Normal and amnesic leaming, recognition and memory by a
neural model of cortico-hippocampal interactions

Gail A. Carpenter and Stephen Grossberg

The processes by which humans and other primates leam to recognize
objects have been the subject of many modefs. Processes such as
leaming, categonzation, attention, memory search, expectation and
novelty detection work together at different stages fo realize object
recognition. In this article, Gail Carpenter and Stephen Grossberg
describe one such dass of model (Adaptive Resonance Theory, ART)
and discuss how its stucture and unction might relate to known
neurological leaming and memory processes, such as how infero-
temporal cortex can recognize both speciaiized and abstract infor-
mation, and how medial temporal amnesia might be caused by lesions
in the hippocampal formation. This model ako suggests how
hippocampal and inferotemporal processing might be linked during
recognition leaming.

A central problem in cognitive neuroscience con-
cerns the processes whereby normal humans and
other primates leam to recognize objects, and how
these processes break down in different types of
amnesic patients. The complexity of these processes
has led to the development of neural models that
might shed light on these issues. This article focuses
on how one particular class of neural models, called
Adaptive Resonance Theory (ART) models, can be
applied to this task. ART models have been used
to help explain and predict a large body of cogni-
tive and neural data about recognition learning, at-
tention and memory search'™. ART systenis ac-
complish this synthesis by developing a solution to a
fundamental problem about learning and memory
that is called the stability—plasticity dilemma. An
adequate self-organizing recognition system must
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be capable of plasticity in order to rapidly leam
about significant new events, yet its memory must
also remain stable in response to irrelevant or often
repeated events. For example, how do we leam to
recognize new faces without risking unselectively
forgetting the faces of our parents? In order to
prevent the unselective forgetting of its leamed
codes by the ‘blooming, buzzing confusion' of
irrelevant experience, an ART system is sensitive to
novelty. It is capable of distinguishing between
familiar and unfamiliar events, as well as between
expected and unexpected events,

The importance of expectancy and novelty-
related processes In conditioning and cognitive
processes has been extensively documented since
the pioneering work of Tolman®, Sokolové? and
Vinogradova®. In ART, interactions. between an
attentional subsystem and an orienting subsystem,
or novelty detector, self-stabilize learning, without
an external teacher, as the network familiarizes itself
with an environment by categorizing the infor-
mation within it in a way that leads to behavioral
success®. This learriing system combines several
types of processes that have been demonstrated in
cognitive and neurobiological experiments, but not
synthesized into a model sy'stem.

. Competitive learning and self-organizing feature

maps
All learning takes place in the attentional sub-
system. Its processes include activation of short-
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Flg. 1. Interactions between the atténtional and orienting
subsystems of an adaptive resonance theory (ART) circuit.
Level F; encodes a distributed representation of an event
by a short-term memory (STM) activation pattern across a
network of feature detectors. Level F; encodes the event
using a compressed STM representation of the F, pattern.
Leaming of these recognition codes takes place at the
long-term memory (LTM) traces within the bottom-up
and top-down pathways between levels F, and F,. The
top-down pathways read out leamed expectations whose
prototypes are matched against bottom-up input pattems
at F,. The size of mismatches in response to novel events
are evaluated relative to the vigilance parameter p of the
orienting subsystem A. A large enough mismatch resets
the recognition code that is active in STM at Fy and
initiates @ memory search for a more approprate recog-
nition code. Output from subsystem A-can also trigger an
orienting response. {(A) Block diagram of drcult. (B) Indi-
vidual pathways of circuit, including the input level Fy
that generates inputs to level F,. The gain control input g,
to level ¥y helps to instantiate the 2/3 Rule (see text). Gain
control ga to level F; is needed to instate a category in
STM.

term memory (STM) traces, incorporation through
learning of momentary STM information into longer
lasting long-term memory (LTM) traces, and inter-
actions between pathways that carry specific in-
formation with nonspecific pathways that modulate
the specific pathways. These interactions between
specific STM and LTM processes and nonspecific
modulatory processes regulate the stability-plas-
ticity balance during normal leaming.

