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A neural network architecture for the learning of recognition categories is derived. Real-time
network dynamics are completely characterized through mathematical analysis and computer
simulations. The architecture self-organizes and self-stabilizes its recognition codes in response
to arbitrary orderings of arbitrarily many and arbitrarily complex binary input patterns.
Top-down attentional and matching mechanisms are critical in self-stabilizing the code
learning process. The architecture embodies a parallel search scheme which updates itself
adaptively as the learning process unfolds. After learning self-stabilizes. the search process is
automatically disengaged. Thereafter input patterns directly access their recognition codes
without any search. Thus recognition time does not grow as a function of code complexity. A
novel input pattern can directly access a category if it shares invariant properties with the set
of familiar exemplars of that category. These invariant properties emerge in the form of
learned critical feature patterns, or prototypes. The architecture possesses a context-sensitive
self-scaling property which enables its emergent critical feature patterns to form. They detect
and remember statistically predictive configurations of featural elements which are derived
from the set of all input patterns that are ever experienced. Four types of attentional
process-priming, gain control, vigilance, and intermodal competition-are mechanistically
characterized. Top-down priming and gain control are needed for code matching and
self-stabilization. Attentional vigilance determines how fine the learned categories will be. If
vigilance increases due to an environmental disconfirmation, then the system automatically
searches for and leaIlls finer recognition categories. A new nonlinear matching law (the ~
Rule) and new nonlinear associative laws (the Weber Law Rule, the Associative Decay Rule,
and the Template Learning Rule) are needed to achieve these properties. All the rules describe
emergent properties of parallel network interactions. The architecture circumvents the noise,
saturation, capacity, orthogonality, and linear predictability constraints that limit the codes
which can be stably learned by alternative recognition models. c> 1987 Academic Press. Inc.~

1. INTRODUCTION: SELF-ORGANIZATION OF NEURAL
RECOGNITION CODES

A fundamental problem of perception and cognition concerns the characteriza-
tion of how humans discover, learn, and recognize invariant properties of the
environments to which they are exposed. When such recognition codes sponta-
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neously emerge thrOUgll an individual's interaction with an environment, the
processes are said to undergo self-organization [1]. This article develops a theory of
how recognition codes are self-organized by a class of neural networks whose
qualitative features have been used to analyse data about speech perception, word
recognition and recall, visual perception, olfactory coding, evoked potentials,
thalamocortical interactions, attentional modulation of critical period termination,
and amnesias [2-13]. These networks comprise the adaptive resonance theory (ART)
which was introduced in Grossberg [8].

This article describes a system of differential equations which completely char-
acterizes one class of ART networks. The network model is capable of self-organiz-
ing, self-stabilizing, and self-scaling its recognition codes in response to arbitrary
temporal sequences of arbitrarily many input patterns of variable complexity.. These
formal properties, which are mathematically proven herein, provide a secure foun-
dation for designing a real-time hardware implementation of this class of massively
parallel ART circuits.

Before proceeding to a description of this class of ART systems, we summarize
some of their major properties and some scientific problems for which they provide
a solution.

A. Plasticity

Each system generates recognition codes adaptively in response to a series of
environmental inputs. As learning proceeds, interactions between the inputs and the
system generate new steady states and basins of attraction. These steady states are
formed as the system discovers and learns critical feature patterns, or prototypes,
that represent invariants of the set of all experienced input patterns.

B. Stability

The learned codes are dynamically buffered against relentless recoding by irrele-
vant inputs. The formation of steady states is internally controlled using mecha-
nisms that suppress possible sources of system instability.

C. Stability-Plasticity Dilemma: Multiple Interacting Memory Systems

The properties of plasticity and stability are intimately related. An adequate
system must be able to adaptively switch between its stable and plastic modes. It
must be capable of plasticity in order to learn about significant new events, yet it
must also remain stable in response to irrelevant or often repeated events. In order
to prevent the relentless degradation of its learned codes by the "blooming, buzzing
confusion" of irrelevant experience, an ART system is sensitive to novelty. It is
capable of distinguishing between familiar and unfamiliar events, as well as between
expected and unexpected events.

Multiple interacting memory systems are needed to monitor and adaptively react
to the novelty of events. Within ART, interactions between two functionally
complementary subsystems are needed to process familiar and unfamiliar events.
Familiar events are processed within an attentional subsystem. This subsystem
establishes ever more precise internal representations of and responses to familiar
events. It also builds up the learned top-down expectations that help to stabilize the
learned bottom-up codes of familiar events. By itself, however, the attentional
subsystem is unable simultaneously to maintain stable representations of familiar
categories and to create new categories for unfamiliar patterns. An isolated atten-
tional subsystem is either rigid and incapable of creating new categories for
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FIG. 1. Anatomy of the attentional-orienting system: Two successive stages, Fl and F2, of the
attentional subsystem encode patterns of activation in short term memory (STM). Bottom-up and
top-down pathways between Fl and F2 contain adaptive long term memory (LTM) traces which
multiply the signals in these pathways. The remainder of the circuit modulates these STM and L TM
processes. Modulation by gain control enables Fl to distinguish between bottom-up input patterns and
top-down priming, or template, patterns, as well as to match these bottom-up and top-down patterns.
Gain control signals also enable F2 to react supraliminally to signals from Fl while an input pattern is
on. The orienting subsystem generates a reset wave to F2 when mismatches between bottom-up and
top-down patterns occur at Fl' This reset wave selectively and enduringly inhibits active F2 cells until
the input is shut off. Variations of this architecture are depicted in Fig. 14.

unfamiliar patterns, or unstable and capable of ceaselessly recoding the categories of
familiar patterns in response to certain input environments.

The second subsystem is an orienting subsystem that resets the attentional
subsystem when an unfamiliar event occurs. The orienting subsystem is essential for
expressing whether a novel pattern is familiar and well represented by an existing
recognition code, or unfamiliar and in need of a new recognition code. Figure 1
schematizes the architecture that is analysed herein.

D. Role of Attention in Learning

Within an ART system, attentional mechanisms playa major role in self-stabiliz-
ing the learning of an emergent recognition code. Our mechanistic analysis of the
role of attention in learning leads us to distinguish between four types of attentional
mechanism: attentional priming, attentional gain control, attentional vigilance, and
intermodality competition. These mechanisms are characterized below.

E. Complexity

An ART system dynamically reorganizes its recognition codes to preserve its
stability-plasticity balance as its internal representations become increasingly com-
plex and differentiated through learning. By contrast, many classical adaptive
pattern recognition systems become unstable when they are confronted by complex
input environments. The instabilities of a number of these models are identified in
Grossberg [7,11,14]. Models which become unstable in response to nontrivial input
environments are not viable either as brain models or as designs for adaptive
machines.

Unlike many alternative models [15-19], the present model can deal with arbi-
trary combinations of binary input patterns. In particular, it places no orthogonalitv
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or linear predictability constraints upon its input patterns. The model computations
remain sensitive no matter how many input patterns are processed. The model does
not require that very small, and thus noise-degradable, increments in memory be
made in order to avoid saturation of its cumulative memory. The model can store
arbitrarily many recognition categories in response to input patterns that are defined
on arbitrarily many input channels. Its memory matrices need not be square, so that
no restrictions on memory capacity are imposed by the number of input channels.
Finally, all the memory of the system can be devoted to stable recognition learning.
It is not the case that the number of stable classifications is bounded by some
fraction of the number of input channels or patterns.

Thus a primary goal of the present article is to characterize neural networks
capable of self-stabilizing the self-organization of their recognition codes in re-
sponse to an arbitrarily complex environment of input patterns in a way that
parsimoniously reconciles the requirements of plasticity, stability, and complexity.

2. SELF-SCALING COMPUTATIONAL UNITS, SELF-ADJUSTING ME.r..fORY
SEARCH, DIRECT ACCESS, AND A TTENTIONAL VIGILANCE

Four properties are basic to the workings of the networks that we characterize
herein.

A. Self-Scaling Computational Units: Critical Feature Patterns

Properly defining signal and noise in a self-organizing system raises a number of
subtle issues. Pattern context must enter the definition so that input features which
are treated as irrelevant noise when they are embedded in a given input pattern may
be treated as informative signals when they are embedded in a different input
pattern. The system's unique learning history must also enter the definition so that
portions of an input pattern which are treated as noise when they perturb a system
at one stage of its self-organization may be treated as signals when they perturb the
same system at a different stage of its self-organization. The present systems
automatically self-scale their computational units to embody context- and learning-
dependent definitions of signal and noise.

One property of these self-scaling computational units is schematized in Fig. 1. In
Fig. la, each of the two input patterns is composed of three features. The patterns
agree at two of the three 1'eatures, but disagree at the third feature. A mismatch of
one out of three features may be designated as informative by the system. When this
occurs, these mismatched features are treated as signals which can elicit learning of
distinct recognition codes for the two patterns. Moreover, the mismatched features,
being informative, are inC(lrporated into these distinct recognition codes.

In Fig. lb, each of the two input patterns is composed of 31 features. The
patterns are constructed by adding identical subpatterns to the two patterns in Fig.
la. Thus the input patterns in Fig. lb disagree at the same features as the input
patterns in Fig. la. In the patterns of Fig. lb, however, this mismatch is less
important, other things being equal, than in the patterns of Fig. la. Consequently,
the system may treat the mismatched features as noise. A single recognition code
may be learned to represent both of the input patterns in Fig. lb. The mismatched
features would not be learned as part of this recognition code because they are
treated as noise.

The assertion that critical feature patterns are the computational units of the code
learning process summarizes this self-scaling property. The term critical feature
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(0)

FIG. 2. Self-scaling property discovers critical features in a context-sensitive way: (a) Two input
patterns of 3 features mismatch at 1 feature. When this mismatch is sufficient to generate distinct
recognition codes for the two patterns, the mismatched features are encoded in L TM as part of the
critical feature patterns of these recognition codes. (b) Identical subpatterns are added to the two input
patterns in (a). Although the new input patterns mismatch at the same one feature, this mismatch may be
treated as noise due to the additional complexity of the two new patterns. Both patterns may thus learn
to activate the same recognition code. When this occurs, the mismatched feature is deleted from L TM in
the critical feature pattern of the code.

indicates that not all features are treated as signals by the system. The learned units
are patterns of critical features because the perceptual context in which the features
are embedded influences which features will be processed as signals and which
features will be proc(~ssed as noise. Thus a feature may be a critical feature in one
pattern (Fig. 2a) and an irrelevant noise element in a different pattern (Fig. 2b).

The need to overcome the limitations of featural processing with some of type of
contextually sensitive pattern processing has long been a central concern in the
human pattern recognition literature. Experimental studies have led to the general
conclusions that "the trace system which underlies the recognition of patterns can
be characterized by a central tendency and a boundary" [20, p. 54], and that "just
listing features does not go far enough in specifying the knowledge represented in a
concept. People also know something about the relations between the features of a
concept, and about the variability that is permissible on any feature" [21, p. 83]. We
illustrate herein how these properties may be achieved using self-scaling computa-
tional units such as critical feature patterns.

B. Self-Adjusting Memory Search

No pre-wired search algorithm, such as a search tree, can maintain its efficiency as
a knowledge structure evolves due to learning in a unique input environment. A
search order that may be optimal in one knowledge domain may become extremely
inefficient as that knowledge domain becomes more complex due to learning.

The ART system considered herein is capable of a parallel memory search that
adaptively updates its search order to maintain efficiency as its recognition code
becomes arbitrarily complex due to learning. This self-adjusting search mechanism
is part of the network design whereby the learning process self-stabilizes by
engaging the orienting subsystem (Sect. lC).
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None of these mechanisms is akin to the rules of a serial computer program.
Instead, the circuit architecture as a whole generates a self-adjusting search order
and self-stabilization as emergent properties that arise through system interactions.
Once the ART architecture is in place, a little randomness in the initial values of its
memory traces, rather than a carefully wired search tree, enables the search to carry
on until the recognition code self-stabilizes.

C. Direct Access to Learned Codes

A hallmark of human recognition performance is the remarkable rapidity with
which familiar objects can be recognized. The existence of many learned recognition
codes for alternative experiences does not necessarily interfere with rapid recogni-
tion of an unambiguous familiar event. This type of rapid recognition is very
difficult to understand using models wherein trees or other serial algorithms need to
be searched for longer and longer periods as a learned recognition code becomes
larger and larger.

In an ART model, as the learned code becomes globally self-consistent and
predictively accurate, the search mechanism is automatically disengaged. Subse-
quently, no matter how large and complex the learned code may become, familiar
input patterns directly access, or activate, their learned code, or category. Unfamiliar
patterns can also directly access a learned category if they share invariant properties
with the critical feature pattern of the category. In this sense, the critical feature
pattern acts as a prototype for the entire category. As in human pattern recognition
experiments, an input pattern that matches a learned critical feature pattern may be
better recognized than any of the input patterns that gave rise to the critical feature
pattern [20, 22, 23].

Unfamiliar input patterns which cannot stably access a learned category engage
the self-adjusting search process in order to discover a network substrate for a new
recognition category. After this new code is learned, the search process is automati-
cally disengaged and direct access ensues.

D. Environment as a Teacher: Modulation of Attentional Vigilance

Although an ART system self-organizes its recognition code, the environment can
also modulate the learning process and thereby carry out a teaching role. This
teaching role allows a system with a fixed set of feature detectors to function
successfully in an environment which imposes variable performance demands.
Different environments may demand either coarse discriminations or fine dis-
criminations to be made among the same set of objects. As Posner [20, pp. 53-54]
has noted:

If subjects are taught a tight concept, they tend to be very careful about classifying any
particular pattern as an instance of that concept. They tend to reject a relatively small
distortion of the prototype as an instance, and they rarely classify a pattern as a member of the
concept when it is not. On the other hand, subjects learning high-variability concepts often
falsely classify patterns as members of the concept, but rarely reject a member of the concept
incorrectly. ..The situation largely determines which type of learning will be superior.

In an ART system, if an erroneous recognition is followed by negative rein-
forcement, then the system becomes more vigilant. This change in vigilance may be
interpreted as a change in the system's attentional state which increases its sensitiv-
ity to mismatches between bottom-up input patterns and active top-down critical
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feature patterns. A vigilance change alters the size of a single parameter in the
network. The interactions within the network respond to this parameter change by
learning recognition codes that make finer distinctions. In other words, if the
network erroneously groups together some input patterns, then negative rein-
forcement can help the network to learn the desired distinction by making the
system more vigilant. The system then behaves as if has a better set of feature
detectors.

The ability of a vigilance change to alter the course of pattern recognition
illustrates a theme that is common to a variety of neural processes: a one-dimen-
sional parameter change that modulates a simple nonspecific neural process can
have complex specific effects upon high-dimensional neural information processing.

Sections 3-7 outline qualitatively the main operations of the model. Sections
8-11 describe computer simulations which illustrate the model's ability to learn
categories. Section 12 defines the model mathematically. The remaining sections
characterize the model's properties using mathematical analysis and more computer
simulations, with the model hypotheses summarized in Section 18.

