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Abstract

Adaptive Resonance Theory (ART) neural networks model real-time prediction,
search, learning, and recognition. ART networks function both as models of human
cognitive information processing [1,2,3] and as neural systems for technology
transfer [4]. A neural computation central to both the scientific and the technological
analyses is the ART matching rule [5], which models the interaction between top-
down expectation and bottom-up input, thereby creating a focus of attention which, in
turn, determines the nature of coded memories.

Sites of early and ongoing transfer of ART-based technologies include industrial
venues such as the Boeing Corporation [6] and government venues such as MIT
Lincoln Laboratory [7]. A recent report on industrial uses of neural networks [8]
states:  “[The] Boeing … Neural Information Retrieval System is probably still the
largest-scale manufacturing application of neural networks. It uses [ART] to cluster
binary templates of aeroplane parts in a complex hierarchical network that covers
over 100,000 items, grouped into thousands of self-organised clusters. Claimed
savings in manufacturing costs are in millions of dollars per annum.”  At Lincoln
Lab, a team led by Waxman developed an image mining system which incorporates
several models of vision and recognition developed in the Boston University
Department of Cognitive and Neural Systems (BU/CNS). Over the years a dozen
CNS graduates (Aguilar, Baloch, Baxter, Bomberger, Cunningham, Fay, Gove, Ivey,
Mehanian, Ross, Rubin, Streilein) have contributed to this effort, which is now
located at Alphatech, Inc.

Customers for BU/CNS neural network technologies have attributed their selection
of ART over alternative systems to the model's defining design principles. In listing
the advantages of its THOT® technology, for example, American Heuristics
Corporation (AHC) cites several characteristic computational capabilities of this
family of neural models, including fast on-line (one-pass) learning, “vigilant”
detection of novel patterns, retention of rare patterns, improvement with experience,
“weights [which] are understandable in real world terms,” and scalability
(www.heuristics.com).

Design principles derived from scientific analyses and design constraints imposed
by targeted applications have jointly guided the development of many variants of the
basic networks, including fuzzy ARTMAP [9], ART-EMAP [10], ARTMAP-IC [11],
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Gaussian ARTMAP [12], and distributed ARTMAP [3,13]. Comparative analysis of
these systems has led to the identification of a default ARTMAP network, which
features simplicity of design and robust performance in many application domains
[4,14]. Selection of one particular ARTMAP algorithm is intended to facilitate
ongoing technology transfer.

The default ARTMAP algorithm outlines a procedure for labeling an arbitrary
number of output classes in a supervised learning problem. A critical aspect of this
algorithm is the distributed nature of its internal code representation, which produces
continuous-valued test set predictions distributed across output classes. The character
of their code representations, distributed vs. winner-take-all, is, in fact, a primary
factor differentiating various ARTMAP networks. The original models [9,15] employ
winner-take-all coding during training and testing, as do many subsequent variations
and the majority of ART systems that have been transferred to technology. ARTMAP
variants with winner-take-all (WTA) coding and discrete target class predictions
have, however, shown consistent deficits in labeling accuracy and post-processing
adjustment capabilities. The talk will describe a recent application that relies on
distributed code representations to exploit the ARTMAP capacity for one-to-many
learning, which has enabled the development of self-organizing expert systems for
multi-level object grouping, information fusion, and discovery of hierarchical
knowledge structures. A pilot study has demonstrated the network's ability to infer
multi-level fused relationships among groups of objects in an image, without any
supervised labeling of these relationships, thereby pointing to new methodologies for
self-organizing knowledge discovery.
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