivates
X*. The network locks into a resonant state
through the mutual positive feedback that dynam-
icallylinks X* with Y. The resonant state persists long
enough for learning to occur; hence the term
Adaptive Resonance Theory. ART systems learn
prototypes, rather than exemplars, because the
attended feature vector X*, rather than I itself, is
learned.

This attentive matching process is realized by
combining three different types of inputs at level
F1: bottom-up inputs, top-down expectations, and
attentional gain control signals (Fig. 4). The
attentional gain control channel sends the same
signal to all Fy nodes; it is a “nonspecific,” or

Fuzzy ART
“(analog)”

=y - Category choice i e

P
L S o Pk s ¥
. Fast learning
= iAwOld) = (new) _ | g, (old)?
i i j
i “logical AND "+ A “ = 'fuzsy'AND "

intersection minimum

B Figure 6. Comparison of ART I and Fuzzy ART.

modulatory, channel. Attentive matching obeys
the 2/3 Rule: an F) node can be fully activated
only if two of the three input sources that con-
verge uponitsend positive signalsata given time [9)].
The 2/3 Rule shows how an ART system can be
“primed” to expect a subsequent event. A top-
down expectation activates to subthreshold levels
the F; nodes in its prototype. None of the nodes
are activated well enough to generate output signals
in the absence of their “second third” of the 2/3 Rule.
They are nonetheless “primed,” or ready, to fire
rapidly and vigorously if a bottom-up input does
match their prototype well enough. Thus ART
systems are “intentional” or “goal-oriented” systems
in the sense that their expectations can be primed
to selectively seek out data in which they are
interested.

The 2/3 Rule also allows an ART system to
react to inputsin the absence of prior priming, because
abottom-up inputdirectly activatesits target F; fea-
tures and indirectly activates them via the non-
specific gain control channel to satisfy the 2/3
Rule (Fig. 5a). After the input instates itself at Fj,
which leads to selection of hypothesis Y and top-
down expectation V, the 2/3 Rule ensures that
only those F| nodes that are confirmed by the expec-
tation can remain active in STM.

The criterion of an acceptable 2/3 Rule match
is defined by a dimensionless parameter called
vigilance. Vigilance weighs how close exemplar I
must be to the top-down prototype Vin order for
resonance to occur. Because vigilance can vary across
learning trials, recognition categories capable of
encoding widely differing degrees of generalization,
ormorphological variability, can be learned by asin-
gle ART system. Low vigilance leads to broad
generalization and abstract prototypes. High vigi-
lance leads to narrow generalization and to proto*
types that represent fewer input exemplars.
Within the limit of very high vigilance, prototype
learning reduces to exemplar learning. Thus, a
single ART system may be used, say, to recognize
abstract categories of faces and dogs, as well as
individual faces and dogs. Exemplars can be
codedbyspecialized “grandmother cells” at the same
time that abstract prototypesare codedby general cat-

_ egories of the same network. The particular combi-

nation of prototypes that is learned depends
upon the predictive success of the learned categories
in a particular task environment.

42

IEEE Communications Magazine * September 1992



If the top-down expectation Vand the bottom-
upinputl are too novel, or unexpected, to satisfy the
vigilance criterion, then a bout of hypothesis test-
ing — a memory search — is triggered. Searching
leads to the selection of a better recognition code,
symbol, category, or hypothesistorepresent Lat level
F,. Anorienting subsystem mediates the search pro-
cess (Fig.4). The orienting subsystem interacts with
the attentional subsystem to enable the attentional
subsystemto learn new F, representations with which
to remember novel events without risking unse-
lective forgetting of ifs previous knowledge (Figs. 5S¢
and 5d).

The search process prevents associations from
forming between Y and X* if X* is too different from
I to satisfy the vigilance criterion. The search pro-
cess resets Y before such an association can form,
asshown in Fig, 5c. A familiar category may be select-
ed by the search if its prototype is similar enough
to I to satisfy the vigilance criterion. The proto-
type may then be refined in light of new informa-
tion carried by L. If 1 is too different from any of
the previously learned prototypes, then an uncom-
mitted F, node is selected and learning of a new
category is initiated. A network parameter controls
how far the search proceeds before an uncommit-
ted node is chosen.

