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This article describes the application of a neural net- sessment, fire control, wildlife habitat characterization,
and water quality monitoring. In this context, a numberwork method designed to improve the efficiency of map
of federal and state agencies as well as private companiesproduction from remote sensing data. Specifically, the
with large land holdings currently use vegetation mapsARTMAP neural network produces vegetation maps of
derived from satellite-based remote sensing (e.g., As-the Sierra National Forest, in Northern California, using
pinall and Veitch, 1993; Bauer et al., 1994; Cohen et al.,Landsat Thematic Mapper (TM) data. In addition to
1995; Congalton et al., 1993; Franklin and Wilson, 1991).spectral values, the data set includes terrain and location
In one such application domain, Region 5 (California) ofinformation for each pixel. The maps produced by ART-
the U.S. Forest Service (USFS) has, for the past two de-MAP are of comparable accuracy to maps produced by
cades, used Landsat sensor imagery for mapping vegeta-a currently used method, which requires expert knowl-
tion in its 20 National Forests. Over that time, the de-edge of the area as well as extensive manual editing. In
mand for vegetation maps has increased, even as sensorfact, once field observations of vegetation classes had
technology and methods for deriving information frombeen collected for selected sites, ARTMAP took only a few
remote sensing images have continued to improve. Thehours to accomplish a mapping task that had previously
result is ongoing pressure to refine the knowledge de-taken many months. The ARTMAP network features fast
rived from remote sensing, leading to new explorationsonline learning, so that the system can be updated incre-
of map production methods. This article reports on find-mentally when new field observations arrive, without the
ings concerning the utility of one such new method, theneed for retraining on the entire data set. In addition to
ARTMAP neural network. The study compares ART-maps that identify lifeform and Calveg species, ARTMAP
MAP capabilities with those of a conventional method onproduces confidence maps, which indicate where errors
the benchmark problem of mapping vegetation in the Si-are most likely to occur and which can, therefore, be
erra National Forest.used to guide map editing. Elsevier Science Inc., 1999

The vegetation maps employed for management of
National Forests in California identify basic lifeforms

INTRODUCTION: VEGETATION MAPPING such as conifer, hardwood, water, and barren. Many of
FROM REMOTE SENSING DATA these lifeforms are further subdivided by species associa-

tions, and, when appropriate, by tree size and cover. TheVegetation maps serve a wide range of functions in the present analysis considers the problem of mapping lifef-management of natural resources, including inventory as- orms and species associations, with species labeled ac-
cording to the California vegetation, or Calveg, classifica-
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approach is intrinsically limited, since derived rules de-
scribing relationships among terrain variables and species
associations are necessarily too broadly defined. In addi-
tion, this method does not use Landsat spectral data di-
rectly in mapping species associations (Fig. 1a), thus ig-
noring useful information in the Landsat signal. What
has been lacking is an effective and computationally trac-
table way of combining both spectral and terrain vari-
ables for accurate, efficient image classification. The AR-
TMAP neural network provides that capability (Fig. 1b).
This method thus allows for a greatly simplified approach
to mapping lifeforms and species associations, producing
accurate maps with significant savings in time, effort, and
cost. The ARTMAP method, as applied to the Sierra Na-
tional Forest vegetation mapping problem, will now be
described.

ARTMAP NEURAL NETWORKS

Introduced relatively recently, the ARTMAP neural net-
work (Carpenter et al., 1991; 1992) is already being used
in a variety of application settings, including industrial
design and manufacturing, robot sensory motor controlFigure 1. Mapping methods process streams comparing a)
and navigation, machine vision, and medical imaging, asconventional (expert) and b) ARTMAP systems.
well as in remote sensing (Carpenter et al., 1997; Gopal
and Fischer, 1997; Gopal et al., 1999). ARTMAP belongs

This stream includes a conventional unsupervised to the family of adaptive resonance theory (ART) net-
clustering method (the Ustats algorithm), maximum like- works, which are characterized by their ability to carry
lihood classification, and analyst labeling. The second out fast, stable learning, recognition, and prediction, with
processing stream uses field observations and terrain a training procedure that requires only one pass through
data (slope, aspect, elevation) to develop predictive eco- the data. These features differentiate ARTMAP from the
logical models of species associations within lifeform family of feedforward multilayer perceptrons (MLPs), in-
classes (Franklin et al., 1986). For most of the National cluding backpropagation, which typically require slow
Forests in California, application of this method has also learning and repeated presentations of the data set. MLP
required identification of natural regions, followed by in- systems are also subject to catastrophic forgetting,
dividual calibration within each natural region of the whereby earlier memories are erased by subsequent
rules that relate species associations to terrain variables. training data. The inherent instability of MLP learning

