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1. Introduction

ARTMAP is a class of neural network architectures that employ attentional mechanisms
to perform incremental supervised learning of recognition categories and multidimensional
maps. The first ARTMAP system (Carpenter, Grossberg, and Reynolds, 1991) was used to
classify binary vectors. This article describes a more general ARTMAP system that learns
to classify analog as well as binary vectors (Carpenter, Grossberg, Markuzon, Reynolds,
and Rosen, 1992). This generalization is accomplished by replacing the ART 1 modules
(Carpenter and Grossberg, 1987a) of the binary ARTMAP system with Fuzzy ART mod-
ules (Carpenter, Grossberg, and Rosen, 1991a). Where ART 1 dynamics are described in
terms of set-theoretic operations, Fuzzy ART dynamics are described in terms of fuzzy set-
theoretic operations (Zadeh, 1965). Hence the new system is called Fuzzy ARTMAP. Also
described is an ARTMAP voting strategy. This voting strategy is based on the observation
that ARTMAP fast learning typically leads to different adaptive weights and recognition
categories for different orderings of a given training set, even when overall predictive accu-
racy of all simulations is similar. The diflerent category structures cause the set of test set
items where errors occur to vary from one simulation to the next. The voting strategy uses
an ARTMAP system that is trained several times on input sets with different orderings. The
final prediction for a given test set item is the one made by the largest number of simula-
tions. Since the set of items making erroneous predictions varies from one simulation to the
next, voting cancels many of the errors. Further, the voting strategy can be used to assign
confidence estimates to competing predictions given small, noisy, or incomplete training sets.
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Figure 1. Fuzzy ARTMAP architecture. The ART, complement coding preprocessor trans-
forms the Mg-vector a into the 2M,-vector A = (a,a®) at the ART, field F§. A is the input
vector to the ART, field Ff. Similarly, the input to F} is the 2M,-vector (b,b¢). When a
prediction by ART, is disconfirmed at ART,, inhibition of map field activation induces the
match tracking process. Match tracking raises the ART, vigilance (pa) to just above the F?
to F¢ match ratio |x2[/1A]. This triggers an ART, search which leads to activation of either
andA RT, category that correctly predicts b or to a previously uncommitted ART. category
node.

Simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back
propagation and genetic algorithm systems. In all cases, Fuzzy ARTMAP simulations lead
to favorable levels of learned predictive accuracy, speed, and code compression in both on-
line and off-line settings. Fuzzy ARTMAP is also easy to use. It has a small number of
parameters, requires no problem-specific system crafting or choice of initial weight values,
and does not get trapped in local minima.

Each ARTMAP system includes a pair of Adaptive Resonance Theory modules (ART.,
and ART,) that creale stable recognition categories in response to arbitrary sequences of
input patterns (Figure 1). During supervised learning, ART, receives a stream {a(P)} of
input patterns and ART, receives a stream {b(?)} of input patterns, where b{?) is the correct
prediction given a(P). These modules are linked by an associative learning network and an
internal controller that ensures autonomous system operation in real time. The controller is
designed to create the minimal number of ART, recognition categories, or “hidden units,”
needed to meet accuracy criteria. It does this by realizing a Minimax Learning Rule that
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enables an ARTMAP system to learn quickly, efficiently, and accurately as it conjointly min-
imizes predictive error and mazimizes predictive generalization. This scheme automatically
links predictive success to category size on a trial-by-trial basis using only local operations.
It works by increasing the vigilance parameter ps of ARTq by the minimal amount needed
to correct a predictive error at ART,.

Parameter p, calibrates the minimum confidence that ART, must have in a recognition
category, or hypothesis, activated by an input a(¢) in order for ART, to accept that category,
rathér than search for a better one through an automatically controlled process of hypothesis
testing. Lower values of ps enable larger categories to form. These lower p, values lead to
broader generalization and higher code compression. A predictive failure at ART, increases
pa by the minimum amount needed to trigger hypothesis testing at ART., using a mechanism
called match tracking (Carpenter, Grossberg, and Reynolds, 1991). Match tracking sacrifices
the minimum amount of generalization necessary to correct a predictive error. Hypothesis
testing leads to the selection of a new ART. category, which focuses attention on a new
cluster of a(P) input features that is better able to predict b(P). Due to the combination of
match tracking and fast learning, a single ARTMAP system can learn a different prediction
for a rare event than for a cloud of similar frequent events in which it is embedded.