3. BOlTOM-UP ADAPTIVE FILTERING AND CONTRAST-ENHANCEMENT IN
SHORT TERM MEMORY

We begin by considering the typical network reactions to a single input pattern I
within a temporal stream of input patterns. Each input pattern may be the output
pattern of a preprocessing stage. Different preprocessing is given, for example, to
speech signals and to visual signals before the outcome of such modality-specific
preprocessing ever reaches the attentional subsystem. The preprocessed input pat-
tern I is received 1lt the stage F1 of an attentional subsystem. Pattern I is
transformed into a pattern X of activation across the nodes, or abstract "feature
detectors," of F1 (Fig. 3). The transformed pattern X represents a pattern in short
term memory (STM). In F1 each node whose activity is sufficiently large generates
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FIG- 3- Stages of bottom-up activation: The input pattern I generates a pattern of STM activation
X across FI- Sufficiently active FI nodes elnit bottom-up signals to F2 -This signal pattern S is gated by
long terln memory (L TM) traces within the Fl -0 F2 pathways- The L TM-gated signals are summed
before activating their target nodes in Fz -This L TM-gated and summed signal pattern T generates a
pattern of activation Yacross Fz- The nodes in Fl are denoted by vI' VZ, ---, VM- The nodes in Fz are
denoted by VM+l' VM+2' VN- The input to node Vi is denoted by Ii- The STM activity of node Vi is
denoted by Xi- The L TM trace of the pathway from Vi to Vj is denoted by z;;-
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FIG. 4. Search for a corre<:t F2 code: (a) The input pattern I generates the specific STM activity
pattern X at Fl as it nonspecifically activates A. Pattern X both inhibits A and generates the output
signal pattern S. Signal pattern S is transformed into the input pattern T, which activates the STM
pattern Yacross F2. (b) Pattern Y generates the top-down signal pattern U which is transformed into
the template pattern V. If V mismatches I at Fl' then a new STM activity pattern X. is generated at Fl'
The reduction in total STM activity which occurs when X is transformed into X. causes a decrease in
the total inhibition from Fl to A. (c) Then the input-driven activation of A can release a nonspecific
arousal wave to F2. which resets the STM pattern Y at F2. (d) After Y is inhibited. its top-down
template is eliminated, and X can be reinstated at Fl' Now X once again generates input pattern T to
F2. but since Y remains inhibited T can activate a different STM pattern Y. at F2. If the top-down
template due to Y. also mismatches I at Fl' then the rapid search for an appropriate F2 code continues.

excitatory signals along pathways to target nodes at the next processing stage F2. A
pattern X of STM activities across Fl hereby elicits a pattern S of output signals
from Fl. When a signal from a node in Fl is carried along a pathway to F2, the
signal is multiplied, or gated, by the pathway's long term memory (L TM) trace. The
LTM-gated signal (i.e., signal times LTM trace), not the signal alone, reaches the
target node. Each target node sums up of all of its L TM-gated signals. In this way,
pattern S generates a pattern T of LTM-gated and summed input signals to F2 (Fig.
4a). The transformation from S to T is called an adaptive filter.

The input pattern T to F2 is quickly transformed by interactions among the nodes
of F2. These interactions contrast-enhance the input pattern T. The resulting pattern
of activation across F2 is a new pattern Y. The contrast-enhanced pattern Y, rather
than the input pattern T, is stored in STM by F2.

A special case of this contrast-enhancement process is one in which F2 chooses
the node which receives the largest input. The chosen node is the only one that can
store activity in STM. In general, the contrast enhancing transformation from T to
Y enables more than one node at a time to be active in STM. Such transformations
are designed to simultaneously represent in STM several groupings, or chunks, of an
input pattern [9, 11, 24-26]. When F2 is designed to make a choice in STM, it
selects that global grouping of the input pattern which is preferred by the adaptive
filter. This process automatically enables the network to partition all the input
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patterns which are received by F1 into disjoint sets of recognition categories, each
corresponding to a particular node (or "pointer," or "index") in F2. Such a
categorical mechanism is both interesting in itself and a necessary prelude to the
analysis of recognition codes in which multiple groupings of X are simultaneously
represented by Y. In the example that is characterized in this article, level F2 is
designed to make a choice.

All the LTM traces in the adaptive filter, and thus allleamed past experiences of
the network, are used to determine the recognition code Y via the transformation
1 -+ X -+ S -+ T -+ Y. However, only those nodes of F2 which maintain stored
activity in the STM pattern Y can elicit new learning at contiguous L TM traces.
Because the recognition code Y is a more contrast-enhanced pattern than T, many
F2 nodes which receive positive inputs (1 -+ X -+ S -+ T) may not store any STM
activity (T -+ Y). The LTM traces in pathways leading to these nodes thus influence
the recognition event but are not altered by the recognition event. Some memories
which influence the focus of attention are not themselves attended.

4. TOP-DOWN TEMPLATE MATCHING AND STABILIZATION OF CODE
LEARNING

As soon as the bottom-up STM transformation X -+ Y takes place, the STM
activities Y in F2 elicit a top-down excitatory signal pattern U back to Fl (Fig. 4b).
Only sufficiently large STM activities in Y elicit signals in U along the feedback
pathways F2 -+ Fl' As in the bottom-up adaptive filter, the top-down signals U are
also gated by LTM traces and the LTM-gated signals are summed at F1 nodes. The
pattern U of output signals from F2 hereby generates a pattern Vof L TM-gated and
summed input signals to Fl' The transformation from U to V is thus also an
adaptive filter. The pattern V is called a top-down template, or learned expectation.

Two sources of input now perturb F1: the bottom-up input pattern I which gave
rise to the original activity pattern X, and the top-down template pattern V that
resulted from activating X. The activity pattern X* across F1 that is induced by I
and V taken together is typically different from the activity pattern X that was
previously induced by I alone. In particular, F1 acts to match V against I. The
result of this matching process determines the future course of learning and
recognition by the network.

The entire activation sequence

(1).l-+X-+S-+T-+Y-+U-+V-+X*

takes place very quickly relative to the rate with which the L TM traces in either the
bottom-up adaptive filter S -+ T or the top-down adaptive filter U -+ V can
change. Even though none of the L TM traces changes during such a short time,
their prior learning strongly influences the STM patterns Y and X. that evolve
within the network by determining the transformations S -+ T and U -+ V. We now
discuss how a match or mismatch of I and Vat F1 regulates the course of learning
in response to the pattern I, and in particular solves the stability-plasticity dilemma

(Sect. lC).
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(b) D

(d) D

FIG. 5. Matching by the ~ Rule: (a) A top-down template from F2 inhibits the attentional gain
control source as it subliminally primes target FI cells. (b) Only FI cells that receive bottom-up inputs
and gain control signals can become supraliminally active. (c) When a bottom-up input pattern and a
top-down template are simultaneously active, only those FI cells that receive inputs from both sources
can become supraliminally active. (d) Intermodality inhibition can shut off the FI gain control source
and thereby prevent a bottom-up input from supraliminally activating Fl. Similarly, disinhibition of the
FI gain control source may cause a top-down prime to become supraliminal.

The mismatched-mediated search of L TM ends when an STM pattern across F2
reads out a top-down template which matches I, to the degree of accuracy required
by the level of attentional vigilance (Sect. 2D), or which has not yet undergone any
prior learning. In the latter case, a new recognition category is then established as a
bottom-up code and top-down template are learned.

6. ATTENTIONAL GAIN CONTROL AND ATTENTIONAL PRIMING

Further properties of the top-down template matching process can be derived by
considering its role in the regulation of attentional priming. Consider, for example, a
situation in which F2 is activated by a level other than Fl before Fl can be
activated by a bottom-up input (Fig. Sa). In such a situation, F2 can generate a
top-down template V to Fl. The level F1 is then primed, or sensitized, to receive a
bottom-up input that mayor may not match the active expectancy. As depicted in
Fig. Sa, level Fl can be primed to receive a bottom-up input without necessarily
eliciting supra threshold output signals in response to the priming expectancy.

On the other hand, an input pattern I must be able to generate a suprathreshold
activity pattern X even if no top-down expectancy is active across F1 (Figs. 4a and
Sb). How does F1 know that it should generate a suprathreshold reaction to a
bottom-up input pattern but not to a top-down input pattern? In both cases,
excitatory input signals stimulate Fl cells. Some auxiliary mechanism must exist to
distinguish between bottom-up and top-down inputs. This auxiliary mechanism is
called attentional gain control to distinguish it from attentional priming by the
top-down template itself (Fig. Sa). While F2 is active, the attentional priming
mechanism delivers e.~citatory specific learned template patterns to Fl. The atten-
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tional gain control mechanism has an inhibitory nonspecific unlearned effect on the
sensitivity with which F1 responds to the template pattern, as well as to other
patterns received by Fl' The attentional gain control process enables F1 to tell the
difference between bottom-up and top-down signals.

7, MATCHING: THE ~ RULE

A rule for pattern matching at F1' called the t Rule, follows naturally from the
distinction between attentional gain control and attentional priming. It says that
two out of three signal sources must activate an F1 node in order for that node to
generate supra threshold output signals. In Fig. 5a, during top-down processing, or
priming, the nodes of F1 receive inputs from at most one of their three possible
input sources. Hence no cells in F1 are supraliminally activated by the top-down
template. In Fig. 5b, during bottom-up processing, a suprathreshold node in F1 is
one which receives both a specific input from the input pattern I and a nonspecific
excitatory signal from the gain control channel. In Fig. 5c, during the matching of
simultaneous bottom-up and top-down patterns, the nonspecific gain control signal
to F1 is inhibited by the top-down channel. Nodes of F1 which receive sufficiently
large inputs from both the bottom-up and the top-down signal patterns generate
suprathreshold activities. N'odes which receive a bottom-up input or a top-down
input, but not both, cannot become suprathreshold: mismatched inputs cannot
generate suprathreshold activities. Attentional gain control thus leads to a matching
process whereby the addition of top-down excitatory inputs to F1 can lead to an
overall decrease in F1's STM activity (Figs. 4a and b). Figure 5d shows how
competitive interactions across modalities can prevent F1 from generating a supra-
liminal reaction to bottom--up signals when attention shifts from one modality to
another.

8. CODE, INSTABILITY AND CODE STABILITY

The importance of using the t Rule for matching is now illustrated by describing
how its absence can lead to a temporally unstable code (Fig. 6a). The system
becomes unstable when the inhibitory top-down attentional gain control signals
(Fig. 5c) are too small for the t Rule to hold at Fl. Larger attentional gain control
signals restore code stability by reinstating the t Rule (Fig. 6b). Figure 6b also
illustrates how a novel exemplar can directly access a previously established
category; how the category in which a given exemplar is coded can be influenced by
the categories which form to encode very different exemplars; and how the network
responds to exemplars as coherent groupings of features, rather than to isolated
feature matches or mismatches.

Code Instability Example

In Fig. 6, four input patterns, A, B, C, and D, are periodically presented in the
order ABCAD. Patterns B, C, and D are all subsets of A. The relationships among
the inputs that make the simulation work are as follows: D c C c A; B c A; B n
C = 4>; and IDI < IBI < ICI, where III denotes the number of features in input
pattern I. The choice of input patterns in Fig. 6 is thus one of infinitely many
examples in which, without the t Rule, an alphabet of four input patterns cannot be
stably coded.

The numbers 1,2,3,..., listed at the left in Fig. 6 itemize the presentation order.
The next column, labeled BU for Bottom-Up, describes the input pattern that was
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FIG. 6. Stabilization of categorical learning by the ~ Rule: In both (a) and (b), four input patterns A.
B, C, and D are presented repeatedly in the list order ABCAD. In (a), the ~ Rule is violated because the
top-down inhibitory gain control mechanism is weak (Fig. 5c). Pattern A is periodically coded by VM+\
and vM+2. It is never coded by a single stable category. In (b), the ~ Rule is restored by strengthening
the top-down inhibitory gain control mechanism. After some initial recoding during the first two
presentations of ABCAD, all patterns directly access distinct stable categories. A black square in a
template pattern designates that the corresponding top-down L TM trace is large. A blank square
designates that the L TM trace is small.

presented on each trial. Each Top-Down Template column corresponds to a
different node in F2. If M nodes VI' V2"'" VM exist in FI' then the F2 nodes are
denoted by VM+I' VM+2"'" UN' Column 1 corresponds to node VM+I' column 2
corresponds to node v M + 2' and so on. Each row summarizes the network response
to its input pattern. The symbol RES, which stands for resonance, designates the
node in F2 which codes the input pattern on that trial. For example, vM+2 codes
pattern C on trial 3, and V M + I codes pattern B on trial 7. The patterns in a given
row describe the templates after learning has equilibrated on that trial.

In Fig. 6a, input pattern A is periodically recoded. On triall, it is coded by VM+I;
on trial 4, it is coded by VM+2; on trial 6, it is coded by VM+I; on trial 9, it is coded
by VM+2' This alternation in the nodes VM+I and VM+2 which code pattern A
repeats indefinitely.

Violation of the t Rule occurs on trials 4, 6, 8, 9, and so on. This violation is
illustrated by comparing the template of VM+2 on trials 3 and 4. On trial 3, the
template of VM+2 is coded by pattern C, which is a subset of pattern A. On trial 4,
pattern A is presented and directly activates node VM+2' Since the inhibitory
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top-down gain control is too weak to quench the mismatched portion of the input,
pattern A remains supraliminal in F1 even after the template C is read out from
VM+2" No search is elicited by the mismatch of pattern A and its subset template C.
Consequently the template of VM+2 is recoded from pattern C to its superset
pattern A.

Code Stability Example

In Fig. 6b, the t Rule does hold because the inhibitory top-down attentional gain
control channel is strengthened. Thus the network experiences a sequence of
recodings that ultimately stabilizes. In particular, on trial 4, node VM+2 reads-out
the template C, which mismatches the input pattern A. Here, a search is initiated, as
indicated by the numbers beneath the template symbols in row 4. First, VM+2'S
template C mismatches A. Then VM+l'S template B mismatches A. Finally A
activates the uncommitted node VM+3' which resonates with F1 as it learns the
template A.

In Fig. 6b, pattern A is coded by VM+l on trial 1; by VM+3 on trials 4 and 6; and
by VM+4 on trial 9. Note that the self-adjusting search order in response to A is
different on trials 4 and 9 (Sect. 2B). On all future trials, input pattern A is coded
by VM+4. Moreover, all the input patterns A, B, C, and D have learned a stable
code by trial 9. Thus the code self-stabilizes by the second run through the input list
ABCAD. On trials 11-1.5, and on all future trials, each input pattern chooses a
different code (A -+ VM+4; B -+ VM+l; C -+ VM+3; D -+ VM+2). Each pattern be-
longs to a separate category because the vigilance parameter (Sect. 2D) was chosen
to be large in this example. Moreover, after code learning stabilizes, each input
pattern directly activates its node in F2 without undergoing any additional search
(Sect. 2C). Thus after trial 9, only the "RES" symbol appears under the top-down
templates. The patterns shown in any row between 9 and 15 provide a complete
description of the learned code.

Examples of how a novel exemplar can activate a previously learned category are
found on trials 2 and 5 in Figs. 6a and b. On trial 2 pattern B is presented for the
first time and directly accesses the category coded by VM+l' which was previously
learned by pattern A on trial 1. In other words, B activates the same categorical
"pointer," or "marker," or "index" as A. In so doing, B may change the categorical
template, which determines which input patterns will also be coded by this index on
future trials. The category does not change, but its invariants may change.