Although the current mapping approach has been may make such a system unsuitable for unconstrained
applied successfully (Woodcock et al., 1980; Franklin et mapping problems with many input components or map
al., 1986), it has several disadvantages. In particular, the pixels. ARTMAP systems self-organize arbitrary map-
unsupervised classification algorithm, which often re- pings from input vectors, representing features such as
quires several iterations, is time-consuming and ineffi- spectral values and terrain variables, to output vectors,
cient; and defining the ecological models typically calls representing predictions such as vegetation classes or en-for months of expert labor. In addition, the polygon-

vironmental indices. Internal ARTMAP control mecha-based lifeform maps require extensive manual editing to
nisms create stable recognition categories of optimal sizeachieve an adequate level of accuracy. In the Sierra Na-
by maximizing code compression while minimizing pre-tional Forest, editing was based on both photographic in-
dictive error (Carpenter et al., 1991).terpretation of the area and field inspections, and the ed-

iting process required several additional months of work
An ARTMAP Mapping Methodin order to produce the final expert map. In fact, labels
The ARTMAP neural network mapping method pre-on as many as 80,000 of the 250,000 polygons were
sented here automatically produces vegetation mapschanged during the editing phase.
from spectral and terrain data. As a supervised learningThe several stages of the expert mapping method
system, ARTMAP is trained by example. Network per-have been introduced over time as prior methods, using
formance on the Sierra National Forest mapping taskLandsat spectral data alone, have proved inadequate for

the species association task. However, the expert systems was evaluated using the cross-validation method (Mosier,
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1951), which requires that the set of testing sites be dis-
joint from the set of training sites. For each pixel in a
training set site, the network was presented with a vector
representing input variables, such as spectral band val-
ues, along with the label of the associated Calveg class
of the site in which the pixel was located. During testing,
the trained ARTMAP network predicted a vegetation
class for each pixel. The final site-level class prediction
was taken to be the one produced by the largest number
of pixels in a test-set site. The seventeen Calveg classes
were then merged into six lifeform classes (conifer, hard-
wood, chaparral, herbaceous, water, barren).

ARTMAP performance was compared with that of
the expert method (Fig. 1a) on the Sierra National For-
est mapping task. Predictive accuracy was evaluated in
terms of the percentage of the test set a system classified
correctly, for both lifeform and Calveg species identifica-
tions. This quantitative measure of the neural and con-

Figure 2. Location of the 1013 field observation sitesventional methods was augmented by visual presenta-
in the Sierra National Forest.tions of results, namely, confusion matrices and

vegetation maps. Confusion matrices summarize patterns
of errors among map classes at test sites, while vegeta-

given pixel; and the output class is a Calveg species label,tion maps provide forest-wide spatial views of system
as used by Region 5 of the USFS. During testing, a su-predictions.
pervised classification system is required to predict out-
put labels for inputs that were never seen during train-ARTMAP Computations
ing. Labeled sites were compiled by the USFS as part of

Carpenter et al. (1999) have developed an ARTMAP net- the conventional mapping process, with an initial set
work for prediction of mixtures of classes, and have later augmented to cover all Calveg classes. Thus the re-
shown how the system is used in remote sensing applica- sulting collection is not the result of a strict a priori sam-
tions by mapping the Plumas National Forest, in Califor- ple design, but rather represents the best set of data al-
nia. That article includes a self-contained ARTMAP im- ready available at the start of the present study.
plementation algorithm. While the general version of this
algorithm predicts vegetation mixtures, the same system Field Observation Labels
can predict discrete output classes, as the special case of Training and test site labels specifying the vegetation
unitary “mixtures.” This classifier algorithm is the one (Calveg) classes were assembled by ground observation
that is applied throughout the present study. of 1013 sites in the Sierra National Forest. In all, these

In general, a number of ARTMAP variations have sites cover 59,903 pixels, which represents about 0.5% of
been used for solving different problems. The present the Forest. Spectral and terrain information for these
system uses the following technical options for each com- pixels and the matching Calveg labels of the correspond-
putation: the MT– match tracking rule (Carpenter and ing sites collectively comprise the field observation data
Markuzon, 1998), a winner-take-all activation rule, a We- set. Figure 2 indicates the location and distribution of
ber law choice function, and parameter values q̄a50 these sites. The expert method partitioned the full map
(baseline vigilance), e50 (match tracking), and a51026

of the Sierra National Forest into a quarter million poly-
(choice parameter). Knowing these parameter values, an gons and assigned a Calveg label to each. An average
investigator could readily replicate the current system by polygon, or site, occupied approximately 59 pixels. Thus,
implementing the ARTMAP algorithm recently pub- since Landsat pixels are 30 m330 m, the map polygons
lished in this journal. were nominally 230 m3230 m size, on average.