As inputs that correspond to a particular cate-
gory are practiced over learning trials, the search
process convergesupon astable learned recognition
category in F,. This process corresponds to mak-
ing the inputs “familiar” to the network. After famil-
iarization takes place, all inputs coded by that category
access it directly in a single pass, and searching is
automatically disengaged. The selected category’s
prototype provides the globally best match to the
inputpattern. While stable learning proceeds online,
familiar inputs directly activate their categories
andnovelinputs continue to trigger adaptive search-
es for better categories, until the network’s mem-
ory capacity is reached.

Uses for ART Systems

RT systems have been used to explain and pre-

dict a variety of cognitive and brain data that
have as yet received no other theoretical explana-
tion [23-26]. A formal lesion of the orienting sub-
system, for example, creates a memory disturbance
that mimics properties of medial temporal amne-
sia[27-28]. These andrelated data correspondences
to orienting properties have led to a neurobiologi-
calinterpretation of the orienting subsystem in terms
of the hippocampal formation of the brain. In
visual object-recognition applications, the inter-
actions within the Fj and F; levels of the atten-
tional subsystem are interpreted in terms of data
concerning the prestriate visual cortex and the infer-
otemporal cortex[29], with the attentional gain con-
trol pathway interpreted in terms of the pulvinar
region of the brain.

From a computer science perspective, ART
systems have an interpretation that is no less
interesting. The read-out of top-down expecta-
tion V may be interpreted as a type of hypothesis-
driven query. The matching process at F; and the
hypothesis testing process at F, may be interpret-
ed as query-driven symbolic substitutions. From
this perspective, ART systems provide examples
of new types of self-organizing production sys-

tems [30]. This interpretation of ART networks
as production systems indicates how they con-
tribute to artificial intelligence, a major goal of
which is to understand the cognitive operations
of human thinking in terms of production sys-
tems. The ability of ART production systems to
explain many cognitive and neurobiological data
that cannot be explained by classical production
systems illustrates how ART systems have brought
us closer to realizing this goal of artificial intelli-
gence.

ARTMAP Systems

By incorporating predictive feedback into their
control of the hypothesis testing cycle, the
ARTMAP systems that are described below
embody self-organizing production systems that are
also goal-oriented. The fact that fuzzy logic may also
be usefully incorporated into ART systems blurs the
traditional boundaries between artificial intelligence
and neural networks even further.

ARTMAP systems are capable of compressing
different sorts of information into many distinct
recognition categories that may all be used to
make the same prediction, as shown in Fig. 2.
The expertise of such an ARTMAP system can
be inferred by a direct study of the rules it uses to
arrive at predictions. This may be done at any
stage of the learning process.

Suppose, for example, that the input vectors in
Fig. 2 are of biochemicals instead of letter fonts, and
that the outputs are indices of desired drug effects
on behavior rather than letter names. There may
be multiple ways inwhich different biochemicals can
achieve the same clinical effect on behavior. At
any point in the learning process, the operator of
an ARTMAP system can test how many recognition
categories have been detected that give rise to
the desired clinical effect. The operator simply needs
to check which LTM traces are large in the path-
ways from learned recognition categories to the
desired output node. Within each recognition cate-
gory, the prototype, or vector of large LTM traces,
characterizes a particular rule or bundle of bio-
chemical features that predicts the desired clini-
cal effect. The “if-then” nature of the rule derives
from the associative nature of ARTMAP predic-
tions: “if the biochemical has features close
enough to a particular prototype, then it predicts
the desired outcome.” A list of all the prototype
vectors provides a transparent set of rules where-
by one can predict the desired outcome.

Many such rules may coexist without mutual
interference due to the competitive interactions
whereby each hypothesis Yin Fig. 5 is compressed.
Associative networks such as back propagation often
mix multiple rules with the same LTM tracesbecause
they do not have the competitive dynamics to sep-
arate them.