9. USING CONTEXT TO DISTINGUISH SIGNAL FROM NOISE IN PATTERNS
OF VARIABLE COMPLEXITY

The simulation in Fig. 7 illustrates how, at a fixed vigilance level, the network
automatically rescales its matching criterion in response to inputs of variable
complexity (Sect. 2A). On the first four trials, the patterns are presented in the order
ABAB. By trial 2, coding is complete. Pattern A directly accesses node VM+l on trial
3, and pattern B directly accesses node VM+2 on trial 4. Thus patterns A and B are
coded by different categories. On trials 5-8, patterns C and D are presented in the
order CDCD. Patterns C and D are constructed from patterns A and B, respec-
tively, by adding identical upper halves to A and B. Thus, pattern C differs from
pattern D at the same locations where pattern A differs from pattern B. Due to the
addition of these upper halves, the network does not code C in the category VM+l of
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FIG. 7. Distinguishing noise from patterns for inputs of variable complexity: Input patterns A and B
are coded by the distinct (:ategory nodes VM+! and vM+2' respectively. Input patterns C and D include
A and B as subsets, but also possess identical subpatterns of additional features. Due to this additional
pattern complexity, C arid D are coded by the same category node VM+3' At this vigilance level
(p = 0.8), the network treats the difference between C and D as noise, and suppresses the discordant

elements in the vM+3 template. By contrast, it treats the difference between A and B as informative, and
codes the difference in the VM+I and VM+2 templates, respectively.

A and does not code D in the category VM+2 of B. Moreover, because patterns C
and D represent many more features than patterns A and B, the difference between
C and D is treated as noise, whereas the identical difference between A and B is
considered significant. In particular, both patterns C and D are coded within the
same category v M + 3 on trials 7 and 8, and the critical feature pattern which forms
the template of VM+3 does not contain the subpatterns at which C and D are
mismatched. In contrast, these subpatterns are contained within the templates of
VM+I and vM+2 to enable these nodes to differentially classify A and B.

Figure 7 illustrates that the matching process compares whole activity patterns
across a field of feature-selective cells, rather than activations of individual feature
detectors, and that the properties of this matching process which enable it to
stabilize network learning also automatically rescale the matching criterion. Thus
the network can both differentiate finer details of simple input patterns and tolerate
larger mismatches of complex input patterns. This rescaling property also defines
the difference between irrelevant features and significant pattern mismatches.

If a mismatch within the attentional subsystem does not activate the orienting
subsystem, then no further search for a different code occurs. Thus on trial 6 in Fig.
7, mismatched features between the template of v M +3 and input pattern D are
treated as noise in the sense that they are rapidly suppressed in short term memory
(STM) at FI, and are eliminated from the critical feature pattern learned by the
VM+3 template. If the mismatch does generate a search, then the mismatched
features may be included in the critical feature pattern of the category to which the
search leads. Thus on trial 2 of Fig. 6, the input pattern B mismatches the template
of node VM+I' which causes the search to select node VM+2' As a result, A and B
are coded by the distinct categories VM+I and VM+2' respectively. If a template
mismatches a simple input pattern at just a few features, a search may be elicited.
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thereby enabling the network to learn fine discriminations among patterns com-
posed of few features, such as A and B. On the other hand, if a template
mismatches the same number of features within a complex input pattern, then a
search may not be elicited and the mismatched features may be suppressed as noise,
as in the template of VM+3. Thus the pattern matching process of the model
automatically exhibits properties that are akin to attentional focussing, or "zooming
."ffi.

10. VIGILANCE LEVEL TUNES CATEGORICAL COARSENESS:
DISCONFIRMING FEEDBACK

The previous section showed how, given each fixed vigilance level, the network
automatically rescales its sensitivity to patterns of variable complexity. The present
section shows that changes in the vigilance level can regulate the coarseness of the
categories that are learned in response to a fixed sequence of input patterns. First
we need to define the vigilance parameter p.

Let III denote the number of input pathways which receive positive inputs when
I is presented. Assume that each such input pathway sends an excitatory signal of
fixed size P to A whenever I is presented, so that the total excitatory input to A is
Pili. Assume also that each F1 node whose activity becomes positive due to I
generates an inhibitory signal of fixed size Q to A, and denote by IXI the number of
active pathways from F1 to A that are activated by the F1 activity pattern X. Then
the total inhibitory input from F1 to A is QIXI. When

(2)Pili> QIXI.

the orienting subsystem A receives a net excitatory signal and generates a non.
specific reset signal to F2 (Fig. 4c). The quantity

p
P= Q (3)

is called the vigilance parameter of A. By (2) and (3), STM reset is initiated when

IXI

p>~. (4)

STM reset is prevented when

IXI
III

(5)p~

In other words, the proportion lXI/III of the input pattern I which is matched by
the top-down template to generate X must exceed p in order to prevent STM reset
at F2.

While F2 is inactive (Fig. 5b), I XI = I II. Activation of A is always forbidden in
this case to prevent an input I from resetting its correct F2 code. By (5), this
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constraint is achieved if

p ~ 1; (6)

that is, if P ~ Q.
In summary, due to the t Rule, a bad mismatch at F 1 causes a large collapse of

total F1 activity, which leads to activation of A. In order for this to happen, the
system maintains a measure of the original level of total F1 activity and compares
this criterion level with the collapsed level of total F1 activity. The criterion level is
computed by summing bottom-up inputs from I to A. This sum provides a stable
criterion because it is proportional to the initial activation of F1 by the bottom-up
input, and it remains unchanged as the matching process unfolds in real-time.

We now illustrate how a low vigilance level leads to learning of coarse categories,
whereas a high vigilance level leads to learning of fine categories. Suppose, for
example, that a low vigilance level has led to a learned grouping of inputs which
need to be distinguished for successful adaptation to a prescribed input environ-
ment, but that a punishing event occurs as a consequence of this erroneous grouping
(Sect. 2D). Suppose that, in addition to its negative reinforcing effects, the punishing
event also has the cognitive effect of increasing sensitivity to pattern mismatches.
Such an increase in sensitivity is modelled within the network by an increase in the
vigilance parameter, p, defined by (3). Increasing this single parameter enables the
network to discriminate patterns which previously were lumped together. Once these
patterns are coded by different categories in F2' the different categories can be
associated with different behavioral responses. In this way, environmental feedback
can enable the network to parse more finely whatever input patterns happen to
occur without altering the feature detection process per se. The vigilance parameter
is increased if a punishing event amplifies all the signals from the input pattern to A
so that parameter P increases. Alternatively, p may be increased either by a
nonspecific decrease in the size Q of signals from F1 to A, or by direct input signals
to A.

Figure 8 describes a series of simulations in which four input patterns-
A, B, C, D-are coded. In these simulations, A c B c C c D. The different parts
of the figure show how categorical learning changes with changes of p. When
p = 0.8 (Fig. 8a), 4 categories are learned: (A)(B)(C)(D). When p = 0.7 (Fig. 8b),
3 categories are learned: (A}(B)(C, D). When p = 0.6 (Fig. 8c), 3 different cate-
gories are learned: (A}(B, C}(D). When p = 0.5 (Fig. 8d), 2 categories are learned:
(A, B}(C, D). When p = 0.3 (Fig. 8e), 2 different categories are learned:
(A, B, C}(D). When p = 0.2 (Fig. 8f), all the patterns are lumped together into a

single category.

11. RAPID CLASSIFICATION OF AN ARBITRARY TYPE FONT

In order to illustrate how an ART network codifies a more complex series of
patterns, we show in Fig. 9 the first 20 trials of a simulation using alphabet letters as
input patterns. In Fig. 9a, the vigilance parameter p = 0.5. In Fig. 9b, p = 0.8.
Three properties are notable in these simulations. First, choosing a different
vigilance parameter can determine different coding histories, such that higher
vigilance induces coding into finer categories. Second, the network modifies its
search order on each trial to reflect the cumulative effects of prior learning, and
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FIG. 8. Influence of vigilance level on categorical groupings: As the vigilance parameter p decreases.
the number of categories progressively decreases.

bypasses the orienting subsystem to directly access categories after learning has
taken place. Third, the templates of coarser categories tend to be more abstract
because they must approximately match a larger number of input pattern exem-
plars.

Given p = 0.5, the network groups the 26 letter patterns into 8 stable categories
within 3 presentations. In this simulation, F2 contains 15 nodes. Thus 7 nodes
remain uncoded because the network self-stabilizes its learning after satisfying
criteria of vigilance and global self-consistency. Given p = 0.8 and 15 F2 nodes, the
network groups 25 of the 26 letters into 15 stable categories within 3 presentations.
The 26th letter is rej~cted by the network in order to self-stabilize its learning while
satisfying its criteria of vigilance and global self-consistency. Given a choice of p
closer to 1, the network classifies 15 letters into 15 distinct categories within 2
presentations. In general, if an ART network is endowed with sufficiently many
nodes in F1 and F2, it is capable of self-organizing an arbitrary ordering of
arbitrarily many and arbitrarily complex input patterns into self-stabilizing recogni-
tion categories subject to the constraints of vigilance and global code self-con-
sistency.

We now turn to a mathematical analysis of the properties which control learning
and recognition by an ART network.

+
1 RES

1+*
2 1 RES

1+*
RES
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FIG. 9. Alphabet learning: different vigilance levels cause different numbers of letter categories and
different critical feature patterns, or templates, to form.

12. NETWORK EQUATIONS: INTERACTIONS BETWEEN SHORT TERM
MEMORY AND LONG TERM MEMORY PATTERNS

The STM and L TM equations are described below in dimensionless form [29],
where the number of parameters is reduced to a minimum.

A. STM Equations

The STM activity Xk of any node Uk in Fi or F2 obeys a membrane equation of
the form

(7)

where Jk+ is the total excitatory input to Uk' Jk- is the total inhibitory input to Uk'
and all the parameters are nonnegative. If A > 0 and C > 0, then the STM activity
Xk(t) remains within the finite interval I-BC~l, A-l] no matter how large the
nonnegative inputs Jk+ and Jk- become.
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We denote nodes in Fi by Vi' where i = 1,2,..
vi' where j = M + 1, M + 2,..., N. Thus by (7),

., M. We denote nodes in Fl by

(8)

and

(9)

In the notation of (1) and Fig. 4a, the Fl activity pattern X = (Xl' X2'.." X M) and
the F2 activity pattern Y = (XM+l' XM+2"..' XN).

The input Jj+ to the ith node Vj of Fl is a sum of the bottom-up input Ij and the
top-down template input V;

~ = D1Lf(Xj)Zjj;

j

that is,

1;+ = Ii + V;,

where f(Xi) is the signal generated by activity xi of vi' and Zii is the LTM trace in
the top-down pathway from vi to Vi. In the notation of Fig. 4b, the input pattern
I = (11,12,..., 1M), the signal pattern U = (f(XM+l)' f(XM+2)'...' f(XN»' and
the template pattern V = (VI, V2,. .., V M).

The inhibitory input Ji- governs the attentional gain control signal

= Lf(xj)'
j

J.-I

Thus Ji- = 0 if and only if F2 is inactive. When F2 is active, Ji- > 0 and hence
term Ji- in (8) has a nonspecific inhibitory effect on all the STM activities Xi of Fl.
In Fig. 5c, this nonspecific inhibitory effect is mediated by inhibition of an active
excitatory gain control channel. Such a mechanism is formally described by (12).
The attentional gain control signal can be implemented in any of several formally
equivalent ways. See the Appendix for some alternative systems.

The inputs and parameters of STM activities in F2 are chosen so that the F2 node
which receives the largest input from Fl wins the competition for STM activity.
Theorems provide a basis for choosing these parameters [30-32]. The inputs ~+ and
~- to the F2 node vi have the following form.

Input ~+ adds a positive feedback signal g(xi) from vi to itself to the bottom-up
adaptive filter input 1j, where

1j = D2Lh(x;)Zij
i

That is,

~+ = g(Xj) + 1)'
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where h(Xi) is the signal emitted by the FI node Vi and zii is the LTM trace in the
pathway from Vi to vio Input ~- adds up negative feedback signals g(Xk) from all
the other nodes in F2,

.lj- = L g(Xk)

k"'j
(15)

In the notation of (1) and Fig. 4a, the output pattern S = (h(Xl)' h(X2)'...' h(x M»
and the input pattern T = (TM+l' TM+2'...' TN).

Taken together, the positive feedback signal g(xi) in (14) and the negative
feedback signal ~- in (15) define an on-center off-surround feedback interaction
which contrast-enhances the STM activity pattern Yof F2. in response to the input
pattern T. When F2's parameters are chosen properly, this contrast-enhancement
process enables F2 to choose for STM activation only the node vi which receives the
largest input 1j. In particular, when parameter E is small in Eq. (9), F2 behaves
approximately like a binary switching, or choice, circuit:

f(Xj) = {~ if1j= max{Tk}
otherwise.

In the choice case, the top-down template in (10) obeys

v = { DIZij
I 0

if the F2 node Vj is active

if F2 is inactive.

Since V; is proportional to the LTM trace zii of the active £2 node vi' we can define
the template pattern that is read-out by each active £2 node vi to be V(j) =

D1(zjl'Zi2"'.'ZiM).

B. L TM Equations
The equations for the bottom-up LTM traces zii and the top-down LTM traces

Z ii between pairs of nodes Vi in F1 and vi in F2 are formally summarized in this
section to facilitate the description of how these equations help to generate useful
learning and recognition properties.

The L TM trace of the bottom-up pathway from Vi to Vi obeys a learning

equation of the form

In (18), term f(xj) is a postsynaptic sampling, or learning, signal because f(Xj) = 0
implies (d/dt)Zij = O. Term f(Xj) is also the output signal of Vj to pathways from Vj
to F1, as in (10).

The LTM trace of the top-down pathway from Vj to Vi also obeys a learning
equation of the form
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In the present model, the simplest choice of K2 and Eli was made for the top-down
L TM traces

K 2 = E. = 1
Jf

A more complex choice of Ejj was made for the bottom-up LTM traces in order
to generate the Weber Law Rule of Section 14. The Weber Law Rule requires that
the positive bottom-up L TM traces learned during the encoding of an Fl pattern X
with a smaller number IXI of active nodes be larger than the LTM traces learned
during the encoding of an Fl pattern with a larger number of active nodes, other
things being equal. This inverse relationship between pattern complexity and
bottom-up L TM trace strength can be realized by allowing the bottom-up L TM
traces at each node Vj to compete among themselves for synaptic sites. The Weber
Law Rule can also be generated by the STM dynamics of Fl when competitive
interactions are assumed to occur among the nodes of Fl. Generating the Weber
Law Rule at Fl rather than at the bottom-up L TM traces enjoys several ad-
vantages, and this model will be developed elsewhere [33]. In particular, implement-
ing the Weber Law Rule at Fl enables us to choose Ejj = 1.

Competition among the L TM traces which abut the node Vj is modelled herein by
defining

Ejj = h{xj) + L -1 L h{Xk)

k..j (21)

and letting Kl = constant. It is convenient to write Kl in the form Kl = KL. A
physical interpretation of this choice can be seen by rewriting (18) in the form

By (22), when a postsynaptic signal f(xj) is positive, a positive presynaptic signal
from the PI node Vi can commit receptor sites to the LTM process Zij at a rate
(1 -zij)Lh(Xi)Kf(xj)' In other words, uncommited sites-which number (1 -Zij)
out of the total population size I-are committed by the joint action of signals
Lh(Xi) and Kf(xj)' Simultaneously signals h(Xk)' k * i, which reach Vj at different
patches of the Vj membrane, compete for the sites which are already committed to
Zij via the mass action competitive terms -zijh(Xk)Kf(xj)' In other words, sites
which are committed to Zij lose their commitment at a rate -ZijLk..ih(xk)Kf(xj)
which is proportional to the number of committed sites Zij' the total competitive
input -Lk..ih(xk)' and the postsynaptic gating signal Kf(xj)'

Malsburg and Willshaw [34] have used a different type of competition among
L TM traces in their model of retinotectal development. Translated to the present
notation, Malsburg and Willshaw postulate that for each fixed PI node Vi' competi-
tion occurs among all the bottom-up LTM traces Zij in pathways emanating from
Vi in such a way as to keep the total synaptic strength LjZij constant through time.
This model does not generate the Weber Law Rule. We show in Section 14 that the
Weber Law Rule is essential for achieving direct access to learned categories of
arbitrary input patterns in the present model.
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C. STM Reset System

A simple type of mismatch-mediated activation of A and STM reset of F2 by A
were implemented in the simulations. As outlined in Section 10, each active input
pathway sends an excitatory signal of size P to the orienting subsystem A.
Potentials Xi of F1 which exceed zero generate an inhibitory signal of size Q to A.
These constraints lead to the following Reset Rule.

