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Abstract —

ART and ARTMAP neural networks for adaptive recognition and prediction have been
applied to a variety of problems, including automatic mapping from remote sensing satellite
measurements, parts design retrieval at the Boeing Company, medical database prediction,
and robot vision. This paper features a self-contained introduction to ART and ARTMAP
dynamics. An application of these networks to image processing is illustrated by means of a
remote sensing example. The basic ART and ARTMAP networks feature winner-take-all
(WTA) competitive coding, which groups inputs into discrete recognition categories. WTA
coding in these networks enables fast learning, which allows the network to encode important
rare cases but which may lead to inefficient category proliferation with noisy training inputs.
This problem is partially solved by ART-EMAP, which use WTA coding for learning but
distributed category representations for test-set prediction. Recently developed ART models
(dART and dARTMAP) retain stable coding, recognition, and prediction, but allow
arbitrarily distributed category representation during learning as well as performance.
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1 ART and ARTMAP Neural Networks

Adaptive resonance theory originated from an analysis of human cognitive information
processing and stable coding in a complex input environment (Grossberg, 1976, 1980). An
evolving series of ART neural network models have added new principles to the early theory and
have realized these principles as quantitative systems that can be applied to problems of category
learning, recognition, and prediction. Each ART network formsstable recognition categories in
response to arbitrary input sequences with either fast or slow learning regimes (Section 2). The
first ART model, ART 1 (Carpenter and Grossberg, 1987a), was an unsupervised learning
system to categorize binary input patterns. ART 2 (Carpenter and Grossberg, 1987b) and fuzzy
ART (Carpenter, Grossberg, and Rosen, 1991) extend the ART 1 domain to categorize analog as
well as binary input patterns.

Supervised ART architectures, called ARTMAP systems, self-organize arbitrary mappings from
input vectors, representing features such as spectral values and terrain variables, to output
vectors, representing predictions such as vegetation classes in a remote sensing application
(Section 3). Internal ARTMAP control mechanisms create stable recognition categories of
optimal size by maximizing code compression while minimizing predictive error in an on-line
setting. Binary ART 1 computations are the foundation of the first ARTMAP network
(Carpenter, Grossberg, and Reynolds, 1991), which therefore learns binary maps. When fuzzy
ART replaces ART 1 in an ARTMAP system, the resulting fuzzy ARTMAP architecture
(Carpenter et al., 1992) rapidly learns stable mappings between analog or binary input and
output vectors.

Recently fuzzy ARTMAP has become the basis of new methodologies for producing maps from
satellite data (Carpenter et al.,, 1997a, 1997b, 1998; Gopal, Sklarew, & Lambin, 1994). A
simplified version of this problem (Section 4) introduces and illustrates the dynamics of fuzzy
ARTMAP networks. Other applications of unsupervised ART networks and  supervised
ARTMAP networks include a Boeing parts design retrieval system (Caudell et al. , 1994), robot
sensory-motor control (Bachelder, Waxman, & Seibert, 1993; Baloch & Waxman, 1991;
Dubrawski & Crowley, 1994a), machine vision (Caudell & Healy, 1994), 3D object recognition
(Seibert & Waxman, 1992), Macintosh operating system software (Johnson, 1993), robot
navigation (Dubrawski & Crowley, 1994b), automatic target recognition (Bernardon & Carrick,
1995; Koch et al., 1995; Waxman et al., 1995), electrocardiogram wave recognition (Ham &
Han, 1993; Suzuki, Abe, & Ono, 1993), prediction of protein secondary structure (Mehta, Vij, &
Rabelo, 1993), air quality monitoring (Wienke, Xie, & Hopke, 1994), strength prediction for
concrete mixes (Kasperkiewicz, Racz, & Dubrawski, 1994), signature verification (Murshed,
Bortolozzi, & Sabourin, 1995), tool failure monitoring (Ly & Choi, 1994; Tarng, Li, & Chen,
1994), chemical analysis from UV and IR spectra (Wienke & Kateman, 1994), frequency
selective surface design for electromagnetic system devices (Christodoulou et al., 1995), face
recognition (Seibert & Waxman, 1993), Chinese character recognition (Gan & Lua, 1992), and
analysis of musical scores (Gjerdingen, 1990).