This particular type of rule-based system may also
exhibit aspects of “creativity.” ARTMAP systems,
albeit “supervised,” do not use the correct answers
to directly force changes in LTM traces, as do super-
vised systems such as back propagation. ARTMAP
systems use the fact that its answers are wrong, along
with its present state of knowledge, to test new
hypotheses until it discovers, on its own, new rep-
resentations that are capable of predicting the
correct answers. ’ :

ART systems
have been
used to
explain and
predict“a
variety of
cognitive
and brain
data that
have as yet
received

no other
theoretical
explanation.
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Fuzzy
ARTMAP
has been
benchmarked
against a
variety of
machine
learning,
neural
network,
and genetic
algorithms
with
considerable

success.

ART Systems and Fuzzy Logic

Fuzzy ART is a form of ART 1 that incorporates
fuzzy logic operations [31|. Although ART 1
can learn to classify only binary input patterns, fuzzy
ART can learn to classify both analog and binary
input patterns. In addition, fuzzy ART reduces to ART
1in response to binary input patterns. Learning
both analog and binary input patterns is achieved
by replacing appearances of the intersection
operator in ART 1 by the MIN operator of fuzzy
set theory (Fig. 6). The MIN operator (A) reduces
to the intersection operator (n) in the binary
case. Of particular interest is the fact that, as
parameter o approaches zero, function 7j, which
controls category choice through the bottom-up
filter (Fig.5), reduces to the operation of fuzzy
subsethood [32]. 7; then measures the degree to
which the adaptive weight vector w; is a fuzzy sub-
set of input vector L

In fuzzy ART, input vectors are normalized at
a preprocessing stage (Fig. 7). This normalization
procedure, called complement coding, leads to a
symmetric theory in which the MIN operator (A )
and the MAX operator (V) of fuzzy set theory
play complementary roles [33]. The categories formed
by fuzzy ART are then hyper-rectangles. Fig. 8
illustrates how MIN and MAX define these rect-
anglesin the 2-dimensional case. The MIN and MAX
values define the acceptable range of feature
variation in each dimension. Complement coding
uses on-cells (with activity a in Fig. 7) and off-
cells (withactivitya©) to represent the input pattern,
and preserves individual feature amplitudes while
normalizing the total on-cell/off-cell vector.

The on-cell portion of a prototype encodes
features that are critically present in category
exemplars, while the off-cell portion encodes fea-
tures that are critically absent. Each category is
then defined by an interval of expected values for
each input feature. For instance, we learn by ex-
ample that men usually have hair on their heads.
Fuzzy ART would encode this feature a wide
interval ([A, 1]) of expectations of “hair on head”
for the category “man”. Similarly, since men some-
times wear hats, the feature “hat on head” would
be encoded by awide interval ([0, B]) of expectations.
On the other hand, a dog almost always has hair
on its head but almost never wears a hat. These
features for the category “dog” would thus be encod-
ed by two narrow intervals (|C, 1] for hair and [0,
D] for hat) corresponding to narrower ranges of

B Figure 7. Complement coding uses on-cell and
off-cell pairs to normalize input vectors.

. Fuzzy AND (conjunction) ;

, y =y
m!?(¥1 Y1) ) (}5/\ y)2 = m}in()g,yz)
MG YT @y Y S manig yg)”

M Figure 8. Fuzzy AND and OR operations gener-
ate category hyper-rectangles.

expectations for these two features.

Learning in fuzzy ARTisstable because all adap-
tive weights can only decrease in time. Decreas-
ingweights correspond toincreasing sizes of category
“boxes”. Smaller vigilance values lead to larger
category boxes, and learning stops when the input
space is covered by boxes. The use of comple-
ment coding works with the property of increas-
ing box size to prevent a proliferation of categories.
With fast learning, constant vigilance, and a finite
input set of arbitrary size and composition, learn-
ing stabilizes after just one presentation of each input
pattern. A fast-commit, slow-recode option com-
bines fast learning with a forgetting rule that
buffers system memory against noise. Using this
option, rare events can be rapidly learned, yet
previously learned memories are not rapidly
erased in response to statistically unreliable input
fluctuations. See the appendixentitled “Fuzzy ART
Algorithm” for an explanation of defining equations
of fuzzy ART.

When the supervised learning of fuzzy ARTMAP
controls category formation, a predictive error
can force the creation of new categories that
could not otherwise be learned due to monotone
increases in category size through time in the
unsupervised case. Supervision permits the creation
of complex categorical structures without a loss
of stability.