Reset Rule

Population A generates a nonspecific reset wave to F2 whenever

IXI P

~<P=Q' (23)

where I is the current input pattern and IXI is the number of nodes across F1 such
that Xi > O. The nonspecific reset wave successively shuts off active F2 nodes until
the search ends or the input pattern I shuts off. Thus (16) must be modified as
follows to maintain inhibition of all F2 nodes which have been reset by A during the
presentation of I:

F 2 Choice and Search

1
0

if 1J = max{Tk: k E J}

otherwise
(24)

j(Xj) 

=

where J is the set of indices of F2 nodes which have not yet been reset on the
present learning trial. At the beginning of each new learning trial, J is reset at
{M + 1, ..., N}. (See Fig. 1.) As a learning trial proceeds, J loses one index at a
time until the mismatch-mediated search for F2 nodes terminates.

13. DIRECT ACCESS TO SUBSET AND SUPERSET PATrERNS

The need for a Weber Law Rule can be motivated as follows. Suppose that a
bottom-up input pattern [(I) activates a network in which pattern [(I) is perfectly
coded by the adaptive filter from F1 to F2. Suppose that another pattern [(2) is also
perfectly coded and that [(2) contains [(I) as a subset; that is, [(2) equals [(I) at all
the nodes where [(I) is positive. If [(I) and [(2) are sufficiently different, they should
have access to distinct categories at F2. However, since [(2) equals [(I) at their
intersection, and since all the F1 nodes where [(2) does not equal [(I) are inactive
when [(I) is presented, how does the network decide between the two categories
when [(I) is presented?

To accomplish this, the node V(l) in F2 which codes [(I) should receive a bigger
signal from the adaptive filter than the node V(2) in F2 which codes a superset [(2) of
[(I). In order to realize this constraint, the L TM traces at V(2) which filter [(I) should
be smaller than the LTM traces at v(l) which filter [(I). Since the LTM traces at V(2)
were coded by the superset pattern [(2), this constraint suggests that larger patterns
are encoded by smaller L TM traces. Thus the absolute sizes of the L TM traces
projecting to the different nodes V(l) and V(2) reflect the overall scale of the patterns
[(I) and [(2) coded by the nodes. The quantitative realization of this inverse
relationship between L TM size and input pattern scale is called the Weber Law
Rule.
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FIG. 10. The Weber Law Rule and the Associative Decay Rule enable both subset and superset input
patterns to directly access distinct F2 nodes: (a) and (b) schematize the learning induced by presentation
of rl) (a subset pattern) and r2) (a superset pattern). Larger path endings designate larger learned L TM
traces. (c) and (d) schematize how rl) and [(2) directly access the F2 nodes v(l) and v(2). respectively.
This property illustrates how distinct, but otherwise arbitrary, input patterns can directly access different
categories. No restrictions on input orthogonality or linear predictability are needed.

This inverse relationship suggests how a subset ](1) may selectively activate its
node V(I) rather than the node v(2) corresponding to a superset ](2). On the other
hand, the superset ](2) must also be able to directly activate its node V(2) rather than
the node V(I) of a subset ](1). To achieve subset access, the positive L TM traces of
V(I) become larger than the positive LTM traces of V(2). Since presentation of ](2)
activates the entire subset pattern ](1), a further property is needed to understand
why the subset node v(l) is not activated by the superset 1(2). This property-which
we call the Associative Decay Rule-implies that some LTM traces decay toward
zero during learning. Thus the associative learning laws considered herein violate
Hebb's [35] learning postulate.

In particular, the relative sizes of the LTM traces projecting to an F2 node reflect
the internal structuring of the input patterns coded by that node. During learning of
1(1), the LTM traces decay toward zero in pathways which project to V(I) from F1
cells where ](1) equals zero (Fig. lOa). Simultaneously, the LTM traces become large
in the pathways which project to V(I) from F1 cells where 1(1) is positive (Fig. lOa).
In contrast, during learning of ](2), the L TM traces become large in all the pathways
which project to V(2) from F1 cells where 1(2) is positive (Fig. lOb), including those
cells where ](1) equals zero. Since ](2) is a superset of 1(1), the Weber Law Rule
implies that LTM traces in pathways to v(2) (Fig. lOb) do not grow as large as LTM
traces in pathways to V(I) (Fig. lOa). On the other hand, after learning occurs, more
positive L TM traces exist in pathways to V(2) than to V(I). Thus a trade-off exists
between the individual sizes of L TM traces and the number of positive L TM traces
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which lead to each F2 node. This trade-off enables 1(1) to access vII) (Fig. 10c) and
112) to access v12) (Fig. 10d).

14. WEBER LAW RULE AND ASSOCIATIVE DECAY RULE FOR BOTTOM-UP
L TM TRACES

We now describe more precisely how the conjoint action of a Weber Law Rule
and an Associative Decay Rule allow direct access to both subset and superset F2
codes. To fix ideas, suppose that each input pattern I to Fi is a pattern of O's and
1 's. Let III denote the number of l's in the input pattern I. The two rules can be
summarized as follows.

Associative Decay Rule

As learning of I takes place, L TM traces in the bottom-up coding pathways and
the top-down template pathways between an inactive F1 node and an active F2
node approach O. Associative learning within the L TM traces can thus cause
decreases as well as increases in the sizes of the traces. This is a non-Hebbian form
of associative learning.

Weber Law Rule

As learning of I takes place, L TM traces in the bottom-up coding pathways
which join active F1 and F2 nodes approach an asymptote of the form

a

.B + III

where a and f3 are positive constants. By (25), larger III values imply smaller
positive LTM traces in the pathways encoding I.

Direct access by the subset 1(1) and the superset 1(2) can now be understood as
follows. By (25), the positive L TM traces which code 1(1) have size

a

fJ + I [(i) I

and the positive L TM traces which code [(2) have size

a

fJ + 1/(2) I'

where 11(1)1 < 11(2)1. When 1(1) is presented at F1,11(1)1 nodes in F1 are supra-
threshold. Thus the total input to V(l) is proportional to

al/(I)1

P + 1/(1) I
Tll =

and the total input to V(2) is proportional to

al/(l) I

fJ + 1/(2) I
(29)T12 =
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Because (25) defines a decreasing function of III and because 11(1)1 < 11(2)1, it
follows that TII > Tu. Thus 1(1) activates vII) instead of V(2).

When 1(2) is presented at FI, 11(2)1 nodes in FI are suprathreshold. Thus the total
input to V(2) is proportional to

a[./(2) [.

.B + 1/(2)1
T22 =

We now invoke the Associative Decay Rule. Because ](2) is superset of ](1), only
those Fl nodes in ](2) that are also activated by ](1) project to positive L TM traces
at V(l). Thus the total input to vII) is proportional to

aI1(1)1

fJ + 11(1) I
T21 =

Both T 22 and T 21 are expressed in terms of the Weber function

W(lII) = (32)
alII

p+"j/1'

which is an increasing function of 1/1. Since 1/(1)1 < 1/(2)1, T22 > T21. Thus the
superset /(2) activates its node V(2) rather than the subset node V(1). In summary,
direct access to subsets and supersets can be traced to the opposite monotonic
behavior of the functions (25) and (32).

It remains to show how the Associative Decay Rule and the Weber Law Rule are
generated by the STM and L TM laws (8)-(22). The Associative Decay Rule for
bottom-up LTM traces follows from (22). When the F1 node Vi is inactive,
h(Xi) = O. When the F2 node Vj is active, f(Xj) = 1. Thus if Zij is the LTM trace in
a bottom-up pathway from an inactive F1 node Vi to an active F2 node vi' (22)
reduces to

The signal function h(Xk) is scaled to rise steeply from 0 to the constant 1 when Xk
exceeds zero. For simplicity, suppose that

h(Xk) = {~ ifxk> 0
otherwise.

Thus during a learning trial when Vi is inactive,

L h(Xk) = lxI,
k..i

where IXI is the number of positive activities in the F1 activity pattern X. By (33)
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and (35), when Vi is inactive and vi is active,

d
"diZij = -KZijIXI (36)

which shows that Zjj decays exponentially toward zero.
The Weber Law Rule for bottom-up LTM traces Zjj follows from (22), (24), and

(34). Consider an input pattern I of O's and l's that activates III nodes in F1 and
node Vj in F2. Then, by (34),

M
L h(Xk) = III

k=l

For each Zij in a bottom-up pathway from an active Fl node Vi to an active F2
node vi' f(xj) = 1 and h(Xi) = 1, so

At equilibrium, dZjj/dt = O. It then follows from (38) that at equilibrium

a
Zij = fJ + III

as in (25), with a = Land .B = L -1. Both a and .B must be positive, which is the
case if L > 1. By (22), this means that each lateral inhibitory signal -h(Xk)' k * i,
is weaker than the direct excitatory signal Lh(x;), other things being equal.

When top-down signals from F2 to F1 supplement a bottom-up input pattern I
to F1, the number IXI of positive activities in X may become smaller than III due
to the t Rule. If Vj remains active after the F2 node Vj becomes active, (38)
generalizes to

By combining (36) and (40), both the Associative Decay Rule and the Weber Law
Rule for bottom-up LTM traces may be understood as consequences of the LTM

equation

d
diZij =

if Vi and Vj are active

if Vi is inactive and Vj is active (41)

if Vj is inactive.

Evaluation of term IXI in (41) depends upon whether or not a top-down template
perturbs F1 when a bottom-up input pattern I is active.
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15. TEMPLATE LEARNING RULE AND ASSOCIATIVE DECAY RULE FOR
TOP-DOWN L TM TRACES

The Template Learning Rule and the Associative Decay Rule together imply that
the top-down L TM traces in all the pathways from an F2 node vi encode the
critical feature pattern of all input patterns which have activated vi without
triggering F2 reset. To see this, as in Section 14, suppose that an input pattern Iof
O's and l's is being learned.

Template Learning Rule

As learning of I takes place, L TM traces in the top-down pathways from an
active F2 node to an active F1 node approach 1.

The Template Learning Rule and the Associative Decay Rule for top-down L TM
traces Z ji follow by combining (19) and (20) to obtain

(42)

If the F2 node vi is active and the F1 node Vi is inactive, then h(Xi) = 0 and
f(Xi) = 1, so (42) reduces to

(43)
d
dtZji = -Zj;

Thus z -; decays exponentially toward zero and the Associative Decay Rule holds.
On thiother hand, if both Vi and Vj are active, then f(Xj) = h(Xi) = 1, so (42)
reduces to

d
diZji = -Zji + 1 (44)

Thus Z ji increases exponentially toward 1 and the Template Learning Rule holds.
Combining equations (42)-(44) leads to the learning rule governing the LTM

traces Z ji in a top-down template

(45)

if Vi and vi are active

if Vi is inactive and vi is active

if vi is inactive.

Equation (45) says that the template of vi tries to learn the activity pattern across F1
when vi is active.

The t Rule controls which nodes Vi in (45) remain active in response to an input
pattern I. The t Rule implies that if the F2 node vi becomes active while the F1
node Vi is receiving a large bottom-up input Ii, then Vi will remain active only if Z i
is sufficiently large. Hence there is some critical strength of the top-down L TM
traces such that if Z ii falls below that strength, then Vi will never again be active
when vi is active, even if Ii is large. As long as Z ii remains above the critical L TM
strength, it will increase when Ii is large and vi is active, and decrease when Ii is

d { -Z ji + 1

d/Zji = ;Zji
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small and v j is active. Once Z ji falls below the critical L TM strength, it will decay
toward 0 whenever v is active; that is, the feature represented by Vi drops out of the

J
critical feature pattern encoded by vi"

These and related properties of the network can be summarized compactly using
the following notation.

Let I denote the set of indices of nodes Vi which receive a positive input from the
pattern I. When I is a pattern of O's and 1 's, then

ifieI
otherwise,

(46)

where I is a subset of the F1 index set {I... M}. As in Section 12, let VU) = D1(zj1
...Z ji ...Z jM) denote the template pattern of top-down L TM traces in pathways
leading from the F2 node vi The index set VU) = VU)(t) is defined as follows:
i E VU) iff Zji is larger than the critical LTM strength required for Vi to be active
when Vj is active and i E I. For fixed t, let X denote the subset of indices {I... M}
such that i E X iff the F1 node Vi is active at time t.

With this notation, the t Rule can be summarized by stating that when a pattern
I is presented,

x=[
I

I () y(j)

if £2 is inactive

if the £2 node vi is active.

The link between STM dynamics at F1 and F2 and L TM dynamics between F1 and
F2 can now be succinctly expressed in terms of (47),

K[(l -zjj)L -zjjUXI -1)]

-KIXlzjj

if i E X and f(Xj) = 1

if i E: X and f(Xj) = 1

if f(Xj) = 0

d

~Zij=
0

and

if i E X and f(xj) = 1

if i ~ X and f(xj) = 1

iff(xj) = o.

d
dt Z ji = (49)

A number of definitions that were made intuitively in Sections 3-9 can now be
summarized as follows.

Definitions

Coding
An active F2 node vJ is said to code an input Ion a given trial if no reset of vJ

occurs after the template V(J) is read out at Fl'
Reset could, in principle, occur due to three different factors. The read-out of the

template v(J) can change the activity pattern X across Fl. The new pattern Xcould
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conceivably generate a maximal input via the F1 -+ F2 adaptive filter to an F2 node
other than v J. The theorems below show how the f Rule and the learning rules
prevent template read-out from undermining the choice of vJ via the F1 -+ F2
adaptive filter. Reset of vJ could also, in principle, occur due to the learning induced
in the LTM traces ZiJ and ZJi by the choice of vJ. In a real-time learning system
whose choices are determined by a continuous flow of bottom-up and top-down
signals, one cannot take for granted that the learning process, which alters the sizes
of these signals, will maintain a choice within a single learning trial. The theorems in
the next sections state conditions which prevent either template readout or learning
from resetting the F2 choice via the adaptive filter from F1 to F2.

Only the third possible reset mechanism-activation of the orienting subsystem
A by a mismatch at F1-is allowed to reset the F2 choice. Equations (5) and (47)
imply that if vJ becomes active during the presentation of I, then inequality

II n V(J)! ~ pili (50)

is a necessary condition to prevent reset of vJ by activation of A. Sufficient
conditions are stated in the theorems below.

Direct Access

Pattern I is said to have direct access to an £2 node vJ if presentation of I leads
at once to activation of vJ and vJ codes Ion that trial.

By Eqs. (13) and (34), input I chooses node VJ first if, for all j * J,

r. ZiJ > r. Zij' (51)
iEl iEl

The conditions under which VJ then codes I are characterized in the theorems
below.

Fast Learning

For the remainder of this article we consider the fast learning case in which
learning rates enable L TM traces to approximately reach the asymptotes determined
by the STM patterns on each trial. Given the fast learning assumption, at the end of
a trial during which VJ was active, (48) implies that

L
ifiEXZiJ = \: -1 + Ixi

ifi~X

and (49) implies that

1 if i E X (53)
0 if i ~ X.