2 ART Dynamics

The central feature of all ART systems is a pattern matching process that compares the current
input with a learned category representation, or active hypothesis, selected by the input. This
matching process leads either to a resonant state which focuses attention and triggers category
learning or to a self-regulating parallel memory search which always leads to a resonant sate,
unless the network’s memory capacity is exceeded. If the search ends with selection of an
established category, then the category’s learned representation may be refined to incorporate
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new information from the current input. If the search ends by selecting a previously untrained
node, the ART network establishes a new category.

Figure 1 illustrates the ART search cycle. During ART search, an input vector A registers itself
as a pattern x of activity across level F; (Figure la). Converging and diverging F; — F,

adaptive filter pathways, each weighted by a long term memory (LTM) trace, or adaptive
weight, transform x into a net input vector T to level F,. The internal competitive dynamics of

F; contrast-enhance vector T, generating a compressed activity vector y across F5. In ART 1
and fuzzy ART, strong competition selects the F, node that receives the maximal F; — F, input
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Figure 1. ART search for an F, code. (a) The input vector A generates the Fj activity vector
X as it activates the orienting subsystem €. Activity x both inhibits € and generates an F; — F»
signal. A bottom-up adaptive filter transforms x into the F, input vector T, which activates the
STM pattern y across Fj. (b) A top-down adaptive filter transforms y into the category
representation vector V. Where V mismatches A, Fj registers a diminished STM activity pattern

x*. The resulting reduction of total STM reduces the total inhibitory signal from Fj to Q. (c) If

the ART matching criterion fails, Q releases a nonspecific signal that resets the STM pattern y at
F5. (d) Since reset inhibits y, it also eliminates the top-down signal V, so x can be reinstated at

Fy. However, enduring traces of the prior reset allow X to activate a different STM pattern y* at

F,. If the top-down signal due to y* also mismatches A at Fj, then the search for an F code
that satisfies the matching criterion continues. (Carpenter & Grossberg, 1987a)



ICIAP’99 CAS/CNS Technical Report TR-99-007

component 7 ;. Only one component ( y ]) of y remains positive after this choice takes place.
Activation of such a winner-take-all node selects category J for the input pattern A.

Activation of an F, node may be interpreted as “making a hypothesis” about an input A. After
sending the F, activity vector y through top-down adaptive pathways, a filtered vector V
becomes the F, — F; input (Figure 1b). The ART network matches the “expectation” pattern V

of the active category against the current input pattern, or exemplar, A. This matching process
typically changes the Fj activity pattern X, suppressing activation of all features in A that are not

confirmed by V. The resultant pattern x* represents the features to which the network “pays
attention.” If the expectation V is close enough to the input A, then a state of resonance occurs,

with the matched pattern x* defining an attentional focus. The resonant state persists long
enough for weight adaptation to occur; hence the term adaptive resonance theory. The fact that

ART networks encode only attended features x* rather than all input features A is directly
responsible for ART code stability.

A dimensionless parameter called vigilance defines the criterion of an acceptable match.
Vigilance specifies what fraction of the bottom-up input A must remain in the matched Fj

pattern X in order for resonance to occur. In ARTMAP, vigilance becomes an internally
controlled variable, rather than the fixed parameter of ART. Because vigilance then varies across
learning trials, a single ARTMAP system can encode widely differing degrees of generalization,
or code compression. Low vigilance allows broad generalization, coarse categories, and abstract
representations. High vigilance leads to narrow generalization, fine categories, and specific
representations. At the very high vigilance limit, category learning reduces to exemplar learning.
Varying vigilance levels allow a single ART system to recognize both abstract categories, such as
faces and dogs, and individual faces and dogs.

ART memory search, or hypothesis testing, begins when the top-down expectation V determines
that the bottom-up input A is too novel, or unexpected, with respect to the chosen category to
satisfy the vigilance criterion. Search leads to selection of a better recognition code to represent
input A at level F,. An orienting subsystem £ controls the search process. The orienting
subsystem interacts with the attentional subsystem, as in Figures 1b and 1c, to enable the network
to learn about novel inputs without risking unselective forgetting of its previous knowledge.
ART 3 (Carpenter & Grossberg, 1990) implements parallel distributed search as a medium-term
memory (MTM) process, as needed for distributed recognition codes.