Fuzzy ARTMAP

ach fuzzy ARTMAP system includes a pair of

fuzzy ART modules (ART, and ART}), asshown
in Fig. 9. During supervised learning, ART, receives
a stream {a()} of input patterns and ART,
receivesastream {b()} of input patterns, where b()
is the correct prediction given al). These mod-
ules are linked by an associative learning network
and aninternal controller that ensures autonomous
system operation in real time.

The controller is designed to create the mini-
mal number of ART, recognition categories, or “hid-
den units,” needed to meet accuracy criteria. As
noted above, thisis accomplished by realizing a Min-
imax Learning Rule that conjointly minimizes
predictive error and maximizes predictive gener-
alization. This scheme automatically links predic-
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tive success to category size on a trial-by-trial
basis using only local operations. It works by increas-
ing the vigilance parameter p, of ART, by the
minimal amount needed tocorrect a predictive error
at ART, (Fig. 10).

Parameter p, calibrates the minimum confidence
that ART, must have in a recognition category
(hypothesis) that is activated by an input a?’, in order
for ART, to accept that category instead of search-
ing for a better one through an automatically con-
trolled process of hypothesis testing. As in ART
1,lowervalues of p, enable larger categories toform.
These lower p, values lead to broader generaliza-
tionand higher code compression. A predictive fail-
ure at ART), increases the minimal confidence p,
by the least amount needed to trigger hypothesis
testing at ART,, using a mechanism called match
tracking [5]. Match tracking sacrifices the mini-
mum amount of generalization necessary to cor-
rect the predictive error.

Match tracking presents the idea that the sys-
tem must have accepted hypotheses with too little
confidence to satisfy the demands of a particular
environment; it increases the criterion confidence
just enough to trigger hypothesis testing. Hypoth-
esis testing leads to the selection of a new ART,
category, which focuses attention on a new clus-
ter of al?) input features that is better able to pre-
dict b¥). Due to the combination of match tracking
and fastlearning, asingle ARTMAP systemcanlearn
adifferent prediction for a rare event than for a cloud
of similar frequent events in which it is embed-
ded. The equations for fuzzy ART and fuzzy
ARTMAP are given in the appendix in algorith-
mic form.

A Fuzzy ARTMAP Benchmark

Fuzzy ARTMAP has been benchmarked against
a variety of machine learning, neural network,
and genetic algorithms with considerable success
(Table 2). One study used a benchmark machine
learning task that Frey and Slate developed and
described as a “difficult categorization problem”
[34]. The task requires a system to identify an
inputexemplar as one of 26 capital letters, A through
Z. The database was derived from 20,000 unique
black-and-white pixel images. The task is difficult
because of the wide variety of letter types repre-
sented: The twenty “fonts represent five different
stroke styles (simplex, duplex, complex, and
Gothic) and six different letter styles (block,
script, italic, English, [talian, and German).” In addi-
tion, each image was randomly distorted, leaving
many of the characters misshapen. Sixteen numer-
ical feature attributes were then obtained from each
characterimage, and eachattribute value was scaled
to a range of 0 to 15. The resulting Letter Image
Recognition file is archived in the UCI Reposito-
ry of Machine Learning Databases and Domain The-
ories, maintained by David Aha and Patrick Murphy
(ml_repository@ics.uci.edu on Internet).

Frey and Slate used this database to test per-
formance of a family of classifiers based on Holland’s
genetic algorithms [35]. The training set consist-
ed of 16,000 exemplars, with the remaining 4000
exemplars used for testing. Genetic algorithm
classifiers having different input representations,
weight-update and rule-creation schemes, and
system parameters were systematically compared.

M Figure9. FuzzyARTMAParchztecture TheART, complementcodmgpreprocessor
transforms the My-vector a into the 2M,-vector A =(a,a®) at the ART field Fjy.
A is the input vector to the ART, field F}. Similarly, the input to F1 is the 2M-
vector (b,b¢). When a prediction by ART, is disconfirmed at ART\, inhibition
of map field activation induces the match tracking process. Maich tracking
raises the ART, vigilance p, to just above the F} 1o Fj match ratio | x?| /| Al
This triggers an ART, search which leads to activation of either an ART, cate-
gory that correctly predicts b or to a previously uncommitted ART, category
node.

