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Abstract

Fuzzy ARTMAP and K-Nearest Neighbor (K-NN) categorizers were used to evaluate intrinsic
and extrinsic speaker normalization methods by training and testing on disjoint sets of speakers
of the Peterson-Barney database. Intrinsic methods included one nonscaled, four psychophysical
scales (bark, bark with end-correction, mel, ERB), and three log scales, each tested on four different
combinations of the frequencies Fy, F1, Fo, F3. Four extrinsic schemes were tested in conjunction
with the intrinsic methods: centroid subtraction across all frequencies (CS), centroid subtraction for
each frequency (CSi), linear scale (LS), and linear transformation (LT). Categorizers showed similar
trends, with K-NN performing better but requiring more storage. The optimal intrinsic method
was bark scale, or bark with end-correction, using differences between all frequencies (BDA). The
order of performance for extrinsic methods was LT, CSi, LS, and CS, with ARTMAP performing
best using BDA; and K-NN choosing psychophysical measures for all except CSi.

Speaker Normalization

Human listeners are able to identify as a single phoneme a wide variety of speech signals produced
by different speakers in different contexts. For example, the vowel /&/ is recognized despite the fact
that the average Fj formant frequency is 660 Hz for males and 1010 Hz for children [10]. Speaker
normalization is a general term used to describe the process whereby a listener compensates for
individual characteristics of a speech signal in order to extract invariant features needed to identify
the sound.

This paper describes a procedure that can be used to make systematic comparisons of the many
speaker normalization schemes that have been proposed in recent decades. To evaluate a given
normalization method, the 1520 vowel token vectors of the Peterson and Barney (1952) database,
each consisting of the fundamental frequency (Fp) and the first three formants (Fy, Fy, F3), are
preprocessed using that method. Normalized inputs from about 30% of the speakers (10 males, 9
females, and 5 children), corresponding to 480 vectors, are used to train three different classifiers,
a neural network (fuzzy ARTMAP [3]) and two K-nearest neighbor systems[4]. The remaining
test data set is then presented to each classifier, which tries to identify each as one of ten vowel
sounds. The normalization scheme in question is evaluated in terms of the number of correct test
set identifications made by each of the classifiers. Speaker independence is required since the test
set inputs and the training set inputs are generated by disjoint sets of speakers. Comparative
evaluations of 160 different normalization schemes were carried out using this method.

The two main classes of normalization methods are intrinsic and ezxtrinsic [9]. Intrinsic nor-
malization uses only the information present in each vowel token. Extrinsic normalization uses
information from several vowel tokens of a given speaker. Intrinsic normalizatior methods include
psychophysical measures, such as bark differences [11], logarithm measures [1, 7], and logarithms
of formant ratios [7]. Extrinsic normalization methods include centroid subtraction across all fre-
quencies (CS) [1, 9], centroid subtraction for each frequency (CSi) [1, 9], linear scale (LS) [6], and
linear transformation (LT) [13].
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Fuzzy ARTMAP and K-Nearest Neighbor Algorithms

Fuzzy ARTMAP (3] is a supervised neural network algorithm that learns to map (transformed)
frequency vectors to vowel categories. ARTMAP clusters frequency vectors on-line in one module
(ART,) and vowel categories in a second module (ART;). An intervening map field (F**) adaptively
associates frequency categories to vowel categories. Performance was compared with that of K-
nearest neighbor (K-NN) algorithms [4], using both city block (L;) and Euclidean (L) metrics.
The K-NN algorithm chooses a vowel category based on the K training points that lie nearest
to a test point. Preliminary simulations on different normalization methods were used to choose
parameters for the two different recognition methods. Fuzzy ARTMAP parameters for all the
simulations were: p, = 0.0, @ = 0.1, and § = 1.0. For the K-NN systems, the number of neighbors
(K) was fixed at 10 throughout.