ART search prevents associations from forming between y and x* if x* is too different from A
to satisfy the vigilance criterion. The search process resets y before such an association can form.
If the search ends upon a familiar category, then that category’s representation may be refined in
light of new information carried by A. If the search ends upon an uncommitted F, node, then A
begins a new category. An ART choice parameter controls how deeply the search proceeds
before selecting an uncommitted node. As learning self-stabilizes, all inputs coded by a category
access it directly and search is automatically disengaged.

3 ARTMAP

ARTMAP networks for supervised learning self-organize mappings from input vectors,
representing features such as spectral band values and terrain variables of a pixel, to output
vectors, representing predictions such as the vegetation class of the site in which the pixel is
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located. The original binary ARTMAP (Carpenter, Grossberg, & Reynolds, 1991) incorporates
two ART 1 modules, ART, and ART,, which are linked by a map field F ab (Figure 2).

During supervised learning, ART , receives a stream of patterns {a(")} and ART) receives a

stream of patterns {b(”)}, where b is the correct prediction given a(™. An associative

learning network and an internal controller link these modules to make the ARTMAP system
operate in real time. The controller creates the minimal number of ART, recognition
categories, or “hidden units,” needed to meet accuracy criteria. A minimax learning rule enables
ARTMATP to learn quickly, efficiently, and accurately as it conjointly minimizes predictive error
and maximizes code compression. This scheme automatically links predictive success to category
size on a trial-by-trial basis using only local operations. It works by increasing the ART,
vigilance parameter p, by the minimal amount needed to correct a predictive error at ART,.
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Figure 2. ARTMAP architecture. The ART, complement coding preprocessor transforms the
M ,-vector a into the 2 M ,-vector A=(a,ac) at the ART, field Fj. A is the input vector to the

ART, field F{. Similarly, the input to F{ is the 2Mj-vector B=(b,b"). When ART,
disconfirms a prediction of ART,, map field inhibition induces the match tracking process.

/il

This triggers an ART , search which leads either to an ART , category that correctly predicts b

or to a previously uncommitted ART, category node. (Carpenter, Grossberg, & Reynolds,
1991)

Match tracking raises the ART, vigilance p, to just above the Fy'-to-Fj match ratio |x“
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At the map field an ARTMAP network forms associations between categories via outstar learning
and triggers search, via a match tracking rule, when a training set input fails to make a correct
prediction. Match tracking increases the ART, vigilance parameter p, in response to a
predictive error at ART},. A baseline vigilance parameter p, calibrates a minimum confidence
level at which ART , will accept a chosen category. Lower values of p, allow larger categories
to form, maximizing code compression. Initially, p, = p,. During training, a predictive failure
at ART} increases p, just enough to trigger an ART, search. Match tracking sacrifices the
minimum amount of compression necessary to correct the predictive error. Hypothesis testing

selects a new ART category, which focuses attention on a cluster of a( input features that is

better able to predict b{") . With fast learning, match tracking allows a single ARTMAP system
to learn a different prediction for a rare event than for a cloud of similar frequent events in
which it is embedded. Fuzzy ARTMAP (Carpenter et al., 1992) substitutes fuzzy ART for
ART 1.

4 An ARTMAP Prototype Application: Satellite Remote Sensing

Mapping vegetation from satellite remote sensing data has been an active area of research and
development over a twenty year period (Hoffer et al., 1975; Strahler, Logan, & Bryant, 1978).
A new ARTMAP-based methodology for automatic mapping from Landsat Thematic Mapper
(TM) and terrain data has been tested on a challenging remote sensing classification problem,
using spectral and terrain features for vegetation classification in the Cleveland National Forest
(Carpenter et al., 1997a). After training at the pixel level, system capabilities are tested at the
stand level, using sites not seen during training. ARTMAP performance was compared to those
of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest
Neighbor (KNN) algorithms. ARTMAP learning, being fast, stable, and scalable, overcomes
common limitations of back propagation, which did not give satisfactory performance on this
problem. Best results were obtained using a hybrid system based on a convex combination of
fuzzy ARTMAP and maximum likelihood predictions. The prototype remote sensing example
below (Section 4.1) introduces each aspect of data processing and fuzzy ARTMAP classification
(Section 4.2). The example shows how the network automatically constructs a minimal number
of recognition categories to meet accuracy criteria (Section 4.3). A voting strategy (Section 4.4)
improves prediction by training the system several times on different orderings of an input set.
Voting assigns confidence estimates to competing predictions.