The attentional subsystem undergoes both
bottom-up leaming and top-down leaming be-
tween the processing levels denoted by F; and £, in
Fig. 1. Leve! F, contains a network of nodes, or celi
populations, each of which represents a particular
combination of sensory features. Level F; contains a
network of nodes that represent recognition codes,
or categories, that are selectively activated by the
activation pattems across Fy. Each F; node sends
output signals to a subset of F; nodes. Each F; node
thus receives inputs from many. F; nodes. The thick
arrow from F, to F; in Fig. 1A répresents in a concise
way the array of diverging and converging path-
ways shown in Fig. 1B. Learning takes place at the
synapses denoted by semicircular endings in the
F1— F, pathways. Pathways that end in arrowheads
do not undergo leaming. This bottom-up leaming
enables £, nodes to become selectively tuned to
particular combinations of activation pattems across
Fy by changing their LTM traces.

Why is not just bottom-up learning sufficient?
This analysis was carried out in a type of model that
is often called a self-organizing feature map, com-
petitive leaming or leamed vector quantization.
Such a model shows how to combine associative
learning and lateral inhibition for purposes of
learned categorization.

In such a model, as shown in Fig. 2A, an input
pattern registers itself as a pattern of activity, or
STM, across the feature detectors of level Fy. Each
Fy output signal is multiplied or gated, by the
adaptive weight, or LTM trace, in its respective
pathway. All these LTM-gated inputs are added up
at their target F, nodes. Lateral inhibitory, or com-
petitive, interactions within F, contrast-enhance this
input pattem. Whereas many F, nodes may receive
inputs from F,, lateral inhibition allows a much
smaller set of F, nodes to store their activation in
STM,

Only the F; nodes that win the competition and
store their activity in STM can influence the learning
process. STM activity opens a learning gate at the
LTM traces that abut the winning nodes. These LTM
traces can then approach, or track, the input signals
in their pathways, a process called ‘steepest de-
scent’. This leaming law is thus often called 'gated
steepest descent’ or ‘instar learning’. 1t was intro-
duced into neural-network models in the 19605
and is the learning law that was used to introduce
ART (Refs 11, 12). Such an LTM trace can either in-
crease or decrease to track thesignals in its pathway.
Thus, it is not a Hebbian associative law. It has been
used to model neurophysiological data about hippo-
campal LTP (Refs 13, 14) and adaptive tuning of
cortical feature detectors during the visual critical
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period'®'6, lending support to ART predictions that
both systems would employ such a leaming law"'2,

Self-organizing feature-map models were intro-
duced and computationally characterized by
Grossberg'®'78 "von der Malsburg', and
Willshaw and von der Malsburg®®, These models
were subsequently applied and further developed
by many authors21-26, They exhibit many useful
properties, especially if not too many input patterns,
or clusters of input patterns, perturb level F, felative
to the number of categorizing nodes in level F. It
was proved that under these sparse environmental
conditions, category learning is stable, with self-
nomalizing LTM traces that track the statistics of
the environmeént and oscillate a minimuni number of
times'1218, Also, the category selection rule, like a
Bayesian classifier, tends to minimize eiror, It was
also proved, however, that under arbitrary environ-
mental conditions, learning becomes unstable. Such
a model could forget the faces of your parents.
Although a gradual switching off of plasticty can
partially overcome this problem, such a mechanism
cannot work in a recognition learning system whose
plasticity is.maintained throughout adulthood.

This memory instability is due to basic properties
of associative leaming and lateral Inhibition. An
-amalysis of this instability, together with data about
categorization, conditioning and attention, led to
the introduction of ART models that stabilize the
memory of self-organizing feature maps in response
to an arbitrary stream of input pattemns'*'2,

Memory search, feature binding and attentional
focusing

in an ART model>?’, learning does hot occur
when some winning F, activities are stored in STM.
Instead activation of £ nodes may be interpreted as
‘making a hypothesis' about an input.at F,. When £,
Is activated, it quickly generates an output pattern
that is transmitted along the top-down adaptive
pathways from F, to F,. These top-down signals are
multiplied in their respective pathways by LTM
traces at the semicircular synaptic knobs of Fig. 28.
The LTM-gated signals from all the active F; nodes
are added to generate the total top-down feedback
pattem from F, to Fy. This pattern plays the role of a
leamed expectation. Activation of this expectation
may be interpreted as ‘testing the hypothesis’, or
‘reading out the prototype’, of the active F;
category. As shown in Fig. 2B, ART networks are
designed to match the "expected prototype’ of the
category against the bottom-up input pattern, or
exemplar, to F,. Nodes that are activated by this
exemplar are suppressed if they do not correspond
to large LTM traces in the top-down prototype
pattem. The resultant F, pattem encodes the cluster
of input features that the network deems relevant to
the hypothesls based upon its past experience. This
resultant activity pattem, called X* in Fig. 28,
encodes the pattern of features to which the
network ‘pays attention’.