Intrinsic Normalization Methods

For the intrinsic normalization schemes, eight normalization scales were compared: one nontrans-
formed (N) scale; four psychophysical scales: bark scale (B) [15], bark scale with end-correction
(Be) [12], mel scale (Mel) [5], and equivalent rectangular bandwidth scale (ERB) [8]; and three log
measures: a semitone scale (logy.06), natural log scale (log.), and log base 10 scale ({0g10).

The bark scale (B) transforms Fy...F3 to Fj...F} according to the equation: F! = 13.0 %
arctan(0.76 * F;/1000) + 3.5 * arctan(F;/7500)2, where F; is the ** frequency, in Hz. Bark scale with
end-correction (Be) adjusts the low frequencies before converting to them to bark scale: frequencies
below 150 Hz are increased to 150 Hz; frequencies between 150 and 200 Hz are reduced to 0.8 F;+30;
and frequencies between 200 and 250 Hz are increased to 1.2F;—50. The mel scale (Mel) corresponds
to the transformation: F; = 2595log;o(1+ F;/700). Finally, the equivalent rectangular bandwidth
(ERB) scale is calculated by: F! = 11.17*log,((F;+312)/(F;+14675))+43. The three logarithmic
measures consist of the semitone scale, F = log, o(F:), the natural logarithm scale, F} = log,(F;),
and the log base 10 scale, F = log,o(F3).

Each of the eight normalization scales was tested with four different combinations: only the first
two formants [FY, F3]; the fundamental and all three formants [F{, Fy, F}, F5]; the three differences
F| - F§, Fj — F{, Fj — F} (Diff Subset); and all six difference combinations F| — F§, F} — Fj, F§ —
F, F5 — F{, F§ — F{, F§ — F (Diff All). Syrdal and Gopal (1986) proposed the Diff Subset method
with bark scale with end-correction. Nearey and colleagues [1, 9] and Miller and colleagues (7]
proposed using log scaled frequency ratios, which correspond to the differences between the log
coverted frequencies. Combining the 8 vowel space scales and the 4 frequency combinations, 32
intrinsic methods were tested.

Extrinsic Normalization Methods

For the extrinsic methods, adaptation to a speaker was superimposed on each of the 32 intrinsic
normalization methods. Four types of extrinsic normalization were tested: centroid subtraction
across frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear
transformation (LT). The CS method finds the mean frequency value ( F' ) across all transformed
frequencies of all the vowels of a given speaker and subtracts this value from F! [1, 7, 9]. The CSi
method extends the CS method by computing the centroid ( F; ) for each transformed frequency
and subtracting this value from F. The CLIH2 method [9], and CLIH3 method [1] are functionally
equivalent to the CSi method in a log vowel space. The linear scale (LS) approach [6] finds the
minimum and maximum frequency values for each F! across all vowels of a given speaker, then
rescales each frequency to the range [0,999]. In the LT method [13], a linear transformation matrix
A is obtained which transforms each speaker’s frequencies into some prototypical frequency values.
New frequencies are linear combinations of the original transformed frequencies: FY = Y3_, aix Fl+
B;. The matrix A is derived using the LMS algorithm [14] to minimize the mean squared error
between a given speaker’s fundamental and formant frequencies and the mean fundamental and
formant frequencies across all speakers for each vowel. In all, 128 extrinsic normalization schemes
were tested: 4 speaker adaptations x 4 frequency combinations x 8 scales.
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Figure 1: Test set performance of fuzzy ARTMAP and K-NN for intrinsic normalization methods
# 1-32, which are identified in Table 1.

Comparative Evaluation of Normalization Methods

The three pattern recognition systems (fuzzy ARTMAP, L; K-NN, and L, K-NN) generally agreed
on which normalization methods gave better predictive performance on test set data. K-NN tended
to outperform fuzzy ARTMAP by a few percent (Figure 1). However, improved performance
achieved by K-NN comes at a cost of storing all 480 training vectors. Fuzzy ARTMAP coded
between 22 and 135 F§ nodes, providing a compression of 3.5 to 21.8 compared to the storage
requirements of K-NN. Table 1 and Figure 1 show fuzzy ARTMAP and K-NN performance on the
32 intrinsic normalization methods. Similar analysis of the four extrinsic schemes has also been
carried out [2].