4.1 A Prototype Remote Sensing Problem

The prototype remote sensing task is learning to identify one of three CALVEG (Matyas &
Parker, 1980) vegetation classes (mixed conifer, coast live oak, southern mixed chaparral) for
sites at which two spectral values (Landsat TM1 and TM4) are known at each pixel. The
prototype example is based on a data set collected at the Cleveland National Forest. Larger scale
simulations on this data set predict 8 possible vegetation classes with inputs of up to 6 TM bands
and 7 ancillary variables. In this more realistic setting, fuzzy ARTMAP performance compares
favorably with that of maximum likelihood (Lillesand & Kiefer, 1994, pp. 594-596; Richards,
1993), K Nearest Neighbor (Duda & Hart, 1973), and back propagation (Rumelhart, Hinton, &
Williams, 1986; Werbos, 1974). However, reducing the number of input dimensions to M =2
(TM bands) and the number of output classes to L =3 (vegetation classes) allows visual
illustration of fuzzy ARTMAP dynamics, as follows.

The data set for the prototype remote sensing problem reports the vegetation class for each of 50
sites: 16 mixed conifer, 25 coast live oak, and 9 southern mixed chaparral (Table 1a). The sites
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vary in size, averaging about 90 pixels each. Landsat spectral bands TM1 and TM4 constitute the
data set input for each pixel, with values scaled to the interval [0,1]. Before training, 10 sites,

representative of the vegetation class mix, are reserved as a test set. No pixels from these sites
are used during training. The goal is to predict the correct vegetation class label for each of the
10 test set sites.

During training and testing, a given pixel corresponds to an ART , input a= ( ai,ap ), where a;
is the value of TM1 and a, is the value of TM4 at that pixel. The corresponding ART}, input
vector b represents the CALVEG vegetation class of the pixel’s site:

(1,0,0) mixed conifer
b=4<(0,1,0) coast live oak
(0,0,1) southern mixed chaparral .

During training, vector b informs the ARTMAP network of the vegetation class to which the
pixel’s site belongs. This supervised learning process allows adaptive weights to encode the
correct association between a and b. Simulations below examine the effect of training set size on
predictive accuracy (Table 1b). To generate a training set of a given size, pixels are selected at
random from the entire training set, which represents approximately 3600 pixels in 40 sites.

Table 1: Prototype remote sensing simulations

a. Data set
Class label # sites # pixels
mixed conifer 16 1336
coast live oak 25 2752
southern mixed 9 348
chaparral
TOTAL 50 4436
b. Fuzzy ARTMAP Incremental Learning
Training set Categories Test set pixels Test set sites
(# pixels) (# Fg nodes) (% correct) (# correct)
100 8 85.9% 8/10
500 21 83.2% 9/10
2000 72 88.5% 10/10
3328 126 89.3% 10/10
c. Voting

Input ordering Categories ‘Test set pixels Test set sites
(Figure 4) (# Fg nodes) (% correct) (# correct)

(a) 126 89.3% 10/10
(b) 131 86.8% 9/10
(c) 139 86.8% 9/10
(d) 153 89.4% 9/10
(e) 133 84.8% 8/10
average 136 87.4% 9/10

voting --- 91.0% 10/10
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Other simulations show how voting can improve predictive accuracy (Table 1c). During testing,
each test set pixel predicts a class, given the spectral band input values a; and a, for that pixel.
Performance accuracy is measured both in terms of the percent of pixels that are correct and in
terms of the fraction of sites that are correctly identified by a vote among pixels in the site.

The prototype remote sensing problem requires a trained network to predict the vegetation class
(mixed conifer, coast live oak, or southern mixed chaparral) of a test set site, given TM bands 1
and 4 measured at each pixel in the site. This section illustrates fuzzy ARTMAP dynamics by
showing how the network learns to make correct vegetation class predictions on this problem.
Figure 3 illustrates why the problem is difficult: of the 4436 pixels in the data set (Table la),
many share spectral band values within and between the three vegetation classes, and the three
classes are not linearly separable. In fact the problem proved to be too difficult for back
propagation to make accurate predictions.