Whereas binary ARTMAP employs ART 1 systems for the ART, and ART, modules,
Fuzzy ARTMAP substitutes Fuzzy ART systems for these modules. Fuzzy ART shows how
computations from fuzzy set theory can be incorporated naturally into ART systems. For
example, the intersection (n) operator that describes ART 1 dynamics is replaced by the
AND operator (A) of fuzzy set theory (Zadeh, 1965) in the choice, search, and learning
laws of ART 1 (Figure 2). Especially noteworthy is the close relationship between the
computation that defines fuzzy subsethood (Kosko, 1986) and the computation that defines
category choice in ART 1. Replacing operation n by operation A leads to a more powerful
version of ART 1. Whereas ART 1 can learn stable categories only in response to binary
input vectors, Fuzzy ART can learn stable categories in response to either analog or binary
input vectors. Moreover, Fuzzy ART reduces to ART 1 in respdnse to binary input vectors.

In Fuzzy ART, learning always converges because all adaptive weights are monotone
nonincreasing. Without additional processing, this useful stability property could lead to
the unattractive property of category proliferation as too many adaptive weights converge to
zero. A preprocessing step, called complement coding, uses on-cell and off-cell responses to
prevent category proliferation. Complement coding normalizes input vectors while preserving
the amplitudes of individual feature activations. Without complement coding, an ART
category memory encodes the degree to which critical features are consistently present in
the training exemplars of that category. With complement coding, both the degree of absence
and the degree of presence of features are represented by the category weight vector. The
corresponding computations employ fuzzy OR (v, maximum) operators, as well as fuzzy
AND (A, minimum) operators.

This article includes summaries of the ART, Fuzzy ART, and Fuzzy ARTMAP systems.
Section 2 describes the main characteristics of ART models, and Section 3 describes Fuzzy
ART. Section 4 shows how two Fuzzy ART unsupervised learning modules are linked to
form the Fuzzy ARTMAP supervised learning system. Sections 5 and 6 present two classes
of benchmark simulation results. Section 5 describes a simulation task of learning to identify
which points lie inside and which lie outside a given circle. Fuzzy ARTMAP on-line learning
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Figure 2. Comparison of ART 1 and Fuzzy ART.

(also called incremental learning) is demonstrated, with test set accuracy increasing from
88.6% to 98.0% as the training set increased in size from 100 to 100,000 randomly chosen
points. With off-line learning, the system needed from 2 to 13 epochs to learn all training set
exemplars to 100% accuracy, where an epoch is defined as one cycle of training on an entire
set of input exemplars. Test set accuracy then increased from 89.0% to 99.5% as the training
set size increased from 100 to 100,000 points. Application of the voting strategy improved
an average single-run accuracy of 90.5% on five runs to a voting accuracy of 93.9%, where
each run trained on a fixed 1,000-item set for one epoch. These simulations are compared
with studies by Wilensky (1990) of back propagation systems. These systems used at least
5,000 epochs to reach 90% accuracy on training and testing sets.

Section 6 describes Fuzzy ARTMAP performance on a benchmark letter recognition

task developed by Frey and Slate (1991). Each database training exemplar represents a
capital letter, in one of a variety of fonts and with significant random distortions, as a
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16-dimensional feature vector. Each feature is assigned a value from 0 to 15. A number
from 0 to 25 identifies the letters A~Z. Frey and Slate used this database to train a variety
of classifiers that incorporate Holland-style genetic algorithms (Holland, 1980). Trained
on 16,000 exemplars and tested on 4,000 exemplars, the best performing classifier had a
test-set error rate of about 17.3%, more than three times the minimal error rate of an
individual Fuzzy ARTMAP system (5.3%) and more than four times the error rate of a
Fuzzy ARTMAP voting system (4.0%). In fact, application of the voting strategy improved
an average accuracy of 93.9% on five separate runs to a voting accuracy of 96.0%. Moreover,
this improved ARTMAP performance did not require greater memory resources: Fuzzy ART-
MAP created fewer than 1,070 ART, recognition categories in all simulations, compared to
1,040-1,302 rules created by the most accurate genetic algorithms.