Vowel [F] , Fg] Wl [F(), i, F, F3] “ Diff Subset |L Diff All
Space Fuzzy ARTMAP
d]| % | F¢ |[d] % | Fg JWH] % [ F¢ J1d] % | F3

N 1664 [123.1)| 9 | 784 | 63.5 || 17| 80.4 | 55.8 || 25 | 80.7 | 57.5
B 2660 (123.7 10| 79.1 | 61.6 || 18| 81.4 | 56.3 | 26 | 83.1 | 43.9
Be 3 |1658 [123.1| 11| 78.6 | 63.9 || 19| 80.8 | 54.8 || 27 | 83.1 | 434
Mel 4| 655 [ 1243 || 12| 79.0 | 62.2 | 20| 79.8 | 57.1 || 28 | 81.6 | 46.3
ERB 5 | 649 | 1248 | 13| 79.1 | 623 |[ 21| 77.7 | 66.1 || 29| 79.4 | 494
logro6 || 6 | 654 | 122.0| 14| 794 | 60.7 || 22| 721 | 73.2 || 30| 74.2 | 58.9
loge 7| 655 | 1219 15| 794 | 60.6 || 23| 723 | 725 || 31| 74.0 | 58.8
logip | 8 | 65.5 [ 122.1 || 16 | 794 | 60.8 || 24| 71.9 | 739 | 32| 74.2 | 58.9

Vowel K-NN

Space [T [Li % | Lo % [ [Li %[ Lo %[0 | L% [ Lo %[ 1A [ Li% [ L2 %
N |[ L] 752|752 9] 78] 75.1 |17 789 | 77.1 || 25 76.8 | 76.3
B || 2| 743 | 751 || 10| 826 | 826 || 18| 83.7 | 84.5 || 26 | 85.5 | 85.5
Be | 3| 743 | 751 11| 814 | 83.1 |[19| 84.1 | 84.0 || 27 | 85.4 | 85.8
Mel | 4 | 746 | 75.3 || 12| 82.0 | 82.4 || 20 | 83.4 | 83.0 || 28 | 82.9 | 825

ERB || 5 | 73.8 | 74.9 || 13| 835 | 82.7 || 21| 82.1 | 814 [ 29| 82.1 | 819

logr1o6 || 6 | 745 | 74.8 || 14 | 82.0 | 82.5 || 22| 76.1 76.1 || 30| 77.2 | 77.1
loge || 7| 745 | 748 15| 82.0 | 82.5 | 23| 76.0 | 76.3 | 31| 77.3 | 77.1

log10 8 | 74.5 | 74.8 || 16| 82.1 | 82.5 || 24| 76.0 | 76.0 || 32| 77.2 | V7.1

Table 1: Fuzzy ARTMAP and K-NN test set performance with intrinsic normalization.

The psychophysical measures (B, Be, Mel, ERB) outperformed the log measures in most cases.
For all the intrinsic and extrinsic methods, fuzzy ARTMAP performed best using bark, or bark with
end correction, Diff All (Table 1). Although K-NN optimal performance varied more, these classi-




fiers also chose the psychophysical measures in all cases except for the extrinsic scheme CSi. For
the intrinsic and LS extrinsic method, K-NN chose the bark Diff All method. For the CS extrinsic
method, K-NN chose ERB [Fy, F, F3, F3]. For the LT method, L/Ly; K-NN performed best with
Mel/ERB [Fy, Fy, F3, F3). Finally, for the CSi method, K-NN chose the log scales [Fp, F, F», F3).

While the LT method has the best performance, it requires vowels that are labeled a priori to
obtain the transformation matrix .A. Thus, for speaker-independent machine vowel recognition, LT
requires the user to say an initial specified utterance containing the requisite vowels. The other
three extrinsic methods do not require these vowels to be labeled. Thus, the second best method
(CSi) may be the best candidate for prototype human and machine perpeption systems, since CSi
does not require as much a priori knowledge as LT, its computational demands are less, and its
performance is almost as good.
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