During the initial learning phase, pixels are selected one at a time, at random, from the 40
training set sites. Fuzzy ARTMAP is trained incrementally, with each TM band vector a
presented just once. Following a search, if necessary, the network selects an ART , category by
activating an F. 5’ node J for the input pixel, then learns to associate category J with the ART),
vegetation class K of the site in which the pixel is located. With fast learning, the class prediction
K of each ART , category J is permanent. If some input a with a different class prediction later
selects this category, match tracking will raise ART , vigilance p just enough to trigger a search
for a different ART , category.
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Figure 3: Prototype remote sensing inputs. Each point shows the scaled Landsat spectral band
components a; (TM1 - blue) and ay (TM4 - near infrared) of the ART, input vector a. Points
o are found in mixed conifer sites, points + are found in coast live oak sites, and points / are
found in southern mixed chaparral sites. Data set values are taken from the Cleveland National
Forest.
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4.2 Predictions of the Trained ARTMAP Network

As incremental learning proceeds, fuzzy ARTMAP creates a set of category nodes, each
predicting one of the three vegetation classes. By the time 100 training set pixel inputs have been
selected at random from the 40 training set site in a typical example, fuzzy ARTMAP has created
8 categories (Table 1b). Three of these categories predict mixed conifer, four predict coast live
oak, and one predicts southern mixed chaparral. The 10 test set sites contain a total of 1108
pixels. After training on the first 100 inputs, network performance at this stage of learning was
first measured by the number of correct vegetation class predictions the test set pixels were able
to make. For each test set pixel, the TM band vector a selects one of the 8 ART , categories, then

predicts that its site belongs to the vegetation class associated with that category. After training
on just 100 input points, 85.9% of the test set pixels correctly predicted the vegetation classes of
their sites. A second performance measure examined the number of test set sites that would be
correctly classified. This method counts the number of pixels in each site that predict each
vegetation class, then selects the class chosen by the most pixels. At this stage of learning, having
used only 3% of the training set pixels, 8 of the 10 test site vegetation classes were correctly
identified. In this case, too few southern mixed chaparral exemplars had been presented for that
class to easily win a majority at any site.

As the number of training set inputs increased, the pixel-level predictive accuracy increased only
marginally, even decreasing as the number of training set inputs increased from 100 to 500
(Table 1b). After presentation of all 3328 training set pixels, 89.3% of the test set pixels
correctly predict the vegetation class of their site. However, site-level prediction improves
steadily to 9/10 test set sites, after training on 500 inputs; and 10/10 sites, after training on 2000
inputs or on the full training set. This result highlights the observation that the pixel is often too
small and noisy a unit to make an accurate prediction. However, a group of noisy pixel-level
results can be pooled to form accurate mappings across functional regions or sites.

4.3 Voting

A typical characteristic of fast learning is dependence of category structure upon the order of
training set input presentation. For example, suppose that two fuzzy ARTMAP networks learn
from a common input set that is presented in two different orders during training. The two
networks might then each correctly predict 90% of the test set inputs, despite the fact that the two
have significantly different internal input grouping rules, or category boxes, at ART,. In
particular, the test set inputs that the first network identifies correctly are typically different
from those that the second network identifies correctly, despite the fact that both were trained on
the same input set. ARTMAP voting uses this order dependence to advantage to improve and
stabilize overall predictive performance, as follows.