2. ART Systems and Fuzzy Logic

Adaptive Resonance Theory, or ART, was introduced as a theory of human cognitive
information processing (Grossberg, 1976, 1980). The theory has since led to an evolving
series of real-time neural network models for unsupervised category learning and pattern
recognition. These models are capable of learning stable recognition categories in reSponse
to arbitrary input sequences with either fast or slow learning. Model families include ART 1
(Carpenter and Grossberg, 1987a), which can stably learn to categorize binary input patterns
presented in an arbitrary order; ART 2 (Carpenter and Grossberg, 1987b), which can stably
learn to categorize either analog or binary input patterns presented in an arbitrary order; and
ART 3 (Carpenter and Grossberg, 1990), which can carry out parallel search, or hypothesis
testing, of distributed recognition codes in a multi-level network hierarchy. Variations of
these models adapted to the demands of individual applications have been developed by a
number of authors.

Figure 3 illustrates one example from the family of ART 1 models, and Figure 4 illus-
trates a typical ART search cycle. As shown in Figure 4a, an input vector I registers itself as
a pattern X of activity across level F;. The F} output vector S is then transmitted through
the multiple converging and diverging adaptive filter pathways emanating from Fj. This
transmission event multiplies the vector S by a matrix of adaptive weights, or long term
memory (LTM) traces, to generate a net input vector T to level F;. The internal competi-
tive dynamics of F, contrast-enhance vector T. A compressed activity vector Y is thereby
generated across F3. In ART 1, the competition is tuned so that the F, node that receives
the maximal F} — F, input is selected. Only one component of Y is nonzero after this choice
takes place. Activation of such a winner-take-all node defines the category, or symbol, of
the input pattern I. Such a category represents all the inputs I that maximally activate the
corresponding node.

Activation of an F; node may be interpreted as “making a hypothesis” about an input
I. When Y is activated, it generates a signal vector U that is sent top-down through the
second adaptive filter. After multiplication by the adaptive weight matrix of the top-down
filter, a net vector V inputs to F} (Figure 4b). Vector V plays the role of a learned top-
down expectation. Activation of V by Y may be interpreted as “testing the hypothesis” Y,
or “reading out the category prototype” V. The ART 1 network is designed to match the
“expected prototype™ V of the category against the active input pattern, or exemplar, I.

This matching process may change the Fy activity pattern X by suppressing activation
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Figure 3. Typical ART 1 neural network (Carpenter and Grossberg, 1987a).

of all the feature detectors in I that are not confirmed by V. The resultant pattern X*
encodes the pattern of features to which the network “pays attention™. If the expectation V
is close enough to the input I, then a state of resonance occurs as the attentional focus takes
hold. The resonant state persists long enough for learning to occur; hence the term adaptive
resonance theory. ART 1 learns prototypes, rather than exemplars, because the attended
feature vector X*, rather than the input I itself, is learned.

The criterion of an acceptable match is defined by a dimensionless parameter called
vigilance. Vigilance weighs how close the input exemplar I must be to the top-down proto-
type V in order for resonance to occur. Because vigilance can vary across learning trials,
recognition categories capable of encoding widely differing degrees of generalization, or mor-
phological variability, can be learned by a single ART system. Low vigilance leads to broad
generalization and abstract prototypes. High vigilance leads to narrow generalization and
to prototypes that represent fewer input exemplars. In the limit of very high vigilance, pro-
totype learning reduces to exemplar learning. Thus a single ART system may be used, say,
to recognize abstract categories of faces and dogs, as well as individual faces and dogs.



Attentive Supervised Learning 371

Figure 4. ART search for an F, code: (a) The input pattern I generates the specific STM
activity pattern X at F) as it nonspecifically activates the orienting subsystem A. Pattern X
both inhibits A and generates the output signal pattern S. Signal pattern S is transformed
into the input pattern T, which activates the STM pattern Y across F;. (b) Pattern Y
generates the top-down signal pattern U which is transformed into the prototype pattern
V. If V mismatches I at Fj, then a new STM activity pattern X* is generated at F.
The reduction in total STM activity which occurs when X is transformed into X* causes a
decrease in the total inhibition from F) to A. (c) If the matching criterion fails to be met,
A releases a nonspecific arousal wave to Fy, which resets the STM pattern Y at Fp. (d)
After Y is inhibited, its top-down prototype signal is eliminated, and X can be reinstated
at F). Enduring traces of the prior reset lead X to activate a different STM pattern Y* at
F,. If the top-down prototype due to Y* also mismatches I at F, then the search for an
appropriate Fy code continues.
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If the top-down expectation V and the bottom-up input I are too novel, or unexpected,
to satisfy the vigilance criterion, then a bout of hypothesis testing, or memory search, is
triggered. Search leads to selection of a better recognition code, symbol, category, or hy-
pothesis to represent input I at level F. An orienting subsystem mediates the search process
{Figure 3). The orienting subsystem interacts with the attentional subsystem, as in Figures
4c and 4d, to enable the attentional subsystem to learn about novel inputs without risking
unselective forgetting of its previous knowledge.