Site labels from the field observation data set were
not directly used in editing the expert map. Thus perfor-THE SIERRA NATIONAL FOREST DATA SET
mance on these sites could serve as an independent stan-

During training, a supervised classification system is pre- dard by which to evaluate both conventional and neural
sented with a set of input vectors and their associated methods. As a supervised learning method, ARTMAP
output classes. For the mapping problems considered used a portion of the field observation data set for train-
here, each input vector specifies satellite sensor data, ing each network, with the standard cross-validation

method ensuring that training and test sets were disjoint.plus terrain and geographic location information, for a
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Table 1. Vegetation Classes in the 1013 Field (Table 2). Before presentation to the neural network,
Observation Sites each variable was rescaled to the interval [0,1], based on

its range of values in the data set. For example, an origi-Calveg class # Sites Lifeform # Sites
nal Band 1 value x (which lies between 27 and 224)Mixed conifer pine 122 Conifer 561
would be replaced, as an ARTMAP input component, byRed fir 116

Subalpine 37 (x227)/197 (which lies between 0 and 1). In general,
Ponderosa pine 102 each original input variable x was replaced by (x2Min)/
Mixed conifer fir 121 (Max2Min), where the minimum and maximum values
East pond pine 22 of the original variables were as listed in Table 2. ApartLodgepole pine 41

from this scaling step, input values were not prepro-
Black oak 49 Hardwood 213 cessed.
Canyon live oak 60
Oak diggerpine 69
Blue oak 35 ARTMAP METHODOLOGY: PREDICTIONS
Mixed chaparral 19 Chaparral 38 FOR THE FIELD OBSERVATION DATA SET
Montane chaparral 19

Each reported measure of ARTMAP predictive accuracy
Dry grass 51 Herbaceous 101

is the result of applying fivefold cross-validation (Mosier,Wet meadow grass 50
1951) to the field observation data set (Table 1). The

Water 50 Water 50 field observation set was thereby partitioned into five
Barren 50 Barren 50 subsets, each with approximately 200 sites. For a given

network, one subset was reserved as a test set, while AR-
TMAP was trained on the remaining four subsets. Dur-
ing training, a vector of information for each pixel inBoth ARTMAP and the expert system labeled each site
each designated training site was presented to the sys-as belonging to one of six lifeform classes: conifer, hard-
tem, along with the site’s Calveg label. Test performancewood, chaparral, herbaceous, water, barren. These six
was evaluated only on the subset of sites not seen duringlife-forms were further subdivided into seventeen Calveg
training. After each pixel in a given test set site had pro-classes. Table 1 lists these classes, specifying the number
duced an individual output, the predicted Calveg classof sites in the field observation data set for each species
label was taken to be the one predicted by the largestassociation and lifeform class. The table shows that life-
number of pixels in that site.form classes were unevenly sampled in the data, given

The ARTMAP results reported here are all thethat the number of sites was roughly proportional to area
product of fast learning, and each pixel was presentedfor each class. Conifer, and to a lesser extent hardwood,
only once during ARTMAP training. The fast learningwere represented far more than other lifeforms, while
capability of this network has the advantage of permittingchaparral was poorly sampled. Sampling of individual co-
online and incremental training of large databases. How-nifer species was also uneven. Not surprisingly, sampling
ever, fast learning also causes results to vary somewhatdensity tended to correlate with ARTMAP predictive ac-
with the order of input presentation: early training setcuracy, as discussed below.
input vectors typically establish an overall internal cate-
gory structure which is fine-tuned by later inputs. This

Input Data: Spectral, Terrain, and feature, which might appear to be a disadvantage of fast
Location Variables learning, can actually be used to help boost performance,
For each pixel in the data set, up to 12 variables were through the device of voting. For the present study, for
available for training the neural network. Six of these each fixed training/test subset partition of the field obser-
were spectral variables, namely, the original digital values vation data set, an ARTMAP system was trained five dif-
of TM Bands 1–5 and 7. A digital elevation model ferent times, each with a different ordering of the train-
(DEM) provided four more variables: the cosine of the ing set. For each ordering, the Calveg class prediction of
local solar zenith angle [cos(z)], slope, elevation, and as- each test site was recorded. Once the five predictions
pect (direction of slope). Two more variables specified were available, the system made a site-level prediction
the location of the pixel (UTM northing and easting). by voting: the final ARTMAP prediction for a given test

Figure 3 shows grayscale maps of the forest for nine set site was taken to be the Calveg class predicted by the
of the 12 input components. These maps illustrate the largest number of voting networks. For example, at a
different view provided by each individual variable. To given site, if three networks chose the correct output
produce a vegetation map, a given combination of these class and each of the other two networks chose a differ-
scalar inputs was presented to the ARTMAP network. ent class (i.e., a 3–1–1 vote), the site would be correctly
The spectral, terrain, and location variables were origi- classified. Overall Calveg accuracy was calculated as the

fraction of test sites correctly labeled by this procedure.nally in a variety of units, each spanning a different range
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Figure 3. Values of individual input com-
ponents in the Sierra National Forest data
set. The top six maps show the spectral in-
puts and the bottom three show terrain in-
formation. Not shown are the cosine of the
solar zenith angle, northing, and easting. In
each map, a dark pixel corresponds to a
high value of the input variable.

Note that voting could occasionally result in a tie (2–2–1 eliminate spurious variations in the randomly selected
training/testing subset partition. With voting further re-or 1–1–1–1–1) among the five networks making predic-

tions for a given test site. In this case, if one of the (2 ducing variability across input orderings, and with no in-
dividual parameter selection required, reported ART-or 5) tied winning outputs was the actual Calveg class,

the site was counted as contributing a fraction (1/2 or 1/ MAP results are robust. Lifeform predictions were
obtained by merging all Calveg predictions for each of5) to the total number of correct predictions.