Thus although Zij * Zji in (52) and (53), Zij is large iff Zji is large and Zij = 0 iff
Z ji = O. We can therefore introduce the following definition.

Asymptotic Learning
An F2 node Vj has asymptotically learned the STM pattern X if its LTM traces

Zij and Zji satisfy (52) and (53).

ZJi =
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By (47), X in (52) and (53) equals either I or I n yu). This observation motivates
the following definition.

Perfect Learning
An F2 node vi has perfectly learned an input pattern I iff vi has asymptotically

learned the STM pattern X = I.

16. DIRECT ACCESS TO NODES CODING PERFECTLY LEARNED PATTERNS

We can now prove the following generalization of the fact that subset and
superset nodes can be directly accessed (Sect. 13).

THEOREM 1 (Direct access by perfectly learned patterns). An input pattern I has
direct access to a node v J which has perfectly learned I if L > 1 and all initial
bottom-up L TM traces satisfy the

Direct Access Inequality 0 < Zjj(O) <
L

L -1 + M'

where M is the number o/nodes in Fl'

Proof In order to prove that I has direct access to vJ we need to show that: (i)
vJ is the first F2 node to be chosen; (ii) VJ remains the chosen node after its
template V(J) is read out at F1; (iii) read out of V(J) does not lead to F2 reset by
the orienting subsystem; and (iv) v J remains active as fast learning occurs.

To prove property (i), we must establish that, at the start of the trial, ~ > 1J for
all j * J. When I is presented, III active pathways project to each F2 node. In
particular, by (13) and (34),

~ = D2 L ZiJ
iEI

and
T=D 2 ~z J i.." 'J

iEI

Because node vJ perfectly codes I at the start of the trial, it follows from (52) that

ifieI

if i ~ I

By (55) and (57),

D2LIII

L -1 + III
TJ =

In order to evaluate 1J in (56), we need to consider nodes vi which have asymptoti-
cally learned a different pattern than I, as well as nodes vi which are as yet
uncommitted. Suppose that vi' j :;0 J, has asymptotically learned a pattern VU) :;0 I.
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Then by (52),

if; E VU)

if i $ yu).

By (59), the only positive L TM traces in the sumLi E IZ ij in (56) are the traces with
indices i E I n VU). Moreover, all of these positive LTM traces have the same
value. Thus (59) implies that

We now prove that TJ in (58) is larger than 1J in (60) if L > 1; that is,

II () VU)I

L-l+IV(fll"

III >
L -1 + III

Suppose first that IV(J)I > III. Then III ~ II () VU)I and (L -1 + III) <
(L -1 + IV(J)I), which together imply (61).

Suppose next that IV(J)I ~ III. Then, since V(J) * I, it follows that III >
II () V(})I. Thus, since the function w/(L -1 + w) is an increasing function of w,

II n VU>I

L-l+IInVU>1

III >
L -1 + III

Finally, since IVU)I oS II n V{f)I,

Inequalities (62) and (63) together imply (61). This completes the proof that I first
activates vJ rather than any other previously coded node vi"

It remains to prove that I activates vJ rather than an uncommitted node vi which
has not yet been chosen to learn any category. The L TM traces of each uncom-
mitted node vi obey the Direct Access Inequality (54), which along with III ~ M
implies that

> D2 L Zij = 1jo
ieI

T, =

This completes the proof of property (i).
The proof of property (ii), that VJ remains the chosen node after its template V(J)

is read out, follows immediately from the fact that y(J) = I. By (47), the set X of
active nodes remains equal to I after V(J) is read-out. Thus TJ and 1J are
unchanged by read-out of V(J), which completes the proof of property (ii).
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Property (ill) also follows immediately from the fact that I n VI}) = I in the
inequality

II n v(J)1 ~ pili. (50)

Property (iv) follows from the fact that, while vJ is active, no new learning occurs,
since v J had already perfectly learned input pattern I before the trial began. This
completes the proof of Theorem 1.

17. INITIAL STRENGTHS OF LTM TRACES

A. Direct Access Inequality: Initial Bottom-Up LTM Traces are Small

Theorem 1 shows that the Direct Access Inequality (54) is needed to prevent
uncommitted nodes from interfering with the direct activation of perfectly coded
nodes. We now show that violation of the Direct Access Inequality may force all
uncommitted nodes to code a single input pattern, and thus to drastically reduce the
coding capacity of F2.

To see this, suppose that for all vi in F2 and all i E I,

L
Zjj(O) > L -1 + III

Suppose that on the first trial, vii is the first F2 node to be activated by input [.
Thus 1JI > 1J' where j * A, at the start of the trial. While activation of vii persists,
1JI decreases towards the value D2LIII(L -1 + 111)-1 due to learning. However,
for all j *A,

D2LIII

L -1 + III
1J = D2 L Zij(O) >

iEI
(66)

By (66), 1ft eventually decreases so much that 1f. = 1f2 for some other node Vjz in
F2. Thereafter, 1ft and 1f2 both approach D2LIII(L -1 + 111)-1 as activation
alternates between vii and vjz' Due to inequality (65), all F2 nodes Vj eventually are
activated and their 1f values decrease towards D2LIII(L -1 + 111)-1. Thus all the
F2 nodes asymptotically learn the same input pattern I. The Direct Access In-
equality (54) prevents these anomalies from occurring. It makes precise the idea that
the initial values of the bottom-up LTM traces Zij(O) must not be too large.

B. Template Learning Inequality: Initial Top-Down Traces are Large

In contrast, the initial top-down L TM traces Z ji(O) must not be too small. The t
Rule implies that if the initial top-down L TM traces Z ji(O) were too small, then no
uncommitted F2 node could ever learn any input pattern, since all F1 activity would
be quenched as soon as F2 became active.

To understand this issue more precisely, suppose that an input I is presented.
While F2 is inactive, X = I. Suppose that, with or without a search, the uncom-
mitted F2 node vJ becomes active on that trial. In order for VJ to be able to encode
I given an arbitrary value of the vigilance parameter p, it is necessary that X remain
equal to 1 after the template V(J) has been read out; that is,

(67)I n y<J)(O) = I for any I.
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Because f is arbitrary, the t Rule requires that y(J) initially be the entire set
{I,... ,M}. In other words, the initial strengths of all the top-down LTM traces
ZJl... ZJM must be greater than the critical LTM strength, denoted by i, that is
required to maintain suprathreshold STM activity in each Fl node Vi such that
i E I. Equation (49) and the t Rule then imply that, as long as f persists and V J
remains active, ZJi ~ 1 for i E I and ZJi ~ 0 for i $ I. Thus y(J) contracts from
{I,..., M} to I as the node vJ encodes the pattern f.

It is shown in the Appendix that the following inequalities imply the t Rule

t Rule Inequalities

max{l, Dl < Bl < 1 + Dl;

and that the critical top-down L TM strength is

B-11

Dl
i=

Then the

Template Learning Inequality

1> Z (O) > Z
-Jf

implies that VU)(O) = {I M} for all j, so (67) holds.

C. Activity-Dependent Nonspecific Tuning of Initial LTM Values

Equations (52) and (53) suggest a simple developmental process by which the
opposing constraints on zljO) and Zjl(O) of Sections 17A and B can be achieved.
Suppose that at a developmental stage prior to the category learning stage, all Fl
and F2 nodes become endogenously active. Let this activity nonspecifically influence
Fl and F2 nodes for a sufficiently long time interval to allow their LTM traces to
approach their asymptotic values. The presence of noise in the system implies that
the initial Z Ij and Z ji values are randomly distributed close to these asymptotic
values. At the end of this stage, then,

(71)
L

Zij(O) = L -1 + M

and
Zj;(O) ~ 1

for all i = 1... M and j = M + 1... N. The bottom-up L TM traces Z;j(O) and the
top-down L TM traces Z j;(O) are then as large as possible, and still satisfy the Direct
Access Inequality (54) and the Template Learning Inequality (70). Switching from
this early developmental stage to the category learning stage could then be viewed as
a switch from an endogenous source of broadly-distributed activity to an exogenous
source of patterned activity.
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18. SUMMARY OF THE MODEL

Below, we summarize the hypotheses that define the model. All subsequent
theorems in the article assume that these hypotheses hold.

Binary Input Patterns

ifiEI
otherwise.

Automatic Bottom-Up Activation and f Rule

x=[
I

I n yU)

if F2 is inactive

if the F2 node vi is active.

Weber Law Rule and Bottom-Up Associative Decay Rule

d { K [(1 -zjj)L -zjjUXI -1)]

dtZjj = -KIX)zjj

0

if i E X and j(Xj) = 1

if i ~ X and j(Xj) = 1

ifj(x;) = O.

Template Learning Rule and Top-Down Associative Decay Rule

-z + 1)1

z.
)1

if j E X and f(xj) = 1

if j ~ X and f(xj) = 1

iff(xj) = O.

d
;[tZjj =

{~

Reset Rule

An active F2 node Vj is reset if

II n VU)I

III

p
< P= Q"

Once a node is reset, it remains inactive for the duration of the trial.

F 2 Choice and Search

If J is the index set of F2 nodes which have not yet been reset on the present
learning trial, then

if Tj = max{Tk: k E J}

otherwise,

where

T = D2 ~ z..
J £..., IJ

ieX
(74)
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In addition, all STM activities Xi and Xj are reset to zero after each learning trial.
The initial bottom-up LTM traces Z;j(O) are chosen to satisfy the

Direct Access Inequality

0 < Z;j(O) <
L

L-l+M

The initial top-down L TM traces are chosen to satisfy the

Template Learning Inequality

Bl -1

Dl
1 ~ Zjj(O) > z=

Fast Learning

It is assumed that fast learning occurs so that, when vi in F2 is active, all L TM
traces approach the asymptotes,

ifieX

if i It: X

and
ifieX
ifi~X (53)

on each learning trial. A complete listing of parameter constraints is provided in
Table 1.
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19. ORDER OF SEAR~~D STABLE CHOICES IN SHORT-TERM MEMORY

We will now analYi~urtherproperties of the class of ART systems which satisfy
the hypotheses in Section 18. We will begin by characterizing the order of search.
This analysis provides'~ basis 'or proving that learning self-stabilizes and leads to
recognition by direct access.

This discussion of search order does not analyse where the search ends. Other
things being equal, a network with a higher level of vigilance will require better F1
matches, and hence will search more deeply, in response to each input pattern. The
set of learned filters and templates thus depends upon the prior levels of vigilance,
and the same ordering of input patterns may generate different L TM encodings due
to the settings of the nonspecific- vigilance parameter. The present discussion
considers the order in which search will occur in response to a single input pattern
which is presented after an arbitrary set of prior inputs has been asymptotically
learned.

We will prove that the values of the F2 input functions 1) at the start of each trial
determine the order in which F2 nodes are searched, assuming that no F2 nodes are
active before the trial begins. To distinguish these initial 1) values from subsequent
1) values, let OJ denote the value of 1) at the start of a trial. We will show that, if
these values are ordered by decreasing size, as in

0 > 0 > 0 > ... (76)h 12 13 '

then F2 nodes are searched in the order vii' Vj2' Vj)'..' on that trial. To prove this
result, we first derive a formula for 0,.

J

When an input I is first presented on a trial,

OJ = D2 L Zij' (77)
iel

where the Zij'S are evaluated at the start of the trial. By the Associative Decay Rule,
Zij in (77) is positive only if i E YV), where YV) is also evaluated at the start of the
trial. Thus by (77),

OJ = D2 }::: Zij

ielnVU)

If the L TM traces Z jj have undergone learning on a previous trial, then (52) implies

L ,-~,
z=

I} L -1 + I yU) I

for all i E V(}). If Vj is an uncommitted node, then the Template Learning
Inequality implies that I n V(j) = I. Combining these facts leads to the following

formula for OJ.

Order Function

D2LII n VU)\
if Vj has been chosen on a previous trial

(80)L -1 +IVU)I

D2LjEIZjj(O)

0=J
if Vi is an uncommitted node
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In response to input pattern I, (76) implies that node vii is initially chosen by F2.
After vii is chosen, it reads-out template V(h) to Fl. When V(h) and I both perturb
F1, a new activity pattern X is registered at F1, as in Fig. 4b. By the t Rule,
X = I n V(iI). Consequently, a new bottom-up signal pattern from F1 to F2 will
then be registered at F2. How can we be sure that vii will continue to receive the
largest input from F1 after its template is processed by F1? In other words, does
read-out of the top-down template VU,) confirm the choice due to the ordering of
bottom-up signals OJ in (76)? Theorem 2 provides this guarantee. Then Theorem 3
shows that the ordering of initial 1J values determines the order of search on each
trial despite the fact that the 1J values can fluctuate dramatically as different F2
nodes get activated.

THEOREM 2 (Stable choices in STM). Assume the model hypotheses of Section 18.
Suppose that an F2 node vJ is chosen for STM storage instead of another node Vj
because OJ > OJ" Then read-out of the top-down template V(J) preserves the inequality
T J > 1J and thus confirms the choice of v J by the bottom-up filter.

Proof Suppose that a node vJ is activated due to the input pattern I, and that
vJ is not an uncommitted node. When vJ reads out the template v(J) to F1, X =
I n V(J) by the t Rule. Then

1J = D2 L z..

iElnV(J)

Since Zij > 0 only if i E VU),

1J = D2 r. Zij
ieInV(J)nvIJ)

(82)

By (79), if 1J is not an uncommitted node,

By (80) and (83),

1] S OJ (84)

Similarly, if Vj is an uncommitted node, the sum 1) in (82) is less than or equal to
the sum OJ in (80). Thus read-out of template V(J) can only cause the bottom-up
signals 1j, other than TJ' to decrease. Signal TJ' on the other hand, remains
unchanged after read-out of V(J). This can be seen by replacing VU) in (83) by
V(J). Then

Hence, after V(J) is read-out

TJ = OJ

Combining (84) and (86) shows that inequality TJ > 1J continues to hold after V(J)
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is read out, thereby proving that top-down template read-out confirms the F2 choice
of the bottom-up filter.

The same is true if v J is an uncommitted node. Here, the Template Learning
Inequality shows that X = I even after v(J) is read out. Thus all bottom-up signals
1) remain unchanged after template read-out in this case. This completes the proof
of Theorem 2.

Were the ~ Rule not operative, read-out of the template V<h) might activate
many F1 nodes that had not previously been activated by the input I alone. For
example, a top-down template could, in principle, activate all the nodes of F1,
thereby preventing the input pattern, as a pattern, from being coded. Alternatively,
disjoint input patterns could be coded by a single node, despite the fact that these
two patterns do not share any features. The } Rule prevents such coding anomalies
from occurring.

THEOREM 3 (Initial filter values determine search order). The Order Function OJ
determines the order of search no matter how many times F2 is reset during a trial.

Proof Since OJ > OJ' > ..., node VJ' is the first node to be activated on a
I 2 ( ) 1

given trial. After template V 11 is read out, Theorem 2 implies that

1Jl = Oil> max{Oj: j *h} ~ max{1J: j *h

even though the full ordering of the 1)'s may be different from .that defined by the
O's. If v is reset by the orienting subsystem, then template V<1I) is shut off for the

J 11
remainder of the trial and subsequent values of 1). do not influence which F2 nodes
will be chosen.