The search process prevents associations from forming between Y and X* if X* is too
different from I to satisfy the vigilance criterion. The search process resets Y before such an
association can form. A familiar category may be selected by the search if its prototype is
similar enough to the input I to satisfy the vigilance criterion. The prototype may then be
refined in light of new information carried by I. If Iis too different from any of the previously
learned prototypes, then an uncommitted F node is selected and learning of a new category
is initiated.

A network parameter controls how deeply the search proceeds before an uncommitted
node is chosen. As learning of a particular category self-stabilizes, all inputs coded by that
category access it directly in a one-pass fashion, and search is automatically disengaged. The
category selected is, then, the one whose prototype provides the globally best match to the
input pattern. Learning can proceed on-line, and in a stable fashion, with familiar inputs
directly activating their categories, while novel inputs continue to trigger adaptive searches
for better categories, until the network’s memory capacity is fully utilized.

The read-out of the top-down expectation V may be interpreted as a type of hypothesis-
driven query. The matching process at Fy and the hypothesis testing process at F; may
be interpreted as query-driven symbolic substitutions. From this perspective, ART systems
provide examples of new types of self-organizing production systems (Laird, Newell, and
Rosenbloom, 1987). By incorporating predictive feedback into their control of the hypothesis
testing cycle, ARTMAP systems embody self-organizing production systems that are also
goal-oriented. ARTMAP systems are thus a new type of self-organizing expert system which
is capable of stable autonomous fast learning about nonstationary environments that may
contain a great deal of morphological variability. The fact that fuzzy logic may also be
usefully incorporated into ARTMAP systems blurs even further the traditional boundaries
between artificial intelligence and neural networks.

The Fuzzy ART model incorporates the design features of other ART models due to the
close formal homolog between ART 1 and Fuzzy ART operations. Figure 2 summarizes how
the ART 1 operations of category choice, matching, search, and learning translate into Fuzzy
ART operations by replacing the set theory intersection operator (n) of ART 1 by the fuzzy
set theory conjunction, or MIN operator (A). Despite this close formal homology, Fuzzy ART
is described as an algorithm, rather than a locally defined neural model. A neural network
realization of Fuzzy ART is described elsewhere (Carpenter, Grossberg, and Rosen, 1991b).
For the special case of binary inputs and fast learning, the computations of Fuzzy ART are
identical to those of the ART 1 neural network. The Fuzzy ART algorithm also includes two
optional features, one concerning learning and the other input preprocessing, as described
in Section 3.
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3. Summary of the Fuzzy ART Algorithm

ART field activity vectors: Each ART system includes a field Fy of nodes that
represent a current input vector; a field F} that receives both bottom-up input from Fy and
top-down input from a field F> that represents the active code, or category (Figure 3). The
Fy activity vector is denoted I = (Iy,..., 1)), with each component I, in the interval [0,1],
i=1,..., M. The Fy activity vector is denoted x = (z),...,2) and the F3 activity vector
is denoted y = (y1,..-,yn). The number of nodes in each field is arbitrary.

Weight vector: Associated with each F, category node j(j = 1,...,N) is a vector
w; = (w1, - .- wjn) of adaptive weights, or LTM traces. Initially

w1(0)=...=w;y(0)=1; 1)

then each category is said to be uncommitted. After a category is selected for coding it
becomes committed. As shown below, each LTM trace w;; is monotone nonincreasing through
time and hence converges to a limit. The Fuzzy ART weight vector w; subsumes both the
bottom-up and top-down weight vectors of ART 1.

Parameters: Fuzzy ART dynamics are determined by a choice parameter a > 0; a
learning rate parameter § € [0,1]; and a vigilance parameter p € [0, 1].

Category choice: For each input I and F; node j, the choice function T is defined by

T = S @
where the fuzzy AND (Zadeh, 1965) operator A is defined by
(p Aq); = min(p;, ¢;) @)
and where the norm |- | is defined by
M
Ipl= g [Pl (4)

for any M-dimensional vectors p and q. For notational simplicity, 7;(I) in (2) is often written
as T; when the input I is fixed.