Figure 4a-e illustrates the decision regions of the prototype remote sensing example after
presentation of all 3328 training set inputs (Table 1c). A decision region plot shows predictions
all TM band inputs a would make if presented to the trained network. In Figure 3, data set
points from mixed conifer sites were are represented by a circle (0), points from coast live oak
sites by a plus (+), and points from southern mixed chaparral sites by a slash (/). The same marks
indicate vegetation class predictions made by a network in response to spectral value inputs
across the unit square. The rough decision boundaries in Figure 4a reflect the ambiguous
predictions in the corresponding portion of the data set.
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Figure 4: Prototype remote sensing example: Fuzzy ARTMAP voting. (a)-(e) Fuzzy ARTMAP
networks trained on a common set of 3328 inputs presented in five different, random orders
show variations in decision region geometry. Points marked by a circle (o) predict mixed
conifer, points marked by a plus (+) predict coast live oak, and points marked by a slash (/)
predict southern mixed chaparral. Pixel-level predictive accuracy ranges from 84.8% (e) to
89.4% (d) while site-level predictive accuracy ranges from 8/10 (e) to 10/10 (a) (Table 1c). (f)
Voting across the five trained networks boosts pixel-level accuracy to 91.0% and site-level
accuracy to 10/10. Blank spaces indicate a 2-2-1 tie among the voters.
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Figure 4a-e and Table 1c show how network predictions can vary as a function of input order.
Each of these five tests uses ‘the same training set, presented in different, randomly chosen,
orders. Decision boundaries vary, as do the number of ART , categories (from 126 to 153), the
number of correct test set pixels (from 84.8% to 89.4%), and the number of correct test set site
identifications (from 8/10 to 10/10). Before knowing the test set answers, it would be difficult to
decide which of these five networks would be the most accurate on novel data. ARTMAP voting
chooses for each pixel the class prediction chosen by the largest number of the five “voting
committee” networks. The size of each vote also provides a measure of confidence in each
decisions. Confidence is typically lowest near decision boundaries. Figure 4f indicates how
voting can smooth and stabilize decision boundaries. In addition, pixel-level performance on the
voting network (91.0%) is better than that of any individual trained network, and site-level
prediction is perfect (10/10).

5 ARTMAP Variations for Applications

ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups
inputs into disjoint recognition categories. Other neural network learning systems such as back
propagation feature distributed coding, which can provide good noise tolerance and code
compression but which typically requires slow learning. Fast learning tends to cause catastrophic
forgetting in these networks, as it does in ART and ARTMAP networks in which the code
representation is distributed. On the other hand, fast learning is often desirable for on-line
adaptation to rapidly changing circumstances and for encoding of rare cases and large databases.

Variants of the basic ART and ARTMAP networks can acquire some of the advantages of
distributed coding while maintaining fast learning capability. For example, ART-EMAP
(Carpenter & Ross, 1993, 1995) uses WTA codes for learning and distributed codes for testing.
Distributed prediction can significantly improve ARTMAP performance, especially when the size
of the training set is small. In medical database prediction problems, which often feature
inconsistent training input predictions, ARTMAP-IC (Carpenter & Markuzon, 1998) improves
performance with a combination of distributed prediction, category instance counting, and a new
match tracking search algorithm. A voting strategy further improves prediction by training the
system several times on different orderings of an input set. Voting, instance counting, and
distributed representations combine to form confidence estimates for competing predictions.
However, since these and most other ART and ARTMAP variants use WTA coding during
learning, they do not solve problems such as category proliferation with noisy training sets,
" unless learning is slow. :

5.1 Distributed ART and Distributed ARTMAP

A new class of ART and ARTMAP models retain stable coding, recognition, and prediction, but
allow arbitrarily distributed code representation during learning as well as performance
(Carpenter, 1997; Carpenter, Milenova, & Noeske, 1998). These networks automatically
apportion learned changes according to the degree of activation of each coding node. This
permits fast as well as slow learning without catastrophic forgetting. Distributed ART models
replace the traditional neural network path weight with a dynamic weight equal to the rectified
difference between coding node activation and an adaptive threshold. The input signal T'; that

activates the distributed code is a function of a phasic component S, which depends on the active
input, and a fonic component © ;, which depends on prior learning but is independent of the
current input. At each synapse, phasic and tonic terms balance one another and exhibit dual
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computational properties. For example, during learning with a constant input, phasic terms are
constant while tonic terms may grow. Tonic components would then become larger for all
inputs, but phasic components would become more selective, reducing the total coding signal sent
by a significantly different input pattern. Inputs activate distributed codes through phasic and
tonic signal components with dual computational properties, and a parallel distributed match-
reset-search process helps stabilize memory. When the code is winner-take-all, the unsupervised
distributed ART model (dART) is computationally equivalent to fuzzy ART and the supervised
distributed ARTMAP model (lAARTMAP) is equivalent to fuzzy ARTMAP. With fast distributed
learning, dART and dARTMAP networks are likely to further expand the domain of applications
of the ART family of networks.
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