As soon as vA and V<A) are shut off, T= OJ for all j *h. Since 012 > OJ) > '..,
node v is chosen next and template V62) is read-out. Theorem 2 implies that

12

1J2 = °h> max{Oj: j *11, h} ~ max{1J: j *11, h

Thus VU2) confirms the F2 choice due to °12 even though the ordering of 1] values
may differ both from the ordering of OJ values and from the ordering of 1] values
when V(j,) was active.

This argument can now be iterated to show that the values OJ, > °12 > ...of
the Order Function determine the order of search. This completes the proof of
Theorem 3.

20. STABLE CATEGORY LEARNING

Theorems 2 and 3 describe choice and search properties which occur on such a
fast time scale that no new learning can occur. We now analyse properties of
learning throughout an entire trial, and use these properties to show that code
learning self-stabilizes across trials in response to an arbitrary list of binary input
patterns. In Theorem 2, we proved that read-out of a top-down template confirms
the F2 choice made by the bottom-up filter. In Theorem 4, we will prove that
learning also confirms the F2 choice and does not trigger reset by the orienting
subsystem. In addition, learning on a single trial causes monotonic changes in the
L TM traces.
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THEOREM 4 (Learning on a single trial). Assume the model hypotheses of Sec-
tion 18. Suppose that an F2 node v J is chosen for STM storage and that read-out of the
template V(J) does not immediately lead to reset of node vJ by the orienting subsystem.
Then the LTM traces ZiJ and ZJi change monotonically in such a way that TJ increases
and all other 1j remain constant, thereby confirming the choice of vJ by the adaptive
filter. In addition, the set In y(J) remains constant during learning, so that learning
does not trigger reset ofVJ by the orienting subsystem.

Proof We first show that the LTM traces ZJi(t) can only change monotonically
and that the set X(t) does not change as long as VJ remains active. These
conclusions follow from the learning rules for the top-down LTM traces ZJi. Using
these facts, we then show that the ZiJ(t) change monotonically, that ~(t) can only
increase, and that all other 1j(t) must be constant while VJ remains active. These
conclusions follow from the learning rules for the bottom-up LTM traces ZiJ.
Together, these properties imply that learning confirms the choice of VJ and does
not trigger reset of v J by the orienting subsystem.

Suppose that read-out of V(J) is first registered by Fl at time t = to. By the t
Rule, X(to) = I n y(J)(to). By (49), ZJi(t) begins to increase towards 1 if i E X(to),
and begins to decrease towards 0 if i ~ X(to). The Appendix shows that when vJ is
active at F2, each activity Xi in F2 obeys the equation

dx;
dt

= -X; + (1 -A1X;)(I; + D1zJ;) -(B1 + C1X;)e

By (89), Xi(t) increases if ZJi(t) increases, and Xi(t) decreases if ZJi(t) decreases.
Activities Xi which start out positive hereby become even larger, whereas activities
Xi which start out non-positive become even smaller. In particular, X(t) = X(to) =
I n V(J)(to) for all times t ~ to at which VJ remains active.

We next prove that TJ(t) increases, whereas all other 1j(t) remain constant, while
vJ is active. We suppose first that vJ is not an uncommitted node before considering
the case in which v J is an uncommitted node. While v J remains active, the set
X(t) = I n V(J)(to)' Thus

L
iElnV(J)(/O)

TJ(t) = Dz
ZiJ(t

At time t = to' each LTM trace in (90) satisfies

L
Z;J(to) :;

L-l+IV(J)(to)1

due to (79). While VJ remains active, each of these L TM traces responds to the fact
that X(t) = I n V(J)(to). By (47) and (52), each ZjJ(t) with i E I n V(J)(to)
increases towards

L

L -1 + II n V{J)(t(j) I'

each ZiJ(t) with i ~ I n y(J)(to) decreases towards 0, and all other bottom-up
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LTM traces Zij(t) remain constant. A comparison of (91) with (92) shows that TJ(t)
in (90) can only increase while vJ remains active. In contrast, all other 1j(t) are
constant while VJ remains active.

If vJ is an uncommitted node, then no LTM trace ZiJ(t) changes before time
t = to. Thus

(93)ZiJ(tO) = ZiJ(O), i = 1,2, ,M.

By the Template Learning Inequality (75), I n V(J)(to) = I, so that (90) can be

written as

TJ(t) = D2 L ZjJ(t)
jel

By (93) and the Direct Access Inequality (54),

i = 1,2, ,M
L

ZiJ(tO) < L -1 + M'

While vJ remains active, X(t) = I n V(J)(to) = I, so that each z;J(t) in (94)

approaches the value

L
L -1 + III

Since III ~ M for any input pattern I, a comparison of (95) and (96) shows that
each ZiJ(t) with i E I increases while vJ remains active. In contrast, each ZiJ(t) with
i $ I decreases towards zero and all other Zij(t) remain constant. Consequently, by
(94), TJ(t) increases and all other 1j(t) are constant while vJ remains active. Thus
learning confirms the choice of vJ. Hence the set X(t) remains constant and equal to
I n V(J)(to) while learning proceeds.

This last fact, along with the hypothesis that read-out of V(J) does not im-
mediately cause reset of vJ' implies that learning cannot trigger reset of vJo By the
Reset Rule (73), the hypothesis that read-out of V(J) does not immediately cause
reset of v J implies that

11(\ V(J)(to)\ =IX(to) I ~ pili

The fact that X(t) does not change while vJ remains active implies that

(98)IX(t) I =IX(to)1 ~ pili

and hence that learning does not trigger reset of v J. Thus v J remains active and
learning in its LTM traces ZiJ(t) and ZJi(t) can continue until the trial is ended.
This completes the proof of Theorem 4.

Theorems 2-4 immediately imply the following important corollary, which il-
lustrates how t Rule matching, the learning laws, and the Reset Rule work together
to prevent spurious reset events.
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COROLLARY 1 (Reset by mismatch). An active F2 node VJ can be reset only by the
orienting subsystem. Reset occurs when the template V(J) causes an F1 mismatch such
that

II n V(J)I < pili

Reset cannot be caused within the attentional subsystem due to reordering of adaptive
filter signals 1J by template read-out or due to learning.

Theorem 4 implies another important corollary which characterizes how a tem-
plate changes due to learning on a given trial.

COROLLARY 2 (Subset recoding). If an F2 node vJ is activated due to an input I
and if read-out of V(J) at time t = to implies that

II n y(J)(to) I ~ pili.

then vJ remains active until I shuts off, and the template set V(J)(t) contracts from
V(J)(to) to In V(J)(to).

With these results in hand, we can now prove that the learning process self-stabi-
lizes in response to an arbitrary list of binary input patterns.

THEOREM 5 (Stable category learning). Assume the model hypotheses of Section
18. Then in response to an arbitrary list of binary input patterns, all LTM traces Z;j(t)
and Z j;(t) approach limits after a finite number of learning trials. Each template set
yv) remains constant except fior at most M -1 times tv) < tv) < ...< tv) at1 2 r

J

which it progressively loses elements, leading to the

VU>(tIJ»:) vu>(t~J»:) ...:) V(J>(t~!» (101)Subset Recoding Property

All LTM traces oscillate at most once due to learning. The LTM traces Zij(t) and
Zji(t) such that i ~ VV)(tf:» decrease monotonically to zero. The LTM traces Z;j(t)
and Z j;(t) such that i E VV)(t~J» are monotone increasing functions. The LTM traces
Zij(t) and Zji(t) such that i E vv)(tV» but i ~ V(J)(tljl1) can increase at times
t ~ tljl1 but can only decrease towards zero at times t > tljl1'

Proof Suppose that an input pattern I is presented on a given trial and the
Order Function satisfies

O. > 0 > O.
h 12 13

Then no learning occurs while F2 nodes are searched in the order Vh' Vh" .., by
Theorem 3. If all F2 nodes are reset by the search, then no learning occurs on that
trial. If a node exists such that

(102)II n V(j)1 :?:. pili,

then search terminates at the first such node, vi,. Only the LTM traces zii, and Zi,i
can undergo learning on that trial, by Theorem 4. In particular, if an uncommitted
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node v is reached by the search, then the Template Learning Inequality impliesJ.

II n VUk)1 =11 n V(}k)(O) I =111 ~ pili (103)

so that its L TM traces undergo learning on that trial. In summary, learning on a
given trial can change only the L TM traces of the F2 node v at which the searchJ.
ends.

Corollary 2 shows that the template set Vu.) of the node vi. is either constant or
contracts due to learning. A contraction can occur on only a finite number of trials,
because there are only finitely many nodes in Fl' In addition, there are only finitely
many nodes in F2, hence only finitely many template sets VU) can contract. The
Subset Recoding Property is hereby proved.

The monotonicity properties of the L TM traces follow from the Subset Recoding
Property and Theorem 4. Suppose for definiteness that the search on a given trial
terminates at a node vJ in response to an input pattern I. Suppose moreover that
the template set V(J)(t) contracts from v(J)(t1J» to V(J)(t12l) = I n v(J)(t1J»
due to read-out of the template V(J)(t1J» on that trial. A comparison of (91) and
(92) shows that each ZiJ(t) with i E V(J)(t12l) increases from

L

L -1 +IV(J){t1J»)f

to

L

L -1 + I v<J) (t121) r'

that each z;J(t) with i 4t v(J)(ti21) decreases towards zero, and that all other
bottom-up LTM traces Z;j(t) remain constant. In a similar fashion, each zJ;(t)
with i E V(J)(ti21) remains approximately equal to one, each zJ;(t) with i 4t
v(J)(ti21) decreases towards zero, and all other top-down LTM traces Zj;(t)
remain constant.

Due to the Subset Recoding Property (101),

>IV(J)(t~:»)I.IV(J)(t~J») I >IV(J)(t!J») I>

Thus each LTM trace ZiJ(t) with i E V(J)(t~:») increases monotonically, as from
(104) to (105), on the rJ trials where search ends at vJ and the template set V(J)(t)
contracts. On all other trials, these L TM traces remain constant. The other mono-
tonicity properties are now also easily proved by combining the Subset Recoding
Property (101) with the learning properties on a single trial. In particular, by the
Subset Recoding Property, no LTM traces change after time

,M+2 ,t = max{t~;>: j = M + ,N}

Thus all L TM traces approach their limits after a finite number of learning trials.
This completes the proof of Theorem 5.



ADAPTIVE PA1TERN RECOGNITION 97

21. CRITICAL FEATURE PATrERNS AND PROTOTYPES

The property of stable category learning can be intuitively summarized using the
following definitions.

The critical feature pattern at time t of a node Vj is the template VU)(t). Theorem
5 shows that the critical feature pattern of each node v j is progressively refined as
the learning process discovers the set of features that can match all the input
patterns which Vj codes. Theorem 5 also says that the network discovers a set of
self-stabilizing critical feature patterns as learning proceeds. At any stage of learn-
ing, the set of all critical feature patterns determines the order in which previously
coded nodes will be activated, via the Order Function

The Reset Function

11(') VU)I

III
R;=

determines how many of these nodes will actually be searched, and thus which node
may be recoded on each trial. In particular, an unfamiliar input pattern which has
never before been experienced by the network will directly access a node u 11 if the

Direct Access Conditions

(110)Ojl > max(Oj: j *h) and Ril ~ p

are satisfied.
An important example of direct access occurs when the input pattern I * satisfies

1* = VU), for some j = M + 1, M + 2,..., N. Such an input pattern is called a
prototype. Due to the Subset Recoding Property (101), at any given time a prototype
pattern includes all the features common to the input patterns which have previ-
ously been coded by node vr Such a prototype pattern may never have been
experienced itself. When an unfamiliar prototype pattern is presented for the first
time, it will directly access its category vi and is thus recognized. This property
follows from Theorem 1, since vi has perfectly learned 1*. Moreover, because
1* = V(i), a prototype is optimally matched by read-out of the template VU).

A prototype generates an optimal match in the bottom-up filter, in the top-down
template, and at Fl' even though it is unfamiliar. This is also true in human
recognition data [20, 22, 23]. Theorem 5 thus implies that an ART system can
discover, learn, and recognize stable prototypes of an arbitrary list of input patterns.
An ART system also supports direct access by unfamiliar input patterns which are
not prototypes, but which share invariant properties with learned prototypes, in the
sense that they satisfy the Direct Access Conditions.

22. DIRECT ACCESS AFTER LEARNING SELF-STABILIZES

We can now prove that all patterns directly access their categories after the
recognition learning process self-stabilizes. In order to discuss this property pre-
cisely, we define three types of learned templates with respect to an input pattern I:
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FIG. 11. Subset, superset, and mixed templates VU) with respect to an input pattern I: In (a), (b),
and (c), the lower black bar designates the set of Fl nodes that receive positive bottom-up inputs due to
I. The upper black bar designates the set of Fl nodes that receive positive top-down inputs due to the
template VU). (a) denotes a subset template VU) with respect to I. (b) denotes a superset template VU)
with respect to I. (c) denotes a mixed template VU) with respect to I. When node vi in F2 is not an
uncommitted node, the top-down LTM traces in the template VU) are large if and only if the LTM
traces in the corresponding bottom-up pathways are large (Sect. 15). The absolute bottom-up L TM
trace size depends inversely upon the size I VIi) I of V(i), due to the Weber Law Rule (Sect. 14). Larger
L TM traces are drawn as larger endings on the bottom-up pathways. The arrow heads denote the
pathways that are activated by I before any top-down template influences Fl.

subset templates, superset templates, and mixed templates. The L TM traces of a
subset template V satisfy V ~ I: they are large only at a subset of the F1 nodes
which are activated by the input pattern I (Fig. IIa). The L TM traces of a superset
template V satisfy V :) I: they are large at all the F1 nodes which are activated by
the input pattern I, as well as at some F 1 nodes which are not activated by I (Fig.
lIb). The LTM traces of a mixed template V are large at some, but not all, the F1
nodes which are activated by the input pattern I, as well as at some F1 nodes which
are not activated by I: the set I is neither a subset nor a superset of V (Fig. IIc).

THEOREM 6 (Direct access after learning self-stabilizes). Assume the model
hypotheses of Section 18. After recognition learning has self-stabilized in response to an
arbitrary list of binary input patterns, each input pattern I either has direct access to
the node Vj which possesses the largest subset template with respect to I, or I cannot be
coded by any node of F2. In the latter case, F2 contains no uncommitted nodes.

Remark. The possibility that an input pattern cannot be coded by any node of
F2 is a consequence of the fact that an ART network self-stabilizes its learning in
response to a list containing arbitrarily many input patterns no matter how many
coding nodes exist in F2. If a list contains many input patterns and F2 contains only
a few nodes, one does not expect F2 to code all the inputs if the vigilance parameter
p is close to 1.

Proof Since learning has already stabilized, I can be coded only by a node v j
whose template yU) is a subset template with respect to I. Otherwise, after template
yU) = Y was read-out, the set yU) would contract from Y to I n Y by Corollary 2

(Sect. 20), thereby contradicting the hypothesis that learning has already stabilized.
In particular, input I cannot be coded by a node whose template is a super set
template or a mixed template with respect to I. Nor can I be coded by an
uncommitted node. Thus if I activates any node other than one with a subset
template, that node must be reset by the orienting subsystem.
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For the remainder of the proof, let vJ be the first F2 node activated by I. We
show that if V(J) is a subset template, then it is the subset template with the largest
index set; and that if the orienting subsystem resets vJ, then it also resets all nodes
with subset templates which get activated on that trial. Thus either the node with
maximal subset template is directly accessed, or all nodes in F2 that are activated by
I are quickly reset by the orienting subsystem because learning has already
self-stabilized.