The system is said to make a category choice when at most one F, node can become
active at a given time. The category choice is indexed by J, where

Ty = max{T;:j=1...N}. (5)

If more than one T; is maximal, the category j with the smallest index is chosen. In
particular, nodes become committed in order j = 1,2,3,... . When the J** category is
chosen, y; =1; and y, = 0 for j # J. In a choice system, the F} activity vector x obeys the
equation

_ {I if F; is inactive (6)
*=1Iaw; if the Jt F, node is chosen.
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Resonance or reset: Resonance occurs if the match function [IAw;|/|I| of the chosen
category meets the vigilance criterion:

IAnw
I m sy (7)

that is, by (6), when the J* category is chosen, resonance occurs if
x| =ITAw | > p[I. (8)

Learning then ensues, as defined below. Mismatch reset occurs if

|IAWJ|
< p; 9
that is, if
x| =TAw,| < pll|. (10)

Then the value of the choice function T is set to 0 for the duration of the input presentation
to prevent the persistent selection of the same category during search. A new index J is
then chosen, by (5). The search process continues until the chosen J satisfies (7).

Learning: Once search ends, the weight vector w; is updated according to the equation
w(e) = BIAwl) 4 (1- gywld, (11)

Fast learning corresponds to setting # = 1. The learning law used in the EACH system of
Salzberg (1990) is equivalent to equation (11) in the fast-learn limit with the complement
coding option described below.

Fast-commit slow-recode option: For efficient coding of noisy input sets, it is useful
to set # =1 when J is an uncommitted node, and then to take 8 < 1 after the category
is committed. Then w(J“"'w) = I the first time category J becomes active. Moore (1989)
introduced the learning law (11), with fast commitment and slow recoding, to investigate
a variety of generalized ART 1 models. Some of these models are similar to Fuzzy ART,
but none includes the complement coding option. Moore described a category proliferation.
problem that can occur in some analog ART systems when a large number of inputs erode
the norm of weight vectors. Complement coding solves this problem.

Input normalization/complement coding option: Proliferation of categories is
avoided in Fuzzy ART if inputs are normalized. Complement coding is a normalization rule
that preserves amplitude information. Complement coding represents both the on-response
and the off-response to an input vector a (Figure 1). To define this operation in its simplest
form, let a itself represent the on-response. The complement of a, denoted by a¢, represents
the off-response, where

ai=1-a,. (12)

The complement coded input I to the field Fy is the 2M-dimensional vector

I=(a,ac)E(G],...,GM,(J,‘]:,...,G‘}'{). (13)
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Note that
I = |(a,ac)|
M M
=Y+ (M-3"q) (14)
i=1 i=
=M,

so inputs preprocessed into complement coding form are automatically normalized. Where
complement coding is used, the initial condition (1) is replaced by

wj1(0)=...=wj'2M(0)= 1. (15)

4. Fuzzy ARTMAP Algorithm

The Fuzzy ARTMAP system incorporates two Fuzzy ART modules ART, and ART,
that are linked together via an inter-ART module F'® called a map field. The map field is
used to form predictive associations between categories and to realize the match tracking rule
whereby the vigilance parameter of ART, increases in response to a predictive mismatch at
ART,. Match tracking reorganizes category structure so the predictive error is not repeated
on subsequent presentations of the input. A circuit realization of the match tracking rule
that uses only local real-time operations is provided in Carpenter, Grossberg, and Reynolds,
(1991). The interactions mediated by the map field F3® may be operationally characterized
as follows.

ART, and ART,

Inputs to ART, and ART) are in the complement code form: for ART,, I = A = (a,a®);
for ART,, T = B = (b,b¢) (Figure 1). Variables in ART, or ART, are designated by
subscripts or superscripts “a” or “b”. For ART,, let x* = (z¢...25), ) denote the F{ output
vector; let y® = (yf ...y%, ) denote the F§ output vector; and let wi= (w;l,wﬁ, oo WiaM,)
denote the j** ART, weight vector. For ART,, let x* = (z}...2},, ) denote the F} output
vector; let yb = (38 .. .y%,) denote the F} output vector; and let wl = (wh,,wh,,.. ., 0l ;)
denote the k** ART, weight vector. For the map field, let x* = (z{%,...,z%) denote the
Fab output vector, and let w2t = (w#,..., w3k, ) denote the weight vector from the j** F
node to Fab. Vectors x2,y%,x?, y?, and x4 are set to 0 between input presentations.