If the expectation is close enough to the Input
exemplar, then a state of resonance develops as the
attentional focus takes hold. The pattem X* of
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Fig. 2. ART search for an F; recognition code. (A) The input pattem | generates
the specific STM activity pattern X at ¥; as it nonspecifically activates the
oriéntirig subsystem A. X is represented by the tinting across F,. Pattem X both
inhiibits A and generates the output patterm'S. Pattem S is.transformed by the
LTM traces into the input pattem T, which activates the STM pattem Y across
F,. (B) Pattem Y generates the top-down out pattemn U which is transformed
into the prototype pattem V. IfV mismatches | at ¥y, then a new STM activity
pattemn X* is generated at Fy. X* is represented by the tinted regian. Inactive
nodes corresponding to X are untinted. The reductiort in total STM activity that
occurs when X is transformed into X* cduses a decrease in the total inhibition
from Fy to A. (Q) If the vigilarice criterion fails to be met, A releases a
ronspecific arousal wave to F3, which resets the STM pattem Y at F,. (D) After
Y & inhibited, its top-down prototype signal is eliminated, and X ‘can be
reinstated at ¥y. Enduring traces.of the prior reset lead X to activate a different
STM pattem Y* at F,. If the top-down prototype due to Y* also mismatches {
at F,, then the search for an approprate ¥, code continues until a more
appropriate F, representation is selected. At this point an attentive resanance
develops and leaming of the attended data is initiated.

attended features reactivates the F; category Y
which, in turn, reactivates X*. The network locks
into a resonant state through a positive feedback
loop that dynamically links, or binds, X* with Y.
Damasio?® has used the term ‘convergence zones’
to describe such a resonant process. The resonance
binds spatially distributed features into either a
stable equilibrium or a synchronous oscillation?*-3!,
much like synchronous feature-binding in visual
cortex32-34,

In ART, the resonant state, rather than bottom-up
activation, drives the learning process. The resonant
state persists long enough, at a high enough activity
level, to activate the slower leamning process; hence
the term adaptive resonance theory. ART systems
learn prototypes, rather than exemplars, because
the attended feature vector X*°, rather than the
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tations with a nonspecific arousal process that is

: H 2.27 |

Some machine-learning benchmark studies*® are given below that tc’allefﬂnattenttilor;aldgau} cgfntt:zl f?; F,hnodg can
compare the performances of supervised ART, or ARTMAP, models with | 2 y acltivated only i 0 of the three input
those of alternative models. These benchmarks describe how well these | Sources that converge on the node send positive
systems predict test sets when they experience equivalent training sets (as | Signals to the node at a given time. This constraint is
in benchmarks 1—4) and the number of epochs, or repetitions of the | called the 2/3 Rule. A bottom-up input pattern turns
training set, that are needed to reach the same leve! of accuracy | on the attentional gain control channel in order to
(benchmark 5). instate itself in STM at £, (Fig. 2A). A top-down
expectation tums off the attentional gain control
channel (Fig. 2B). As a result, only those input
features that are confirmed by the top-down proto-
type can be attended at F, after an F, category is
selected.

The 2/3 Rule, first and Yoremost, enables an ART
network to solve the stability—plasticity dilemma.
Carpenter and Grossberg?” proved that ART learn-
ing-and memory are stable in arbitrary environ-
ments, but become unstable when 2/3 Rule match-
ing is eliminated. Thus a type of matching that
guarantees stable leaming also enables the network
to pay attention.