Once voting was completed for a given test subset of the six lifeform classes (Table 1).
A similar procedure produced the Calveg and lifef-the field observation data set, the entire procedure was

repeated, in turn, for each of the five test subsets. Thus, orm maps of the entire Sierra National Forest, except
with the ARTMAP training set consisting of all 1013in addition to ensuring a strict separation between train-

ing and testing sites, the cross-validation method helps field observation sites. After pixels from these sites, in

Table 2. Range of Input Values, before Scaling

Units Min Max

Spectral variables Band 1 DNa 27 224
Band 2 DN 7 113
Band 3 DN 3 137
Band 4 DN 1 108
Band 5 DN 1 141
Band 7 DN 1 83

Terrain variables Elevation m 257 4147
Slope % 0 100
Aspect Bins 1 12
cos(z) — 0 1

Location variables Northing 4,068,000 4,180,500
Easting 238,200 355,000

a DN5digital numbers (8 bits)
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Table 3. Mapping Accuracies for ARTMAP and Conventional Methods for
Various Combinations of Spectral, Terrain, and Location Inputs

Correct Correct No. of Input Internal
Tag Input variables lifeform Calveg Components Categories

ARTMAP
b TMB 78% 45% 6 1,721

(TM Bands 1–5&7)
B TMB1(TMB1cos(z)) 80% 47% 7 1,702
T Terrain (aspect, 70% 40% 3 1,064

slope, elevation)
L Location 73% 49% 2 303

(northing, easting)
LT Terrain, location 75% 51% 5 368
BT TMB1, terrain 83% 54% 10 697
BL TMB1, location 82% 53% 9 631
BLT TMB1, terrain, location 83% 57% 12 340

Conventional methods
Exp TMB1 64% N/A
Edit TMB1, Terrain 86% 61%

manual editing

five random orderings, were presented to the network, dictive errors, using the minimum number of nodes
voting produced a Calveg label for each pixel in the com- needed for accurate performance. Since ARTMAP fea-
plete map. In addition to improving accuracy and reduc- tures fast online learning, a noisy or inconsistent input
ing variability, the number of voting networks that agree set tends to cause many predictive errors, and hence may
on the winning label provides a confidence index for produce networks with large numbers of internal cate-
each pixel-level prediction. Voting thus automatically gory nodes. Systems with fewer nodes, or greater code
produces an ARTMAP confidence map, as described compression, reflect a more orderly construction of the
below. internally defined rules which the network self–organizes

during training. Such systems often exhibit better test set
Comparing Input Component Combinations accuracy, or generalization, on data not seen during

training. In addition, the more nodes, the slower the al-In order to examine the relative contributions of various
gorithm’s execution time. Thus the number of categoryspectral, terrain, and location components, ARTMAP
nodes is an important index of ARTMAP performance.networks were trained using selected subsets of these

In Table 3, the combination b, which uses spectralvariables (Table 3). For example, the combination b de-
data only, represented the baseline case. The combina-notes an ARTMAP system where the input vector con-
tion B adds the cosine of the solar zenith angle [cos(z)],sisted of the values of the six spectral bands (TM Bands
which boosted ARTMAP predictive accuracy for lifef-1–5&7); combination L denotes a system where the in-
orms and Calveg classes by 2%. Including location as anput vector consisted of the two location components
input vector improved both performance and code com-(northing, easting); and combination BLT denotes a sys-
pression. In fact, networks trained with location inputstem where the input vector consisted of all 12 input
(LT, BL, BLT) created fewer than half as many internalcomponents (six spectral bands, cosine of the solar zenith
categories as systems presented with all the same inputsangle, three terrain variables, and two location variables).
minus location (T, B, BT). Location alone (L) yieldedTable 3 shows ARTMAP predictive accuracy, for both
maps which were fairly accurate at test sites—in fact,life-form and Calveg species associations, for eight differ-
considerably more accurate than the uncorrected expertent input combinations. ARTMAP performance is also
map (Table 3)—but which were nonetheless of dubiouscompared with that of the conventional (expert systems)
utility (Fig. 4): The prediction for a test pixel was deter-mapping method, before editing (Exp) and after editing
mined primarily by the vegetation class label of the near-(Edit). Because the conventional system used the edited
est training site. Adding either location or terrain datalifeform map as a precursor of the Calveg species associ-
(BL, BT) to the spectral data case B led to improved pre-ation map, an accuracy measure for the unedited expert
dictive accuracy and code compression. Of these two, themap was available only for the lifeform task.
system that predicted both lifeform and Calveg labelsTable 3 also specifies the median numbers of inter-
slightly more accurately was the one that used spectralnal categories, or “rules,” in the trained ARTMAP net-
and terrain data (BT). When location information was in-works. In the course of learning, an ARTMAP system

adds category nodes incrementally, in response to pre- cluded as well (BLT), the system created only 20% as
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Figure 4. ARTMAP lifeform map
from location data alone (L). The
map is accurate at 73% of the
field observation sites, yet con-
tains major distortions. For exam-
ple, the extended dark area near
the right center of the map shows
that too many pixels are labeled
water simply because they are
near a water site in an area that
has few field observation labels
(Fig. 2).