Map field activation

The map field Fab is activated whenever one of the ART. or ART, categories is active.
If node J of F§ is chosen, then its weights w3 activate Fet. If node K in F} is active, then
the node K in F4 is activated by 1-to-1 pathways between F} and Feb. If both ART, and
ART, are active, then F® becomes active only if ART, predicts the same category as ART,
via the weights w;". The Fab output vector x%® obeys

ytAw% if the Jth F§ node is active and F} is active
<@ = wab if the Jth F$ node is active and F} is inactive (16)
Tyt if Fg is inactive and F? is active
if F is inactive and F? is inactive.

(=24
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By (16), x%® = 0 if the prediction w4® is disconfirmed by y®. Such a mismatch event triggers
an ART, search for a better category, as follows.
Match tracking

At the start of each input presentation the ART, vigilance parameter p, equals a baseline
vigilance p. The map field vigilance parameter is p,y. If

x| < paply?l, (17)

then p, is increased until it is slightly larger than |A A w_“,l|A|‘1, where A is the input to
Fg, in complement coding form. Then

1x?] = |A AW < palAl, (18)

where J is the index of the active Fi§ node, as in (10). When this occurs, ART, search leads
either to activation of another Fi§ node J with

X% = |A AWG| > pal Al (19)

and
x%) = |yt A w9l > paly®l; (20)

or, if no such node exists, to the shut-down of F for the remainder of the input presentation.

Map field learning
Learning rules determine how the map field weights w‘;,’: change through time, as follows.
Weights w2} in Ff — Fab paths initially satisfy

wih(0)=1 (21)

During resonance with the ART, category J active, w_‘;" approaches the map field vector
x°b, With fast learning, once J learns to predict the ART} category K, that association is
permanent; i.e., w3, =1 for all time.

5. Simulation: Circle-in-the-Square

The circle:in-the square problem requires a system to identify which points of a square lie
inside and which lie outside a circle whose area equals half that of the square. This task was
specified as a benchmark problem for system performance evaluation in the DARPA Artificial
Neural Network Technology (ANNT) Program (Wilensky, 1990). Wilensky examined the
performance of 2-n-1 back propagation systems on this problem. He studied systems where
the number (n) of hidden units ranged from 5 to 100, and the corresponding number of
weights ranged from 21 to 401. Training sets ranged in size from 150 to 14,000. To avoid
over-fitting, training was stopped when accuracy on the training set reached 90%. This
criterion level was reached most quickly (5,000 epochs) in systems with 20 to 40 hidden
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units. In this condition, approximately 90% of test set points, as well as training set points,
were correctly classified.

Fuzzy ARTMAP performance on this task after one training epoch is illustrated in
Figures 5 and 6. As training set size increased from 100 exemplars (Figure 5a) to 100,000
exemplars (Figure 5d) the rate of correct test set predictions increased from 88.6% to 98.0%
while the number of ART, category nodes increased from 12 to 121. Each category node j
required four learned weights w$ in ARTa plus one map field weight w; to record whether
category j predicts that a point lies inside or outside the circle. Thus, for example, 1-epoch
training on 100 exemplars used 60 weights to achieve 88.6% test set accuracy. The map can
be made arbitrarily accurate provided the number of ART, nodes is allowed to increase as
needed.

Figure 5 shows how a test set error rate is reduced from 11.4% to 2.0% as training set
size increases from 100 to 100,000 in 1-epoch simulations. Test set error rate can be further
reduced if exemplars are presented for as many epochs as necessary to reach 100% accuracy
on the training set. The ARTMAP voting strategy provides a third way to eliminate test
set errors. Recall that the voting strategy assumes a fixed set of training exemplars. Before
each individual simulation the input ordering is randomly assembled. After each simulation
the prediction of each test set item is recorded. Voting selects the outcome predicted by the
largest number of individual simulations. In case of a tie, one outcome is selected at random.
The number of votes cast for a given outcome provides a measure of predictive confidence
at each test set point. Given a limited training set, voting across a few simulations can
improve predictive accuracy by a factor that is comparable to the improvement that could
be attained by an order of magnitude more training set inputs, as shown in the following
example.