Training was carried out for five epochs, plus a
sixth “verification” pass during which no new rules
were created but a large number of unsatisfactory
rules were discarded. In Frey and Slate’s compar-
ative study, these systems had correct prediction
rates that ranged from 24.5 percent to 80.8 per-
centon the 4000-item test set. The best performance
was obtained using an integer input representa- .
tion, a reward-sharing weight update, an exem-
plar method of rule creation, and a parametersetting
that allowed an unused or erroneous rule to stay in

* Match tracking

“ Prediction

O;ienting
subsystem

sy ¢ Orienting.
% subsystem

Vlgllance P
W Analog inatch

B Figure 10. Match tracking: (a) A prediction is made
by ART, when the vigilance p, is less than the
analog march value. (b) A predictive error at
ART,, increases the vigilance value of ART, until
it just exceeds the analog march value, and there-
by triggers hypothesis testing that searches fora more
predictive bundle of features to which to attend.
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the system for a long time before being discard-
ed. After training in the best case, 1302 rules and
8 attributes perrule weré created, as were over 35,000
more rules that were discarded during verifica-
tion. (For purposes of comparison, a rule is some-
what analogous to an ART, category in ARTMAP,
and the number of attributes per rule is analo-
gous to the size |w;’| of an ART, category weight
vector.)

Building on the results of their comparative study,
Frey and Slate investigated two types of alterna-
tive algorithms: an accuracy-utility bidding system
that had slightly improved performance (81.6
percent) in the best case, and an exemplar/hybrid
rule creation scheme that further improved per-
formance to a maximum of 82.7 percent but
required the creation of over 100,000 rules prior
to the verification step.

Fuzzy ARTMAP had an error rate on the let-
ter-recognition task that was consistently less than
one third that of the three best Frey-Slate genetic
algorithm classifiers described above. In particu-
lar, after one to five epochs, individual fuzzy
ARTMAP systems had a robust prediction rate of
90 to 94 percent on the 4000-item test set. A vot-
ingstrategy consistently improved this performance.
The voting strategy is based on the observation
that ARTMAP fast learning typically leads to dif-
ferent adaptive weights and recognition cate-
gories for different orderings of a given training
set,evenwhen overall predictive accuracy of all sim-
ulations is similar.

The different category structures cause the set of
test items where errors occur to vary from one
simulation to the next. The voting strategy uses
an ARTMAP system that is trained several times
on input sets with different orderings. The final
prediction for a given test set item is the one
made by the largest number of simulations.
Because the set of items making erroneous pre-
dictions varies from one simulation to the next,
voting cancels many of the errors.

Such a voting strategy can also be used to
assign confidence estimates to competing predic-
tions given small, noisy, or incomplete training
sets. Voting consistently eliminated 25 to 43 percent
of the errors, giving a robust prediction rate of 92
to 96 percent. Fuzzy ARTMAP simulations each cre-
atedfewer than 1070 ART, categories, compared to
the 1040 to 1302 final rules of the three genetic
classifiers with the best performance rates. Most
fuzzy ARTMAP learning occurred on the first epoch,
with test set performance on systems trained for one
epoch typically over 97 percent of that of systems
exposed to inputs for five epochs.

Conclusion

Fuzzy ARTMATP is one of a rapidly growing
family of attentive self-organizing learning,
hypothesis testing, and prediction systems that
have evolved from the biological theory of cogni-
tive information processing of which ART forms
an important part [16, 23-26]. Unsupervised ART
modules have found their way into such diverse appli-
cations as the control of mobile robots, learning
and searching of airplane part inventories, medi-
cal diagnosis, 3-D visual object recognition, music
recognition, seismic recognition, sonar recognition,
and laser radar recognition [36-40].

Allof these applications exploit the ability of ART
systems torapidly learn to classify large databasesin
astable fashion, to calibrate their confidence in a clas-
sification, and to focus attention upon those groups
of features that they deem to be important based
upon their past experience. We anticipate that the
growing family of supervised ARTMAP systems
will find an even broader range of applications
due to their ability to adapt the number, shape, and
scale of their category boundaries to meet the online
demands of large nonstationary databases.