many internal categories as the one based on spectral identification, but made more substantial contributions
for the species association task.data (B), while boosting Calveg discrimination from 47%

During learning, an ARTMAP network creates a setto 57%. In general, ARTMAP predictive accuracy im-
of “rules,” each of which could, in principle, employ anyproved with the number of input components (Fig. 5).
combination of input variables. Thus, the role of any sin-The results for the ARTMAP tests with different in-
gle variable in a set of overall predictions is often diffi-puts show interesting patterns which support the main
cult to assess. One could speculate, however, that, for thehypotheses underlying the conventional methods. First,
present example, the two location variables might havetraining the system on spectral data (B) resulted in high
allowed the network to compute different relationshipsaccuracies for lifeforms, but low accuracies for species
among species associations and terrain variables in differ-associations. Similarly, the conventional method used by
ent portions of the area being mapped. Location vari-the USFS in Region 5 relied first on spectral data for
ables would then have provided the inputs needed forlifeform classifications, and then on terrain relations for
ARTMAP to learn the equivalent of the natural regionsspecies associations (Fig. 1a). For both methods, the ad-
that have proved essential in applications of the conven-dition of terrain variables (BT) helped little for lifeform
tional methods (Franklin et al., 1986; Woodcock et al.,
1980).

Figure 5. Accuracy of ARTMAP lifeform
Analysis of ARTMAP Performancepredictions versus the number of

components in the input vector. Input The best performance of the ARTMAP systems was ob-
combination labels are defined in Table 3. tained by using all available spectral, location, and terrainHorizontal lines indicate the accuracy levels

input components (BLT). This final combination wasof the conventional method, before editing
most successful at discriminating Calveg classes, while(64%—Exp) and after editing (83%—Edit).
also minimizing memory requirements. It correctly clas-
sified the Calveg species of 57% of test sites and the li-
feforms of 83% of these sites.

Predictions of the ARTMAP (BLT) network are bro-
ken down by Calveg class in Figure 6, which depicts a
test set confusion matrix. This format makes the system
predictions more legible than if they were presented as
a table of numbers, thus facilitating comparison among
model variations. Each matrix column corresponds to a
Calveg class as specified in the field observation data set
(actual Calveg class), and rows correspond to the pre-
dicted Calveg classes. A column shows the distribution
of ARTMAP predictions for all test set sites that were
actually in a given Calveg class. The darker a matrix cell,
the larger the fraction of that column’s test sites that
were predicted to be in that row’s class. Cells on the di-
agonal indicate the fraction correctly predicted for each



Neural Network Method for Vegetation Mapping 333

Figure 6. Calveg confusion matrix
for the ARTMAP (BLT) system,
which used all 12 input compo-
nents. Columns correspond to ac-
tual Calveg classes and rows corre-
spond to predicted classes. The
darker the shading of a cell, the
larger the fraction of sites of the ac-
tual Calveg class that were associ-
ated with the species class of the
corresponding row. The bar graph
(top) shows the fraction of sites of
a given class that were correctly
predicted as belonging to that class,
ranging from 0% (no bar) to 100%
(bar at full height). The heights of
these bars provide a calibration of
the matrix grey scale, since the
darkness of a diagonal cell is pro-
portional to the percent correct for
the Calveg class of that column.

class. For example, the first column shows the distribu- that were actually hardwood (columns 8–11) were misla-
beled ponderosa pine at the Calveg level (row 4).tion of Calveg class predictions for all test sites that

Figure 7 uses the confusion matrix format to displayshould have been labeled mixed conifer pine, according
Calveg prediction results from each of the eight ART-to field observations. About half of these sites were cor-
MAP input combinations listed in Table 3. This figurerectly labeled, according to the bar at the top of the col-
shows that a system such as b, which uses only the sixumn; and ponderosa pine was the most common errone-
spectral bands as system input, produced a widespreadous label, followed by mixed conifer fir. In the fourth
distribution of off-diagonal grey cells. On the other hand,column, the height of the bar graph shows that pon-
many of the errors for b are seen to be between Calvegderosa pine is the conifer class that was most often la-
classes that share the same lifeform, especially in the co-beled correctly, and this observation is confirmed by the
nifer and hardwood submatrices. This observation helpsdarkness of the diagonal cell. The confusion matrix also
explain why the differences in predictive accuracy be-shows that chaparral species were most commonly misla-
tween, say, b and BLT were smaller for the lifeform pre-beled as types of conifer.
dictions (78% vs. 83%) than for the Calveg predictions

The confusion matrix indicates how ARTMAP (45% vs. 57%).
Calveg predictions were merged to make lifeform pre-
dictions. All test sites that were actually conifer were cor-