A fixed set of 1,000 randomly chosen exemplars was presented to a Fuzzy ARTMAP
system on five independent 1-epoch circle-in-the-square simulations. After each simulation,
inside/outside predictions were recorded on a 1,000-item test set. Accuracy on individual
simulations ranged from 85.9% to 92.3%, averaging 90.5%; and the system used from 15 to
23 ART, nodes. Voting by the five simulations improved test set accuracy to 93.9% (Figure
6¢c). In other words, test set errors were reduced from an average individual rate of 9.5% to a
voting rate of 6.1%. Figure 6d indicates the number of votes cast for each test set point, and
hence reflects variations in predictive confidence across different regions. Voting by more
than five simulations maintained an error rate between 5.8% and 6.1%. This limit on further
improvement by voting appears to be due to random gaps in the fixed 1,000-item training
set. By comparison,.a ten-fold increase in the size of the training set reduced the error by
an amount similar to that achieved by five-simulation voting. For example, in Figure 5b,
1-epoch training on 1,000 items yielded a test set error rate of 7.5%; while increasing the
size of the training set to 10,000 reduced the test set error rate to 3.3% (Figure 5c).

6. Simulation: Letter Image Recognition

Frey and Slate (1991) recently developed a benchmark machine learning task that they
describe as a “difficult categorization problem” (p. 161). The task requires a system to
identify an input exemplar as one of 26 capital letters A-Z. The database was derived from
20,000 unique black-and-white pixel images. The difficulty of the task is due to the wide
variety of letter types represented: the twenty “fonts represent five different stroke styles
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()

100 exemplars 1,000 exemplars
99.0% training set 95.5% training set
88.6% test set 92.5% test set

12 ART, categories =~ 21 ART, categories

(c) (d)

10,000 exemplars 100,000 exemplars
97.7% training set 98.8% training set
96.7% test set 98.0% test set
50 ART, categories 121 ART, categories

Figure 5. Circle-in-the-square test set response patterns after 1 epoch of Fuzzy ARTMAP
training on (a) 100, (b) 1,000, (c) 10,000, and (d) 100,000 randomly chosen training set
points. Test set points in white areas are predicted to lie inside the circle and points in black

- areas are predicted to lie outside the circle. The test set error rate decreases, approximately
inversely to the number of ART, categories, as the training set size increases.
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(@ ()
15 ART, categories 17 ART, categories
85.9% test set 92.4% test set

. (©) (d)
Voting on 5 runs Number of votes
93.9% test set

Figure 6. Circle-in-the-square response patterns for a fixed 1,000-item training set. (a) Test
set responses after training on inputs presented in random order. After 1 epoch that used 15
ART, nodes, test set prediction rate was 85.9%, the worst of 5 runs. (b) Test set responses
after training on inputs presented in a different random order. After 1 epoch that used 23
ART, nodes, test set prediction rate was 92.3%, the best of 5 runs. (c) Voting strategy
applied to five individual simulations. Test set prediction rate was 93.9%. (d) Cumulative
test set response pattern of five 1-epoch simulations. Gray scale intensity increases with the
number of votes cast for a point’s being outside the circle.
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(simplex, duplex, complex, and Gothic) and six different letter styles (block, script, italic,
English, Italian, and German)” (p. 162). In addition each image was randomly distorted,
leaving many of the characters misshapen. Sixteen numerical feature attributes were then
obtained from each character image, and each attribute value was scaled to a range of 0 to
15. The resulting Letter Image Recognition file is archived in the UCI Repository of Machine
Learning Databases and Domain Theories, maintained by David Aha and Patrick Murphy
(ml_repository@ics.uci.edu).

Frey and Slate used this database to test performance of a family of classifiers based
on Holland’s genetic algorithms (Holland, 1980). The training set consisted of 16,000 ex-
emplars, with the remaining 4,000 exemplars used for testing. Genetic algorithm classifiers
having different input representations, weight update and rule creation schemes, and sys-
tem parameters were systematically compared. Training was carried out for 5 epochs, plus
a sixth “verification” pass during which no new rules were created but a large number of
unsatisfactory rules were discarded. In Frey and Slate’s comparative study, these systems
had correct prediction rates that ranged from 24.5% to 80.8% on the 4,000-item test set.
The best performance (80.8%) was obtained using an integer input representation, a reward
sharing weight update, an exemplar method of rule creation, and a parameter setting that
allowed an unused or erroneous rule to stay in the system for a long time before being dis-
carded. After training, the optimal case, that had 80.8% performance rate, ended with 1,302
rules and 8 attributes per rule, plus over 35,000 more rules that were discarded during ver-
ification. (For purposes of comparison, a rule is somewhat analogous to an ART, category
in ARTMAP, and the number of attributes per rule is analogous to the size Wi of ART,
category weight vectors.) Building on the results of their comparative study, Frey and Slate
investigated two types of alternative algorithms, namely an accuracy-utility bidding system,
that had slightly improved performance (81.6%) in the best case; and an exemplar/hybrid
rule creation scheme that further improved performance, to a maximum of 82.7%, but that
required the creation of over 100,000 rules prior to the verification step.