In the brain, 2/3 Rule matching is illustrated by
experiments on phonemic restoration’®2, Suppose
that a noise spectrum replaces a letter sound in a
word heard in an otherwise unambiguous context.
Thien subjects hear the correct letter sound, not the
noise, to the extent that the noise spectrum includes
the letter formants. if silence replaces the noise,
then only silence is heard. Top-down expectations
thus amplify expected input features while suppres-
sing unexpected features, but do not create ac-
tivations not already in the input.

Matching by the 2/3 Rule also explains para-
References doxical reatgﬁgn 'ﬁmﬁ apdleJrOf data frgn; t|é>n'ming

- experiments during lexical decision and letter gap
a ggzesr:;r. G. A., Grossberg, S. and Reynolds, J. (1991) Neur. Networks 4, detection tasks<344. Alth0ugh pn'ming s often
b Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, ). H. and Rosen, 0. B. |  thought of as a residual effect of previous bottom-

(1992) IEEE Trans, Neur, Networks 3, 698-713 up activation, a combination of bottom-up ac-
tivation and top-down 2/3 Rule matching was
needed to explain the complete data pattern. This

Box 1. ARTMAP benchmark studies

(1) Medical database
Mortality following coronary bypass grafting surgery
Fuzzy ARTMAP significantly outperforms:
Logistic regression
Additive model
Bayesian assignment
Cluster analysis
Classification and regression trees
Expert panel-derived sickness scores
Principal component analysis

(2) Mushroom database
Decision trees (90-95% correct)
ARTMAP (100% correct; training set an order of magnitude smaller)

(3) Letter recognition database
Genetic algorithm (82% correct)
Fuzzy ARTMAP (96% correct)

{4) Circle-in-the-square task
Back propagation (90% correct)
Fuzzy ARTMAP (99.5% correct)

(5) Two-spiral task
Back propagation (10000-20000 training epochs)
Fuzzy ARTMAP (1-5 training epochs)
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input exemplar itself, is learned. These prototypes
may, however, also be used to encode individual
exemplars. How the matching process achieves this
is described below. If the mismatch between bottom-
up and top-down information is too great, then
resonance cannot develop. Instead the £, category
is quickly reset and a memory search for a better
category is initiated. This combination of top-down
matching, attention focusing and memory search is
what stabilizes ART leaming and memory in an
arbitrary Input environment.

The stabilizing properties of top-down matching
may be one reason for the ubiquitous occurrence of
reciprocal bottom-up and top-down cortico-cortical
and cortico-thalamic processes®*3, Resonant at-
tention has also been suggested to be necessary
for conscious experience. The predicted linkage®:
between learning, attention, consciousness and
synchronous oscillations has recently attracted much
interest3?,

Matching, priming and phonemic restoration
The ART attentive matching process is realized by
combining bottom-up inputs and top-down -expec-

analysis combiried bottom-up priming with a type
of top-down priming; namely, the top-down ac-
tivation that prepares a network for an expected
event that may or may not occur. The 2/3 Rule
clanfies why top-down priming, by itself, is sub-
liminal and unconscious, even though it can facili-
tate supraliminal processing of a subsequent ex-
pected event.

Vigilance, memory search and generalization

The criterion of an acceptable 2/3 Rule match is
defined by & parameter p called ‘vigilance’>?’. The
vigilance parameter is computed in the orienting
subsystem A. Vigilance weighs how similar an input
exemplar | must be to a top-down protatype V in
order for resonance to occur. Resonance occurs if
plll - |X*|<0. This inequality says that the F,
attentional focus X* inhibits A more than the input |
excites it. If A remains quiet, then an F, «— F3
resonance can develop.

Vigilance calibrates how much noveity the system
can tolerate before activating A and searching for a
different category. If the top-down expectation and
the bottom-up input are too ditferent to resonate,

TINS, Vol. 16, No. 4, 1993



then hypothesis testing, or memory search, is
triggered. During search, the orienting subsystem
interacts with the attentional subsystem (Figs 2C,D)
to rapidly reset mismatched categories and to select
better F; representations with which to learn about
novel events at F,, without risking unselective
forgetting of previous knowledge. Search may select
a familiar category if its prototype is similar enough
to the input to satisfy the resonance criterion. The
prototype may then be refined by 2/3 Rule atten-
tional focusing. If the input is too different from any
previously leamed prototype, then an uncommitted
population of F, cells is selected and leaming of a
new category Is initiated.