The algorithmicequations that define fuzzy ART
and fuzzy ARTMAP are summarized in the appendix
that follows.
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Appendix
Fuzzy ART Algorithms

ART field activity vectors—Each ART system
includes a field F; of nodes that represent a cur-
rent input vector; a field F; that receives both
bottom-up input from F and top-down input
from a field F; that represents the active code, or
category. The F activity vector is denoted I =
(11, - - . Iy), with each component J; in the interval
[0,1],i=1,..., M. The Fy activity vector is
denoted x = (x1, . . ., xp) and the F, activity vec-
tor is denoted y = (yy, . . ., yn). The number of
nodes in each field is arbitrary.

Weight vector—Associated with each F, catego-
rynodej (j = 1,...,N)isavectorw,=(wj,.. .,
wipr) of adaptive weights, or LTM traces. Initially,

wi1(0) = ... =wu(0) = 1; 1)

Each category is then said to be uncommitted.
After a category is selected for coding, it becomes
committed. As shown below, each LTM trace w;
is monotone nonincreasing through time and
hence converges to a limit. The fuzzy ART weight
vector w; subsumes both the bottom-up and top-
down weight vectors of ART 1.

Parameters—Fuzzy ART dynamics are determined
by a choice parameter o > 0; a learning rate param-
eter B € [0,1]; and a vigilance parameter p € [0,1].

Category choice—For each input I and F, node
J» the choice function 7; is defined by:

|I/\w-|

T;(h)= )

2

where the fuzzy AND [33] operator A is defined
by:

(p A Cl): mln(Pu (I:) (3)
and where the norm | - | is defined by:
M
p=Sln| (4)

i=1

for any M-dimensional vectors p and q. For nota-
tional simplicity, T(I) in (2) is often written as T;
when the input s fixed.

The systemissaid to make a category choice when
at most one F, node can become active at a given
time. The category choice is indexed by J, where

Tj=max{T;:j=1...N} 5)

If more thanone 7;is maximal, the categoryj with
the smallest index is chosen. In particular, nodes
become committed in orderj =1, 2, 3, .
When the J** category is chosen, y;=1; and yj = 0
for j #J. In a choice system, the F activity vector
x obeys the equation

I if 5 is inactive
x= i ! ©
IA W]

if the J™ F, node is chosen .

Resonance or reset—Resonance occurs if the
match function | IAwj /11| of the chosen category
meets the vigilance criterion:

—_— P; : (7)

that is, by (6), when the J* category is chosen,
resonance occurs if

Ix =11 A wi=pl1l. (8)

Learning then ensues, as defined later in this
sidebar. Mismatch reset occurs if

iI/\W]i .
<p; ’ &)
I
that is, if:
Ix| =11 wl<pl1l. (10)

Then the value of the choice function 7} is set to
0 for the duration of the input presentation to
prevent the persistent selection of the same category
during search. A new indexJ is then chosen, by
(5). The search process continues until the cho-
sen J satisfies (7).

Learning—Once search ends, the weight vector
w; is updated according to the equation

(ncw) B(I/\w(old)) + (1 B)w(old) (11)
Fastlearningcorresponds tosetting = 1. The learn-
ing law used in the EACH system of Salzberg isequiv-
alent to equation (11) in the fast-learn limit with
the complement coding option described below [41].

Fast-commit slow-recode option—For efficient
coding of noisy input sets, it is useful to set p = 1
when J is an uncommitted node, and then to take
B < 1 after the category is committed. Then
%) = 1, and the first time category J becomes
active. Moore introduced thelearning law (11), with
fast commitment and slow recoding, to investi-
gate a variety of generalized ART 1 models [42].
Some of these models are similar to fuzzy ART,
but none includes the complement coding option.
Moore described a category proliferation problem
that can occur in some analog ART systems when a
large number of inputs erode the norm of weight
vectors. Complement coding solves this problem.