If vi is any node with a subset template VU) with respect to I, then the Order
Function

D2LIVU>1

L-l+/VU>I'
0=

}

by (108). Function OJ in (111) is an increasing function of lyU)I. Thus if the first
chosen node vJ has a subset template, then V(J) is the subset template with the
largest index set.

If Vj is any node with a subset template VU) with respect to I, then the Reset
Function

II n yU>1

III
lyU>1

III
R=

}
=

by (109). Once activa~ed, such a node vi will be reset if

(113)R < p.
J

Thus if the node with the largest index set VU) is reset, (112) and (113) imply that
all other nodes with subset templates will be reset.

Finally, suppose that VJ' the first node activated, does not have a subset template,
but that some node vi with a subset template is activated in the course of search. We
need to show that II n VU)I = IVU)I < pili, so that vi is reset. Since vi has a
subset template,

D2LIVU>1

L-l+IVu>1
0=

J

(111)

Since II n V(J)I ~ IV(J)I

D2L!V(J) I

L -1 + I V(J) I
(114)

Since VJ was chosen first, OJ> OJ" Comparison of (111) and (114) thus implies that
IV(J)I > IV(j)l. Using the properties OJ < OJ' II n V(J)\ < pili, and IV(J)I >
IV(j)1 in turn, we find

IVU)I II n y(J)1

L-l+ly(J)1
<

L -1 +lyU)1
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which implies that

IInVUJ!=IVUJ!<pIII. (116)
Therefore all F2 nodes are reset if vJ is reset. This completes the proof of
Theorem 6.

Theorem 6 shows that, in response to any familiar input pattern I, the network
knows how to directly access the node vi whose template VUJ corresponds to the
prototype 1* = VUJ which is closest to I among all prototypes learned by the
network;. Because direct access obviates the need for search, recognition of familiar
input patterns and of unfamiliar patterns that share categorical invariants with
familiar patterns is very rapid no matter how large or complex the learned
recognition code may have become. Grossberg and Stone [12] have, moreover,
shown that the variations in reaction times and error rates which occur during direct
access due to prior priming events are consistent with data collected from human
subjects in lexical decision experiments and word familiarity and recall experiments.

Theorems 5 and 6 do not specify how many list presentations and F2 nodes are
needed to learn and recognize an arbitrary list through direct access. We make the
following conjecture: in the fast learning case, if F2 has at least n nodes, then each
member of a list of n input patterns which is presented cyclically will have direct
access to an F2 node after at most n list presentations.

Given arbitrary lists of input patterns, this is the best possible result. If the
vigilance parameter p is close to 1 and if a nested set of n binary patterns is
presented in order of decreasing size, then exactly n list presentations are required
for the final code to be learned. On the other hand, if a nested set of n patterns is
presented in order of increasing size, then only one list presentation is required for
the final code to be learned. Thus the number of trials needed to stabilize learning in
the fast learning case depends upon both the ordering and the internal structure of
the input patterns, as well as upon the vigilance level.

23. ORDER OF SEARCH: MATHEMATICAL ANALYSIS

The Order Function

D2LII n V(j) I
o-j -L -1 + I VU) I

for previously coded nodes Vj shows that search order is det.ermined by two
opposing tendencies. A node Vj will be searched early if II n VV)I is large and if
IVU)I is small. Term II n VUJI is maximized if VU) is a superset template of I.
Term IVU)I is small if VU) codes only a few features. The relative importance of
the template intersection II n VU)I and the template size IVU)I is determined by
the size of L -1 in (108). If L -1 is small, both factors are important. If L -1 is
large, the template intersection term dominates search order. The next theorem
completely characterizes the search order in the case that L -1 is small.

THEOREM 7 (Search order). Assume the model hypotheses of Section 18. Suppose
that input pattern I satisfies

(108)

1

L-l~m (117)
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and

III ~ M -I (118)
Then F2 nodes are searched in the following order, if they are reached at all.

Subset templates with respect to I are searched first, in order of decreasing size. If
the largest subset template is reset, then all subset templates are reset. Irall subset
templates have been reset and if no other learned templates exist, then the first
uncommitted node to be activated will code I. If all subset templates are searched and if
there exist learned superset templates but no mixed templates, then the node with the
smallest superset template will be activated next and will code I. If all subset templates
are searched and if both superset templates V(J) and mixed templates VU) exist, then
vi will be searched before vJ if and only if

II n VU)I

IvU)1
IV(j}1 <IV(J}I and (119)

III
iViJij<

If all subset templates are searched and if there exist mixed templates but no superset
templates, then a node vi with a mixed template will be searched before an uncom-
mitted node v J if and only if

II n V(J)I

Iv(J)1

II n VU)I

IV(j)1
>

or

II n y(J)1

ly(J)1

II () y(j) I

IY(j)1
and IV(J>I >IVU>[ (122)

=

Proof of Lemma 1. We need to show that if either (121) or (122) holds, then
OJ > OJ. By (108), OJ > OJ is equivalent to

II n V(J)I.IV(J)I-II n V(J)I.IV(J)I
(123)+(L -1)[11 n V(J)I -II n V(J)I] > O.

Suppose that (121) holds. Then:

II n V(J)I.IV(J)I-II n V(J)I.\V(J)I > 0

Since L > 1, inequality (123) then follows at once if [II n V(J)I -II n V(J)!J ~ O.

The proof is based upon the following lemma.

LEMMA 1. If (117) holds, then for any pair of F2 nodes vJ and Vj with learned
templates, OJ > OJ if either
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Suppose that II n VU)I > II n V(J)I. Each term in (124) is an integer. The entire
left-hand side of (124) is consequently a positive integer, so

III -1

III
IInV(J)I.IVU)I-IInV(})I.IV(J)1 ~ 1 >

Inequality (124) also implies that II n V(J)I ~ 1, and in general III ~ II n VU)I
Thus by (117) and (125),

II n V(J)I.IVU)I-II n VU)I.IV(J)l > (L -1)(111 -1)

~ (L -1)[11 n VU)I -II n V(J)I] (126)

Inequality (126) implies (123), and hence OJ > OJ'
Suppose next that (122) holds. Then

(127)IInV(J)I.IVU)I-IInVU)I.IV(J)1 =0.

Also, IV(J)I > IV(JJI, so

II n V(J)I

II n V(j)1
(128)

= !V(])!
TVU>T > 1

Equations (127) and (128) imply (123), thereby completing the proof of Lemma 1.

We can now prove the theorem.

Proof of Theorem 7. First we show that a node vJ with a subset template is
searched before any node Vj with a mixed or superset template. Since I n V(J) = V(J)
but I n VU) is a proper subset of VU),

II n V(J)I

IV(J)I

IV(J)I

Iv(J)1

II nvu>1

Ivu>1
=1>=

By (121) in Lemma 1, OJ > OjO Thus all subset templates are searched before mixed
templates or learned superset templates.

We next show that a node U J with a subset template is also searched before any
uncommitted node UjO Since

0 = D2 L Zij'
J

iel

the Direct Access Inequality (54) implies that

D2LIII

L-l+M0.<
J

The right-hand side of (131) is an increasing function of L. Thus by (117).

D2LIII

L-l+M
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Inequality (118) implies that

< D2

On the other hand, since \V(J)\ ~ 1,

Inequalities (131)-(134) together imply OJ > OJ"
If vJ has a subset template, then II () V(J)I = IV(J)I. Thus all nodes with subset

templates have the same ratio II () V(J)IIV(J)I-1 = 1. By (122) in Lemma 1, nodes
with subset templates are searched in the order of decreasing template size.

If all subset templates are searched and if no other learned templates exist, then
an uncommitted node will be activated. This node codes I because it possesses an
unlearned superset template that does not lead to F2 reset.

Suppose all subset templates have been searched and that there exist learned
superset templates but no mixed templates. If node vJ has a superset template V(J),
then

D2LIII
OJ= T_1.Llv(J)1

By (135), the first superset node to be activated is the node vJ whose template is
smallest. Node vJ is chosen before any uncommitted node vi because, by (54),

D2LIII
(136)> Dz L Zij(O) = OJ.

iEI

If v J is activated, it codes I because its template satisfies

II n v(J)1 = III ~ pili

Suppose that all subset templates are searched and that a superset template V(J)
and a mixed template VU) exist. We prove that OJ> OJ if and only if (119) holds.
Suppose that (119) holds. Then also

II n V(J)I

Iv(J)1

II n VU)I

IV(j)1
(138)

= III

Tv<1>T<

By condition (121) of Lemma 1, OJ> OJ. Conversely, suppose that OJ > OJ.

IIIII n Vu>1 II n V(J)r
>

L -1 + IVU)I L -1 + Iv(J)1
-

L -1 + IV(J)I
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Since V(}) is a mixed template with respect to I, I I n V(}1 < I I I. Thus (139)
implies that IV(})I < IV(J)I as well as

(140)Iln VUJI.IV(JJI-III./VUJI > (L -1)[111 -llnYUJf] >0,

from which (119) follows. This completes the proof of Theorem 7.

Note that Lemma 1 also specifies the order of search among mixed templates. If
all the activated mixed template nodes are reset, then .the node vJ with the minimal
superset template will code I. Unless (120) holds, it is possible for an uncommitted
node VJ to code I before a node with a mixed template Vj is activated. Inequality
(120) does not automatically follow from the Direct Access Inequality (54) because
II n V(})I may be much smaller than III when V(}) is a mixed template.

24. ORDER OF SEARCH: COMPUTER SIMULAllONS

Figures 12 and 13 depict coding sequences that illustrate the order of search
specified by Theorem 7 when (L -1) is small and when the vigilance parameter p is
close to 1. In Fig. 12, each of nine input patterns was presented once. Consider the
order of search that occurred in response to the final input pattern I that was
presented on trial 9. By trial 8, nodes VM+1 and VM+2 had already encoded subset
templates of this input pattern. On trial 9, these nodes were therefore searched in
order of decreasing template size. Nodes VM+3' VM+4' VM+5' and VM+6 had encoded
mixed templates of the input pattern. These nodes were searched in the order
VM+3 -+ VM+5 -+ VM+4. This search order was not determined by template size
per se, but was rather governed by the ratio II (') VU)IIVU)I-1 in (121) and (122).. d 9 14 d 7 . I S.These ratios for nodes VM+3' VM+5' an VM+4 were 10' 16' an 8' respective y. mce
~ = t, node VM+5 was searched before node VM+4 because IV(M+5)1 = 16 > 8 =

TOP-DOWN TEMPLATES
123456789
I
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au
NEW CATEGORY 1 I

NEW CATEGORY 2 +

NEW CATEGORY 3 +

NEW CATEGORY 4 f

NEW CATEGORY 5 ~

NEW CATEGORV 6 .

NEW CA TEGORY 7 .

NEW CATEGORY 8 .

RECOOING TO BU: BU c TD 9 .

1+
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1+
2 1

1+
1 2

1+
4 2

1+
5 3

1+
5 3

1+
7 5

1+
2 1

SUBSETS

FIG. 12. Computer simulation to illustrate order of search: On trial 9, the system first searches subset
templates, next searches some, but not all, mixed templates, and finally recodes the smallest superset
template. A smaller choice of vigilance parameter could have terminated the search at a subset template
or mixed temDlate node.

+
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0 0 " " 4 I "t.O

NEW CATEGORY 8. I + -+ f ~..
2 1 3 5 4 6 RE5
-~

SUBSET5 "IXEO SETS

FIG. 13. Computer simulation to illustrate order of search: Unlike the search described in Fig. 12, no
learned superset template exists when the search begins on trial 8. Consequently, the system first searches
subset templates, next searches mixed templates, and finally terminates the search by coding a previously
uncommitted node.

IV(M+4)1. The mixed template node VM+6 was not searched. After searching VM+5'
the network activated the node VM+7 which possessed the smallest superset tem-
plate. A comparison of rows 8 and 9 in column 7 shows how the superset template
of v M + 7 was recoded to match the input pattern. By (119), the superset template
node VM+7 was searched before the mixed template node VM+6 because the ratio
IIllv(M+7)1-1 = * was larger than II n V(M+6)IIV(M+6)1-1 = ti.

The eight input patterns of Fig. 13 illustrate a search followed by coding of an
uncommitted node. The last input pattern I in Fig. 13 is the same as the last input
pattern in Fig. 12. In Fig. 13, however, there are no superset templates correspond-
ing to input pattern I. Consequently I was coded by a previously uncommitted
node VM+8 on trial 8. On trial 8 the network searched nodes with subset templates
in the order VM+2 -+ VM+l and the mixed template nodes in the order VM+4 -+ VM+6
-+ VM+5 -+ VM+7. The mixed template node VM+3 was not searched because its
template badly mismatched the input pattern I and thus did not satisfy (120).
Instead, the uncommitted node v M + 8 was activated and learned a template that
matched the input pattern. If (L -1) is not small enough to satisfy inequality (117),
then mixed templates or superset templates may be searched before subset tem-
plates. For all L > 1, however, Theorem 6 implies that all input patterns have direct
access to their coding nodes after the learning process equilibrates.

25. BIASING THE NETWORK TOWARDS UNCOMMITTED NODES

Another effect of choosing L large is to bias the network to choose uncommitted
nodes in response to unfamiliar input patterns I. To understand this effect, suppose
that for all i and j,

(71)
L

Zjj(O) = L -1 + M

TOP-DOWN TEMPLATES
BU 1 2 3 4 S 6 7 8 9

NEW CATEGORY 1 I I
RES

NEW CATEGORY 2 + I +
1 RES

NEW CATEGORY 3 -I +-
1 RES

NEW CATEGORY 4 + I + -+
2 1 :5 RES

NEW CATEGORY 5 f I + -+ f
1 2 .5 RES

NEW CATEGORY 6 ~ I + -+ f ~
.2 S 1 :5 RES

NEW CATEGORY 7. ! + ~ t f ~~-
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Then when I is presented, an uncommitted node is chosen before a__~oded node vi if

II n V(J)!

L -1 + IV(J)]

III<
L-l+M

This inequality is equivalent to

I I n V (j) I

III
L-l+IV(!)[

< I
L-1+1\1

As L increases, the ratio

L -1 +lyU)1
L -1 + M -.1,

whereas the left-hand side of (142) is always less than or equal to 1. Thus for large
values of L, the network tends to code unfamiliar input patterns into new cate-
gories, even if the vigilance parameter p is small. As L increases, the automatic
scaling property (Sect. 2A) of the network also becomes weaker, as does the
tendency to search subset templates first.

Recall that parameter L describes the relative strength of the bottom-up compe-
tition among LTM traces which gives rise to the Weber Law Rule (Sect. 12B), with
smaller L corresponding to stronger L TM competition. Thus the structural process
of L TM competition works with the state-dependent process of attentional vigilance
to control how coarse the learned categories will be.