Figure 7. ARTMAP confusion matrices for the eight inputrectly labeled as conifer in the lifeform prediction task if
combinations (Table 3). The overall rate of correctthe Calveg label was any type of conifer. In Figure 6, Calveg test set predictions is shown for each case. The BLT

actual conifer sites correspond to the first seven columns matrix is the same as in Figure 6.
of the matrix. Thus all predictions that appear as grey
cells in the upper left-hand 737 submatrix collapse into
the single lifeform prediction conifer. Errors correspond
to grey cells that appear in rows 8–17. The Calveg confu-
sion matrix provides more details about the causes of li-
feform errors than would a lifeform confusion matrix
alone. For example, the matrix shows that sites that are
actually ponderosa pine (column 4) were placed in the
correct Calveg class more often than any other conifer
species, but the matrix also shows that many of the er-
rors for these sites occurred as incorrect hardwood spe-
cies labels (rows 8–11). All these errors would have con-
tributed to lifeform errors, causing conifer sites to be
mislabeled as hardwood. Conversely, a number of sites
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Figure 8. Calveg confusion matrix
for the conventional (edited expert)
map. The overall correct classifica-
tion rate was 61%. The bar graph
shows that classification for herba-
ceous, water, and barren classes
was perfect.

Comparing the Conventional Mapping Method racy. Figure 10 indicates the relative ease of discriminat-
ing water and barren, which, because they are spectrallyand the ARTMAP Network
distinct, had high accuracy despite only moderate train-Figure 8 shows a confusion matrix for the edited expert
ing set representation; and the relative difficulty of themap, which had an accuracy rate of 61% for Calveg pre-
classes mixed–conifer–fir and mixed–conifer–pine, whichdictions and 86% for lifeform predictions at the 1013
had only moderate accuracy despite an abundance offield observation sites. The corresponding rates for the
training sites.ARTMAP system were 57% and 83%, respectively. Com-

paring the confusion matrices in Figures 6 and 8 reveals
Confidence Mapsthat the conventional method discriminated chaparral

and herbaceous more accurately than did ARTMAP. Recall that ARTMAP predictions were the result of vo-
ting across five networks. Each network was trained onBoth methods discriminated water sites perfectly, and

the barren class was also easily identified. Conventional a unique ordering of the given training set, and the out-
put class prediction was the one that received a pluralitydiscrimination of conifer and hardwood was similar to

that of ARTMAP: the largest differences occurred in the of votes. Voting helps an ARTMAP system to make ro-
bust predictions and to improve accuracy, but it can, insubalpine conifer class (column 3), where the conven-

tional system was more accurate; and in the black oak addition, be used to calculate a confidence index.
Namely, the number of ARTMAP voters that agree withhardwood class (column 8), where ARTMAP was more

accurate. a prediction serves as a gauge of confidence in that pre-
diction. For the Sierra National Forest map, when allFigure 9 (a,b) shows the lifeform maps produced by

ARTMAP and by the conventional method (with edit- five voters agreed on a single output class, the prediction
was viewed with maximal confidence. At the other ex-ing), across the entire forest. Note, in particular, the dis-

tribution of chaparral sites (yellow) on the expert map, treme, the system had minimal confidence in a predic-
tion when each voter chose a different output class.and the relative absence of these site labels on the ART-

MAP map. The confusion matrices in Figures 6 and 8 Figure 11 demonstrates that voter confidence was,
in fact, a good measure of predictive accuracy. Plotssuggest that chaparral is responsible for the difference in

performance rate between the two systems. A probable show confidence assessments for each of the eight spec-
tral, terrain, and location input variations (Table 3). Thecause of the ARTMAP chaparral errors is the small num-

ber of training set sites available for these vegetation x-axis in each plot marks five confidence levels, or bins,
based on the number of voting networks that agreed ontypes (Table 1). This hypothesis is supported by Figure

10, which shows the ARTMAP classification accuracy as the outcome. The bar graph shows the percent of test
sites at each of the five confidence levels. The dasheda function of the number of available field observation

sites for each Calveg class. With some exceptions, an ap- line with diamonds shows the percent of predictions that
were correct at each confidence level. In nearly all cases,proximate correlation is visible between the number of

training sites per class and the ARTMAP test set accu- accuracy increased with confidence: The only exceptions



Figure 9. Lifeform maps: a) the ARTMAP map, which used all available spectral, location, and terrain components of the
input data; b) conventional (edited expert) map. Calveg label maps of 17 vegetation classes produced by: c) ARTMAP;
and d) conventional (edited expert) methods.
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Figure 10. In ARTMAP computations, the rate of correct Calveg predictions within a given class
tended to increase with the number of sites available in the field observation set.