Fuzzy ARTMAP had an error rate on the letter recognition task that was consistently
less than one third that of the three best Frey-Slate genetic algorithm classifiers described
above. Moreover Fuzzy ARTMAP simulations each created fewer than 1,070 ART, cate-
gories, compared to the 1,040-1,302 final rules of the three genetic classifiers with the best
performance rates. With voting, Fuzzy ARTMAP reduced the error rate to 4.0% (Table 1).
Most Fuzzy ARTMAP learning occurred on the first epoch, with test set performance on
systems trained for one epoch typically over 97% that of systems exposed to inputs for the
five epochs.

Table 1 shows how voting consistently improves performance. In each group, with a = 0.1
or a = 1.0 and with 1 or 5 training epochs, Fuzzy ARTMAP was run for 3 or 5 independent
simulations, each with a different input order. In all cases voting performance was signifi-
cantly better than performance of any of the individual simulations in a given group. In Table
la, for example, voting caused the error rate to drop to 8.8%, from a 3-simulation average
of 12.5%. With 1 training epoch, 3-simulation voting eliminated about 30-35% of the test
set errors (Table 1a and 1c), and 5-simulation voting eliminated about 43% of the test set
errors (Table le). In the 5-epoch simulations, where individual training set performance was
close to 100%, 3-simulation voting still reduced the test set error rate by about 25% (Table
1b and 1d) and 5-simulation voting reduced the error rate by about 34% (Table 1f). The
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TABLE 1
% Correct Test No. ART, No. Epochs
Set Predictions Categories
(a) a=0.1
3 simulations
Average  87.5% 637 1
Range 87.0%-88.0% 619-661 1
Voting 91.2%
(b) a=0.1
3 simulations
Average 89.7% 741 5
Range 89.3%-90.3% 726-757 5
Voting 92.2%
(c)a=1.0
3 simulations
Average 92.1% 788 1
Range 91.8%-92.3% 762-807 1
Voting 94.8%
(d)a=1.0
3 simulations
Average 94.0% 1,016 5
Range 93.8%-94.3% 988-1,055 5
Voting 95.5%
(€)a=1.0
5 simulations
Average 91.8% 786 1
Range 91.2%-92.6% 763-805 1
Voting 95.3%
f)a=1.0
5 simulations
Average 93.9% 1,021 5
Range 93.4%-94.6% 990-1,070 5
Voting 96.0%

Table 1. Voting strategy applied to sets of 3(a~d) or 5(e—f) Fuzzy ARTMAP simulations
of the Frey-Slate character recognition task, with choice parameter a = 0.1 (a,b) or a=1.0
(c-f); and with training on 1 epoch (a,c,e) or 5 epochs (b,d,f). (a) Voting eliminated 30%
of the individual simulation test set errors, which dropped from a 3-simulation average rate
of 12.5% to a voting rate of 8.8%. (b) Voting eliminated 24% of the errors, which dropped
from 10.3% to 7.8%. (c) Voting eliminated 34% of the errors, which dropped from 7.9% to
5.2%. (d) Voting eliminated 25% of the errors, which dropped from 6.0% to 4.5%. (e) Voting
eliminated 43% of the errors, which dropped from 8.2% to 4.7%. (f) Voting eliminated 34%
of the errors, which dropped from 6.1% to 4.0%.



382 Chapter 13, Gail A. Carpenter et al.

best overall results were obtained with a = 1.0 and 5-epoch training, where voting reduced
the 5-simulation average error rate of 6.1% to a voting error rate of 4.0% (Table 1f).

In summary, single-simulation fast-learn Fuzzy ARTMAP systems, with baseline vigi-
lance 7z = 0 and with choice parameters a ranging from 0.001 to 1.0, were trained on the
16,000-item input set of the Frey-Slate letter recognition task. After 1 to 5 epochs, individual
Fuzzy ARTMAP systems had a robust prediction rate of 90% to 94% on the 4,000-item test
set, with best performance obtained from the highest values of a. By pooling information
across individual simulations, voting consistently eliminated 25%-43% of the errors giving a
robust prediction rate of 92%-96%.
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