26. COMPUTER SIMULAnON OF SELF-SCALING COMPUTATIONAL UNITS:
WEIGHING THE EVIDENCE

We can now understand quantitatively how the network automatically rescales its
matching and signal-to-noise criteria in the computer simulations of Fig. 7. On the
first four presentations, the input patterns are presented in the order ABAB. By trial
2, learning is complete. Pattern A directly accesses node V,\(+l on trial 3, and
pattern B directly accesses node VM+2 on trial 4. Thus patterns A and B are coded
within different categories. On trials 5-8, patterns C and D are presented in the
order CDCD. Patterns C and D are constructed from patterns A and B, respec-
tively, by adding identical upper halves to A and B. Thus, pattern C differs from
pattern D at the same locations where pattern A differs from pattern B. However,
because patterns C and D represent many more active features than patterns A and
B the difference between C and D is treated as noise and is deleted from the critical,
feature pattern of VM+3 which codes both C and D, whereas the difference between
A and B is considered significant and is included within the critical feature patterns
of vM+l and VM+2'

The core issue in the network's different categorization of patterns A and B
versus patterns C and D is the following: Why on trial 2 does B reject the node
VM+l which has coded A, whereas D on trial 6 accepts the node VM+3 which has
coded C? This occurs despite the fact that the mismatch between B and V(M+l)
equals the mismatch between D and V(M+3):

IBI -IB n V(M+l)1 = 3 = IDI -ID n V(M+3)1
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The reason is that

whereas

ID n V(M+3)1 14
-17. (146)

101

In this simulation, the vigilance parameter p = 0.8. Thus

IB n V(M+l)1 10 n V(M+3)j
(147)

By (73), pattern B resets VM+1 on trial 2 but D does not reset VM+3 on trial 6.
Consequently, B is coded by a different category than A, whereas D is coded by the
same category as C.

27. CONCLUDING REMARKS: SELF-STABILIZATION AND UNITIZATION
WITHIN ASSOCIATIVE NETWORKS

Two main conclusions of our work are especially salient. First, the code learning
process is one of progressive refinement of distinctions. The distinctions that emerge
are the resultant of all the input patterns which the network ever experiences, rather
than of some preassigned features. Second, the matching process compares whole
patterns, not just separate features. It may happen that two different input patterns
to F1 overlap a template at the same set of feature detectors, yet the network will
reset the F2 node in response to one input but not the other. The degree of
mismatch of template pattern and input pattern as a whole determines whether
coding or reset will occur. Thus the learning of categorical invariants resolves two
opposing tendencies. As categories grow larger, and hence code increasingly global
invariants, the templates which define them become smaller, as they discover and
base the code on sets of critical feature patterns, or prototypes, rather than upon
familiar pattern exemplars. This article shows how these two opposing tendencies
can be resolved within a self-organizing system, leading to dynamic equilibration, or
self-stabilization, of recognition categories in response to an arbitrary list of
arbitrarily many binary input patterns. This self-stabilization property is of major
importance for the further development of associative networks and the analysis of
cognitive recognition processes.

Now that properties of self-organization, self-stabilization, and self-scaling are
completely understood within the class of ART networks described herein, a
number of generalizations also need to be studied. Within this article, an input
pattern to level F1 is globally grouped at F2 when the F2 population which receives
the maximal input from the F1 -+ F2 adaptive filter is chosen for short term memory
(STM) storage. Within the total architecture of an ART system, even this simple
type of F2 reaction to the F1 -+ F2 adaptive filter leads to powerful coding
properties. On the other hand, a level F2 which makes global choices must be
viewed as a special case of a more general design for F2.~
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If the second processing stage F2 makes a choice, then later processing stages
which are activated by F2 alone could not further analyse the input pattern across
Fl' The coding hierarchy for individual input patterns would end at the choice, or
global grouping, stage. By contrast, a coding scheme wherein F2 generates a
spatially distributed representation of the Fl activity pattern, rather than a choice,
could support subsequent levels F3, F4,..., Fn for coding multiple groupings, or
chunks, and thus more abstract invariants of an input pattern. This possibility raises
many issues concerning the properties of these configurations and their invariants,
and of the architectural constraints which enable a multilevel coding hierarchy to
learn and recognize distributed invariants in a stable and globally self-consistent
fashion.

A parallel neural architecture, called a masking field [9, 11, 12, 24-26, 36] is a
type of circuit design from which F2-and by extension higher levels F3, F4,..., Fn
-may be fashioned to generate distributed representations of filtered input pat-
terns. Masking field properties are of value for visual object recognition, speech
recognition, and higher cognitive processes. Indeed, the same circuit design can be
used for the development of general spatially distributed self-organizing recognition
codes. The purpose of a masking field is to detect simultaneously, and weight
properly in STM, all salient parts, or groupings, of an input pattern. The pattern as
a whole is but one such grouping. A masking field generates a spatially distributed,
yet unitized, representation of the input pattern in STM. Computer simulations of
how a masking field can detect and learn unitized distributed representations of an
input are found in Cohen and Grossberg [24-26]. Much further work needs to be
done to understand the design of ART systems all of whose levels F; are masking
fields.

Other useful generalizations of the ART system analysed herein include systems
whose learning rate is slow relative to the time scale of a single trial; systems in
which forgetting of L TM values can occur; systems which process continuous as
well as binary input and output patterns; and systems in which Weber Law
processing is realized through competitive STM interactions among Fl nodes rather
than competitive L TM interactions among bottom-up L TM traces (Sect. 12B). All
of these generalizations will be considered in our future articles of this series.

Preprocessing of the input patterns to an ART system is no less important than
choosing levels F; capable of supporting a hierarchy of unitized codes of parts and
wholes. In applications to visual object recognition, neural circuits which generate
pre-attentively completed segmentations of a visual image before these completed
segmentations generate inputs to an ART network have recently been constructed
[37 -40]. In applications to adaptive speech recognition, inputs are encoded as STM
patterns of temporal order information across item representations before these
STM patterns generate inputs to an ART network [9, 11-13, 24, 26, 36]. Further
work needs to be done to characterize these preprocessing stages and how they are
joined to their ART coding networks. Although a great deal of work remains to be
done, results such as those in the present article amply illustrate that the whole is
much greater than the sum of its parts both in human experience and in self-
organizing models thereof.

APPENDIX

Table 1 lists the constraints on the dimensionless model parameters for the system
summarized in Section 18. We will now show that the f Rule holds when these
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constraints are satisfied. Then we describe four alternative, but dynamically equiv-
alent, systems for realizing the t Rule and attentional gain control.

Recall that Xi (i = 1... M) denotes the STM activity of an F1 node Vi; that Xj
(j = M + 1... N) denotes the STM activity of an F2 node vi; that Zij denotes the
strength of the LTM trace in the bottom-up pathway from vito Vi; that Zji denotes
the strength of the LTM trace in the top-down pathway from Vj to Vi; that Ii
denotes the bottom-up input to Vi; that I denotes the set of indices i E {I... M} Vi
such that Ii > 0; that X = X(t) denotes the set of indicesi such that Xi(t) > 0; and
that y(j) = y(J)(t) denotes the set of indices i such thatzji(t) > z.

Combining equations (8), (10), (11), and (12), we find the following equation for
the ith STM trace of F1

dx.I

dt
f

When F2 is inactive, all top-down signals f(Xj) = O. Hence by (AI),

dXj

dt
= -Xi + (1 -A1xi)Ii

When the F2 node vJ is active, only the top-down signal f(xJ) is nonzero. Since
f(xJ) = 1,

dxj

dt
= -Xi + (1 -A1xi)(Ii + D1zJI) -(B1 + C1Xj)

(A3)e

Since each Xi variable changes rapidly relative to the rate of change of the L TM
trace ZJi (since 0 < E « 1), then Xi is always close to its steady state, dXi/dt = O.

By (A2), then

if £2 is inactive (A4)
I

IXi = l-~

and, by (A3),

if the F2 node vJ is active. (A5)

The t Rule, as defined by

x=\
(47)

I

I n y(J)

if F2 is inactive

if the F2 node vJ is active,

can be derived as follows. Note first that (A4) implies that, when £2 is inactive,
Xi > 0 iff Ii > 0; i.e., X = I. On the other hand, if vJ is active, (A5) implies that

Bl -Ii

Dl.
Xi> 0 (A6)iff ZJi >
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The ~ Rule requires that Xi be positive when the FI node Vi is receiving large
inputs, both top-down and bottom-up. Thus setting ZJi = 1 And Ii = 1 (their
maximal values) in (A6) implies the constraint:

~l

D1
1 >

The t Rule also requires that Xi be negative if Vi receives no top-down input, even
if the bottom-up input is large. Thus setting ZJi = 0 and Ii = 1 in (A6) implies the
constraint:

Bl -1
;

jj~
0<

Finally, the t Rule requires that Xi be negative if vi receives no bottom-up input,
even if the top-down input is large. Thus setting Ii = 0 and ZJi = 1 in (A6) implies
the constraint

Bl

Dl
1 <

Inequalities (A 7), (AS), and (A9) are summarized by the

t Rule Inequalities

max{I,Dl} < Bl < 1 + D]

Since 0 ~ Ii ~ 1, (A6) also shows that if vJ is active and if

B-11

D1
ZJi(t) ~

then Xj(1) ~ 0; i.e., i $ X. However if i $ X, ZJj decays toward 0 whenever vJ is
active. Thus if (AIO) is true at some time 1 = 10' it remains true for all 1 ~ 10.
Therefore

B-11

Dl
z=

is the critical top-down LTM strength such that if ZJi(tO) ~ z, then ZJi(t) ~ z for
all t ~ to. Whenever vJ is active and t ~ to, the F1 node Vi will be inactive.

Figure 14 depicts four ways in which attentional gain control can distinguish
bottom-up and top-down processing to implement the ~ Rule. All of these systems
generate the same asymptote (AS) when F2 is active, and the same asymptotes, up
to a minor change in parameters, when F2 is inactive. The parameters in all four
systems are defined to satisfy the constraints in Table 1.
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I I

FIG. 14. Design variations for realizing ~ Rule matching properties at Fl: In (a) and (b), F2 excites
the gain control channel, whereas in (c) and (d), F2 inhibits the gain control channel. In (b), the input
pattern I inhibits the gain control channel, whereas in (d), I excites the gain control channel. In (a) and
(d), the gain control channel phasically reacts to its inputs (closed circles). Activation of the gain control
channel in (a) nonspecifically inhibits Fl, and in (d) nonspecifically excites Fl. In (b) and (c), the gain
control channel is tonically, or persistently, active in the absence of inputs (open circles surrounding plus
signs). Activation of the gain control channel in (b) nonspecifically inhibits F!, and in (c) nonspecifically
excites Fl. In (c) and (d), the Fl cells are maintained in a state of tonic hyperpolarization, or inhibition,
in the absence of external inputs (open circles surrounding minus signs). All four cases lead to equivalent

dynamics.

In Fig. 14a, F2 can phasically excite the gain control channel, which thereupon
nonspecifically inhibits the cells of Fl' Thus

dx.,
dt

= -X; + (1 -AIX;)( I; + DILf(Xj)Zj;) -(B1 + C1X;)G1,
,

E

where

G1 = {I

if I is active and £2 is inactive
if I is inactive and £2 is active

if I is active and £2 is active
if I is inactive and £2 is inactive.

In other words Gl = >:::J(Xj). Thus (All) is just (AI) in a slightly different notation.
In Fig. 14b, the plus sign within an open circle in the gain control channel

designates that the gain control cells, in the absence of any bottom-up or top-down
signals, are endogenously maintained at an equilibrium potential which exceeds
their output threshold. Output signals from the gain control cells nonspecifically
inhibit the cells of Fl. In short, the gain control channel tonically, or persistently,
inhibits Fl cells in the absence of bottom-up or top-down signals. Bottom-up and



112 CARPENTER AND GROSSBERG

top-down signals phasically modulate the level of nonspecific inhibitiono Ill:partieu-
lar, a bottom-up input alone totally inhibits the gain control channel, thereby
disinhibiting the cells of Flo A top-down signal alone maintains the inhibition from
the gain control channel, because the inhibition is either on or off, and is thus not
further increased by F2o When both a bottom-up input and a top-down signal are
active, their inputs to the gmncontrol channel cancel, thereby again maintaining the
same level of inhibition to Flo The STM equations at Fl are

where

f~Gz = 1

if I is active and £2 is inactive
if I is inactive and £2 is active
if I is active and £2 is active

if I is inactive and £2 is inactive

The equilibrium activities of Xi are as follows. If I is active and F2 is inactive, then
(A4) again holds. If I is inactive and F2 is active, then (AS) again holds. Equation
(AS) also holds if I is active and F2 is active. If I is inactive and F2 is inactive, then

-B1
,

1 + C1xi~

which is negative; hence no output signals are generated.
In Fig. 14c, as in Fig. 14b, the gain control cells are tonically active (plus sign in

open circle). In Fig. 14c, however, these cells nonspecifically excite the cells of Fl. In
the absence of any external signals, FI cells are maintained in a state of tonic
hyperpolarization, or negative activity (denoted by the minus sign in the open
circle). The tonic excitation from the gain control cells balances the tonic inhibition
due to hyperpolarization and thereby maintains the activity of F2 cells near their
output threshold of zero. A bottom-up input can thereby excite FI cells enough for
them to generate output signals. When top-down signals are active, they inhibit the
gain control cells. Consequently those FI cells which do not receive bottom-up or
top-down signals become hyperpolarized. Due to tonic hyperpolarization, FI cells
which receive a bottom-up signal or a top-down signal, but not both, cannot exeed
their output threshold. Only FI cells at which large top-down and bottom-up
signals converge can generate an output signal.

The STM equations at FI are

E~ = -Xi + (1 -AlXi)( Ii + DlLf(Xj)Zji + BlG)) - Bl + C1X;), (A16)
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where

{ 1

0

G3 = Q

1

if [is active and F2 is inactive
ifIisinactive and F;is active

ifI",iS'active and F is active"cc 2

if [ is inactive and F2 is inactive

The equilibrium activities O;fx j are as follows. If I is active and £2 is inactive, then

l;Xi= :
1. + All; + AlBl + Cl

Thus X; > 0 iff]; > O. If] is inactive and F2 is active, then (A5) holds. If] is active
and F2 is active, then (A5) holds. If ] is inactive and F2 is inactive, then

BI -BI

1 + AIBI + CI
= o. (A19)x ~

I

Hence no output signals are generated from Fl. The coefficient Bl in term B1G) of
(A16) may be decreased somewhat without changing system dynamics.

In Fig. 14d, the gain control cells are phasic ally excited by bottom-up signals and
inhibited by top-down signals. Once active, they nonspecifically excite Fl cells. In
the absence of any external signals, Fl cells are maintained in a state of tonic
hyperpolarization, or negativity. In response to a bottom-up input, the gain control
channel balances the tonic hyperpolarization of Fl cells, thereby allowing those cells
which receive bottom-up inputs to fire. When a top-down signal is active, no gain
control outputs occur. Hence top-down signals alone cannot overcome the tonic
hyperpolarization enough to generate output signals from Fl. Simultaneous conver-
gence of an excitatory bottom-up signal and an inhibitory top-down signal at the
gain control cells prevents these cells from generating output signals to Fl. Conse-
quently, only those Fl cells at which a bottom-up input and top-down template
signal converge can overcome the tonic hyperpolarization to generate output signals.

The STM equations of Fl are

dxj

dt
Bl + C1X,= -X; + (1 -AIX;) ( I; + D1Lf(Xj)Zj; + B1G4

J

e

where

'1

0

l~

if I is active and F2 is inactive

if I is inactive and F2 is active
if I is active and F2 is active
if I is inactive and F2 is inactive.

(A2lG4 =

The equilibrium activities of Xj are as follows. If I is active and £2 is inactive, then
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(A18) holds. If I is inactive and F2 is active, then (A5) holds. Equation (A5} ~lso
holds ifl is active and F2 is active. If I is inactive and F2 is inactive, lhen (A1S}
bolds. C":-,=

In all four cases, an F1 cell fires only if the number of active excitatory pathw~ys
which converge upon the cell exceeds the number of active inhibitory path~:p,Ys
which converge upon the cell, where we count a source of tonic hyperpolarization as
oneiaPtirpathway. A similar rule governs the firing of the gain controlchanne[ iii"
all cases.

"---~"",~g~
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