Because vigilance can vary across leaming trials,
recognition categories capable of encoding widely
differing degrees of generalization or abstraction
can be learned by a single ART system. Low
vigilance leads to broad generalization and abstract
prototypes. High vigilance leads to narrow general-
ization and to prototypes that represent fewer input
exemplars, even a single exemplar. Thus a single
ART system may be used, say, to recognize abstract
categories of faces and dogs, as well as individual
faces and dogs. A single system can learn both, as
the need arises, by increasing vigilance just enough
to activate A if a previous categorization leads to a
predictive error*>*?,

ART systems provide a new answer to the question
of whether the brain leams prototypes or exémplars.
Various authors have realized that neither alternative
is satisfactory, and that a hybrid system is needed“®.
ART systems can perform this hybrid function in a
manner that is sensitive to environmental demands.
Box 1 summarizes how such a supervised ART system
performs relative to other machine learning, genetic
algorithm and back propagation networks in bench-
mark simulations.

Memory consolidation and direct access to familiar
categories

As Inputs are practiced over leaming trials, the
search process eventually converges upon stable
categories. Familiar inputs directly access the cat-
egory whose prototype provides the globally best
match, while unfamiliar inputs trigger memory
searches for better categories, until the memory
capacity is fully utilized?. The process whereby
search is automatically disengaged is a form ‘of
memory consolidation that emerges from network
interactions. Emergent consolidation does not pre-
clude structural consolidation at individual cells,
since persistent resonance may be a trigger for
leaming-dependent cellular processes.

Face recognition and inferotemporal cortex

Level F, properties may be compared with proper-
ties of cell activations in inferotemporal cortex (IT)
during recognition leaming in monkeys. The ability of
F; nodes to leam categories with different levels of
generalization clarifies how some T cells can exhibit
high specificity, such as selectivity to views of
particular faces, while other cells respond to broader
features of the animal's environment*>~>7, Moreover,
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Fig. 3. A memory disturbance with formal symptoms
similar to those of medial temporal amnesia is caused by a
lesion of the model's onenting subsystem. The symptoms
are emergent properties due to inleractions among the
non-lesioned network components. The formal amnesic
syndrome is strikingly similar to the one caused in humans
and monkeys by lesioning the hippocampal formation.

when monkeys are exposed to easy and difficult
discriminations, ‘in the difficult condition the animals
adopted a stricter intemal criterion for discriminating
matching from nonmatching stimuli . . . the animals’
internal representations of the stimuli were better
separated, independent of the criterion used to dis-
criminate them . . . Increased effort appears to cause
enhancement of the responses and sharpened selec-
tivity for attended stimuli’ (Ref. 58; pp. 339-340).
These are also properties of model cells in .
Prototypes represent smaller sets of exemplars at
higher vigilance levels, so a stricter matching criterion
is learned. These exemplars match their finer proto-
types better than do exemplars which match a
coarser prototype. This better match more strongly
activates the corresponding Rz nodes.

Data from IT support the hypothesis that un-
familiar or unexpetted stimuli nonspecifically ac-
tivate level F, via the orienting subsystem. As
Desimone has noted, ‘the fact that IT cortex has a
reduced level of activation for familiar or expected
stimuli suggests that a high level of cortical acti-
vation may itself serve as a trigger for attentional
and orienting systems, causing the subject to orient
to the stimulus causing the activation. This link be-
tween the mnemonic and attentional systems would
“close the loop " between the two systems, resulting
in orlenting behavior that is influenced by both
current stimuli and prior memories. Such a mechan-
ism has a number of similarities to the adaptive

viewpoint
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resonance theory’ (Ref. 59; p. 359). IT cells during
working memory tasks are reset after each trid|606,
Reset also occurs in ART. Some data suggest that
the pulvinar may mediate attentional gain%%-62.