to this rule are two cases (T, BL) where some rare low- at least four, but fewer than five, votes. (Recall that frac-
tional votes occurred in the case of ties; and that eachconfidence predictions happened to be correct. The dot-

ted line with crosses marks the product of the other two field observation site took a turn as a test set site, ac-
cording to the cross-validation protocol.) Accuracy in-data series, indicating accuracy relative to the number of

test sites at each confidence level. creased with confidence level (left to right), as shown by
the increasing heights of the bar graphs and the darken-Figure 12 further demonstrates how ARTMAP pre-

dictive accuracy increased with confidence. Figure 6 ing shades of the diagonal cells.
When a voting ARTMAP system produces a vegeta-shows the confusion matrix for this system, but does not

indicate confidence. Figure 12 displays components of tion map, the system also automatically produces a corre-
sponding confidence map. At each pixel, this map indi-this confusion matrix according to the number of voters

making the predictions. For example, predictions at 241 cates the number of voters agreeing on the predicted
class. Figure 13 shows an ARTMAP (BLT) Calveg confi-of the field observation sites were made on the basis of
dence map. Light areas indicate where the network was
confident (4–5 votes), while dark areas indicate low con-

Figure 11. ARTMAP predictive accuracy by confidence bin, fidence (1–2 votes) in network predictions. For example,
for each of the eight input combinations. Bar graph the areas at the bottom of the map and in the upper left-
height shows the percent of sites at a confidence level, hand corner show low-confidence regions. Much of theequal to the fraction of voting networks that agreed on

chaparral is located in these areas (Fig. 9b): Althoughthe site prediction. The dotted line with diamonds shows
ARTMAP failed to find many of these sites, the systemthe percent of sites in the bin where ARTMAP correctly

predicted the Calveg class. The dashed curve with 1 did point correctly to locations where editing could most
symbols marks the product of the percent correct and profitably be concentrated. Editing low-confidence sites,
the confidence level. which accounted for less than 10% of the total, would

be an efficient way to improve ARTMAP performance.

Figure 12. Confusion matrices for ARTMAP (BLT) Calveg
predictions by confidence level. Prediction of most
classes became more accurate as confidence increased.
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A second advantage is the relative simplicity of the
ARTMAP approach compared to the conventional meth-
ods. As illustrated in Figure 1, the conventional methods
require two tracks of multiple steps, while the ARTMAP
system is trained with a single, automated step. This sort
of simplicity is highly desirable, as it makes the new
method faster, less expensive, and easier to learn. In ad-
dition, the ARTMAP method does not require the level
of knowledge of the mapping region that is needed for
successful implementation of the conventional method:
It is more difficult to define natural regions, and the ter-
rain rules within those regions, than it is to collect a set
of labeled field observation sites.

A third advantage is the production of a confidence
map by the ARTMAP system. This map has immediate

Figure 13. ARTMAP Calveg confidence value as an editing guide, to improve the efficiency of a
map. Dark shades indicate locations of tedious and slow process. The confidence map can also
low-confidence sites, where votes were split be passed along with the vegetation maps to users whoamong several different predictions.

may benefit from knowledge of uncertainty.Lakes and barren areas were among the
regions predicted most confidently A final advantage is the reasonable expectation of fu-
(white). ture improvements in the accuracy of the maps. Without

editing, the ARTMAP maps are of comparable accuracy
to the conventional maps after they have been edited.Benefits of the ARTMAP System
Following light editing, guided by the confidence maps,

With respect to the present study, the primary question the ARTMAP results would be expected to become con-
for a map developer concerns the relative benefits of the siderably more accurate.
ARTMAP system for operational purposes. Based on the
results presented in this article and on the authors’ col-
lective experience using both ARTMAP and conventional DISCUSSION
mapping systems, the following points can be made.

Figure 9(c,d) displays Calveg maps of the Sierra NationalFirst, both ARTMAP and the conventional system
Forest produced by ARTMAP and by the conventionalrequire training, but that training appears in very differ-
method, with editing. Some differences are apparent, inent forms. For the conventional system, training is of two
particular in the case of subalpine and chaparral. Thoughtypes. One type is labeling unsupervised classes by ana-
correct identification of 17 Calveg classes is a challenginglysts to produce a lifeform map; the second type is defin-
problem, the maps are qualitatively similar.ing natural regions within the Forest, and then, for each

The ARTMAP neural network learned to classifysuch region, calibrating the terrain rules for species asso-
vegetation stands as one of 17 Calveg types from knowl-ciations within each of the lifeforms. For ARTMAP, the
edge of spectral, terrain, and location variables across alltraining requires only a set of field observations in order
pixels in the stand. Once the Calveg labels of field obser-to calibrate the system in a single, computer-based classi-
vation sites had been collected, ARTMAP carried out thefication step.
entire task of training and map production in a matterFrom a number of perspectives, the requirements
of hours. In contrast, producing unedited expert mapsfor ARTMAP are preferable. First, the collection of a set
required about 6 months for developing heuristics andof training sites is easier, faster, and probably more use-
simple ecological models based on forest visits, followedful in the long run than the special-purpose training re-
by nearly as much time spent in painstaking editing ofquired for the conventional method. One reason relates
the uncorrected maps. In all, it took the equivalent ofto the common need to update these maps following the
about 1 year’s effort to produce the expert map.completion of an accuracy assessment. With the conven-

The neural network approach yielded maps with ac-tional maps, the training used to label lifeform classes is
curacies that exceeded those of unedited expert mapsnot preserved, and hence has to be recreated for any fu-
and that approached the accuracies of the edited expertture attempts to improve the map. In contrast, the train-
maps. Training ARTMAP with the field observation dataing sites used for ARTMAP can be preserved and aug-
took about 1 hour. Voting automatically provides a confi-mented as necessary to improve maps incrementally at
dence index, which may be used to guide future editing.any future time, without requiring that the original train-

ing data be available for an entirely new training process. The ARTMAP neural network method was therefore
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ture estimation for vegetation mapping. Remote Sens. Envi-found to have drastically increased the efficiency of the
ron. 70:138–152.mapping process.