Input normalization/complement coding
option—Proliferation of categories is avoided in
fuzzy ART if inputs are normalized. Complement
coding is a normalization rule that preserves
amplitude information. Complement coding rep-
resents both the on-response and the off-response
to an input vector a (Fig. 7). To define this oper-
ation in its simplest form, let a itself represent
the on-response. The complement of a, denoted

Proliferation

of categories

is avoided

in fuzzy
ART if

Inputs are

normalized.
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by a¢, represents the off-response, where
a=1-a,. (12)

The complement-coded input I to the field F1 is
the 2M-dimensional vector:

I=(a,a%=(ay,... ,aM,alc, . ,aA‘;). (13)
Note that
’I’= (a,a‘}

M M
=24 *{M— Zat] (14)
i-1 i=1
=M,

soinputs preprocessed into complement coding form
are automatically normalized. Where comple-
ment coding is used, the initial condition (1) is
replaced by

Fuzzy ARTMAP Algorithm

he fuzzy ARTMAP system incorporates two fuzzy
" ART, modules ART, and AR T, that are linked
together via an inter-ART module Fb called a
map field. The map field is used to form predic-
tive associations between categories and to real-
ize the match tracking rule whereby the vigilance
parameter of ART, increases in response to a
predictive mismatch at ART,,. The interactions medi-
ated by the map field F? may be operationally
characterized as follows. '

ART, and ART,—Inputs to ART, and ART, are
in the complement code form: for ART,, I =
A=(a, a%); for ART,, I = B = (b, b¢) (Fig. 9).
Variables in ART, or ART), are designated by
subscripts or superscripts “a” or “b”. For ART,,
letx¢ = (x]'...x§,,) denote the F{’ output vec-
tor; letys = (y,° .. .yy,) denote the F§ output
vector; and let wj‘? = (wj?l, Wisso
the j* ART, weight vector. For ART,, let xb =

xl .. .xb denote the F? output vector; let yb =
1 2M, 1 outp y

- Wj2p,) denote

(ylb . .y,\f’b) denote the sz output vector; and
letwl=(wkb,why, ..., w,f,ZMb) denote the k*
ART,, weight vector. For the map field, let x2? =
(xel,. ..,
letwf = (we ..., w,",\l}b) denote the weight vec-
tor from the j** F4 node to F#. Vectors x4, y?, xb,

y?, and x2® are set to 0 between input presenta-

x£0) denote the Fab output vector, and
b

tions.

Map field activation—The map field F?b is
activated whenever one of the ART, or ART,

categories is active. If node J of F§ is chosen,
then its weights wf® activate Feb. If node K in
Fg is active, then the node K in F4? is activated by
1-to-1 pathways between F$ and Fab. If both
ART,and ART}are active, then Fsb becomes active
only if ART, predicts the same category as ART,
via the weights w®. The F2 output vector xab
obeys

y2 A w‘;b if the Jth Fz" node is active and
sz is active
wab if the Jth F? node is active and
xab = J 2
sz is inactive
yb ifF; is inactive anszb isactive (16)
0 isz" is inactive andFZb is inactive

By (16), x4 = 0 if the prediction wf® is discon-
firmed byy?. Such a mismatch event triggers an ART,
search for a better category.

Match tracking—At the start of each input pre-
sentation the ART, vigilance parameter p, equals
a baseline vigilance p,. The map field vigilance
parameter is pgp. If

| x| < pgly!l (17)

then p, is increased until it is slightly larger than
| AAw$[| Al -1, where * is the input to FZ, in com-
plement coding form. Then,

Ixal =] Anwd < p A, (18)

where J is the index of the active F§ node, as in
(10). When this occurs, ART, search leads either
to activation of another F3 node J with

Ixq =|Aarwdl = p,lAl (19)
and
|xt| = |yopws?] 2 pgoly?l ; (20)

or, if no such node exists, to the shut-down of F§
for the remainder of the input presentation.

Map field learning—Learning rules determine
how the map field weights wj‘}(b change through
time, as follows: Weights wj‘}(b inFj — F4® paths
initially satisfy

w0y =1. (21)

During resonance with the ART, category J active,
w}’b approaches the map field vector x?. With fast
learning, once J learns to predict the ART,-category
K, that association is permanent; that is, w”? =
for all time.
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