Orienting, the hippocampus and amnesia

The hypothesis that the ART orienting system has
a neural analog in the hippocampal formation has
considerable experimental support. A lesion of the
ART orienting subsystem (Fig. 3) creates formal
symptoms like those of humans with medial tem-
poral amnesia, including: unlimited anterograde
amnesia; limited retrograde amnesia; failure of
consolidation; tendency to learn the first eventin a
series; abnormal reactions to novelty, Including
perseverative reactions; normal priming; and normal
information processing of familiar events$*-7%,
Unlimited anterograde amnesia occurs because the
network cannot carry out the memory search to
learn a new recognition code. Limited retrograde
armnesia occurs because familiar events can directly
access correct recognition codes®. Before events
become familiar, memory consolidation occurs that
utilizes the orienting subsystem (Fig. 2C). This
failure of consolidation does not necessarily prevent
learning per se. instead, learning influences the first
recognition category activated by bottom-up pro-
cessing, much as ‘amnesics are particularly strongly
wedded to the first response they learn’ (Ref. 72;
p. 253). Perseverative reactions can occur because
the orienting subsystem cannot reset sensory rep-
resentations or top-down expectations that may be
persistently mismatched by bottom-up cues. The
inability to search memory prevents ART from
discovering more appropriate stimulus combinations
to attend to. Normal priming occurs because it is
mediated by the attentional subsystem.

Similar behavioral probléms have been identified
in hippocampectomized monkeys. Gaffan noted
that fornix transection ‘impairs ability to ¢hange an
established habit...in a different set of circum-
stances that is similar to the first and therefore liable
to be confused with it' (Ref. 73; p. 94). In ART, a
defective orienting subsystem prevents the memory
search whereby different representations could be
leamed for similar events. Pribram called such a
process a ‘competence for recombinant context-
sensitive processing’ (Ref. 74; p. 362). These ART
mechanisms illustrate how memory consolidation
and novelty detection may be mediated by the same
neural structures’’, why hippocampectomized rats
have difficulty orienting to novel cues’, and why
there is a progressive reduction in novelty-related
hippocampal potentials as leaming proceeds in
normal rats7677, In ART, the orienting system is
automatically disengaged as events become familiar
during the memory consolidation process.

In summary, the hypothesis that the hippocampal
formation Is linked to orienting subsystem func-
tions’® helps to explain amnesic symptoms as
manifestations of a breakdown in the orienting and
memory search mechanisms that normally solve the
stability—plasticity dilemma. This interpretation does
not contradict other data that suggest additional

functions for the hippocampal formation’™®. A
hippocampal role in adaptivé timing, conditioned
reinforcement, spatial approach and avoidance, and
attentional blocking has been'mechanistically out-
lined within the larger model“neural system that
includes ART recognition networks'-4.78.80, Such a
hybrid function is consistent with data about hippo-
campal cells with place fields in a radial-arm maze
and conditioned responses in classical conditioning
tasks®', These results clarify how the hippocampus
may subserve LTP-based learning, without suggest-
ing that it temporarily stores recognition codes of
many types of sensory events until these memories
can consolidate in their respective sensory cortices.
The disengagement of the orenting subsystem
during memory consolidation does not imply that
the orienting subsystem ever learns a sensory recog-
nition code.,

This larger model system also includes spatial and
motor leaming circuits?382:83 whose properties shed
new light on the popular distinctions between
knowing that and knowing how®, memory with
record and memory without record®®, taxon and
locale”, memory and habit®, and declarative mem-
ory and procedural memory®’ by clarifying aspects of
how these distinct processes work and interact.

Concluding remarks

Many properties of data about the inferotemporal
cortex and the hippocampal formation are rational-
ized by the ART circuits that solve the stability—
plasticity dilemma. These model circuits also suggest
predictions that may be tested by novel neuro-
biological experiments. For example, varying the
vigilance parameter of the orienting subsystem alters
the specificity of recognition codes that are leamed
by the attentional subsystem by calibrating how
different an input needs to.be from a prototype
before the orienting subsystem triggers search. This
property suggests that operations which make the
novelty-related potentials of the hippocampus more
sensitive to input changes may trigger the formation
of more selective inferotemporal recognition cat-
egories. Can such a comelation be recorded, say,
when monkeys leam easy and hard discriminations?
Conversely, operations that progressively block the
expression of hippocampal novelty potentials may
lead to the learning of coarser recognition categories,
with amnesic symptoms as a limiting case.
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