Cohen, W. B., Spies, T. A., Swanson, F. J., and Wallin, D. O.
(1995), Landcover on the western slopes of the central Ore-

This research was supported in part by the National Aeronautic gon Cascade range. Int. J. Remote Sens. 16:595–596.
and Space Administration (NASA NAS5-31369 and NASA Congalton, R. G., Green, K., and Teply, J. (1993), Mapping
NAS5-3439), the National Science Foundation (NSF SBR-95- old-growth forest on National Forests and park lands in the
13889), the Office of Naval Research (ONR N00014-95-1-0409 Pacific Northwest from remotely sensed data. Photogramm.
and ONR N00014-95-1-0657), and the U.S. Forest Service Re- Eng. Remote Sens. 59:529–535.
gion 5 Remote Sensing Laboratory, Sacramento. The authors Franklin, S. E., and Wilson, B. A. (1991), Vegetation mappingthank Dena Simons for assembling the data set.

and change detection using SPOT MLA and Landsat imag-
ery in Kluane National Park. Can. J. Remote Sens. 17:2–17.

Franklin, S. E., Logan, T. L., Woodcock, C. E., and Strahler,REFERENCES
A. H. (1986), Coniferous forest classification and inventory
using Landsat and digital terrain data. IEEE Trans. Geosci.

Aspinall, R., and Veitch, N. (1993), Habitat mapping from sat- Remote Sens. GE-24:139–149.
ellite imagery and wildlife survey data using a Bayesian Gopal, S., and Fischer, M. M. (1997), Fuzzy ARTMAP—a neu-
modeling procedure in GIS. Photogramm. Eng. Remote ral classifier for multispectral image classification. In Recent

Developments in Spatial Analysis: Spatial Statistics, Behav-Sens. 59:537–543.
ioural Modelling and Computational Intelligence (M. M. Fi-Bauer, M. E., Burk, T. E., Ek, A. R., et al. (1994), Satellite
scher and A. Getis, Eds.), Springer-Verlag, Heidelberg,inventory of Minnesota forest resources. Photogramm. Eng.
pp. 306–335.Remote Sens., 60, 287–298.

Gopal, S., Woodcock, C. E., and Strahler, A. H. (1999), FuzzyCarpenter, G. A., and Markuzon, N. (1998), ARTMAP-IC and
ARTMAP classification of global land cover from the 1 de-medical diagnosis: Instance counting and inconsistent cases.
gree AVHRR data set. Remote Sens. Environ. 67:230–243.Neural Netw. 11:323–336.

Matyas, W. J., and Parker, I. (1980), CALVEG mosaic of exist-Carpenter, G. A., Grossberg, S., and Reynolds, J. H. (1991),
ing vegetation of California, Regional Ecology Group, U.S.ARTMAP: Supervised real-time learning and classification
Forest Service, Region 5, San Francisco, 27 pp.of nonstationary data by a self-organizing neural network.

Mosier, C. I. (1951), Symposium: The need and the means forNeural Netw. 4:565–588.
cross-validation. 1. Problem and designs of cross-validation.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., Ed. Psychol. Measure. 11:5–11.
and Rosen, D. B. (1992), Fuzzy ARTMAP: a neural network Richards, J. A. (1993), Remote Sensing Digital Image Analysis:
architecture for incremental supervised learning of analog An Introduction, 2nd ed., Springer-Verlag, Berlin, 340 pp.
multidimensional maps. IEEE Trans. Neural Netw. Woodcock, C. E., Strahler, A. H., and Logan, T. L. (1980),
3:698–713. Stratification of forest vegetation for timber inventory using

Carpenter, G. A., Gjaja, M. N., Gopal, S., and Woodcock, C. E. Landsat and collateral data. In 14th International Sympo-
(1997), ART neural networks for remote sensing: vegetation sium on Remote Sens. Environ., San Jose, Costa Rica, pp.
classification from Landsat TM and terrain data. IEEE 1769–1787.
Trans. Geosci. Remote Sens. 35:308–325. Woodcock, C. E., Collins, J., Gopal, S., et al. (1994), Mapping

Carpenter, G. A., Gopal, S., Macomber, S., Martens, S., and forest vegetation using Landsat TM imagery and a canopy
reflectance model. Remote Sens. Environ. 50:240–254.Woodcock, C. E. (1999), A neural network method for mix-


