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ABSTRACT. A theory is presented of how recognition categories can be learned
in response to a temporal stream of input patterns. Interactions between an attentional
subsystem and an orienting subsystem enable the network to self-stabilize its learning.
without an external teacher, as the code becomes globally self-consistent. Category learn-
ing is thus determined by global contextual information in this system. The attentional
subsystem learns bottom-up codes and top-down templates, or expectancies. The internal
representations formed in this way stabilize themselves against recoding by matching the
learned top-down templates against input patterns. This matching process detects struc-
tural pattern properties in addition to local feature matches. The top-down templates
can also suppress noise in the input patterns, and can subliminally prime the network
to anticipate a set of input patterns. Mismatches activate an orienting subsystem, which
resets incorrect codes and drives a rapid search for new or more appropriate codes. As
the learned code becomes globally self-consistent, the orienting subsystem is automatically
disengaged and the memory consolidates. After the recognition categories for a set of input
patterns self-stabilize, those patterns directly access their categories without any search
or recoding on future recognition trials. A novel pattern exemplar can directly access an
established category if it shares invariant properties with the set of familiar exemplars of
that category. Several attentional and nonspecific arousal mechanisms modulate the course
of search and learning. Three types of attentional mechanism—priming, gain control, and
vigilance—are distinguished. Three types of nonspecific arousal are also mechanistically
characterized. The nonspecific vigilance process determines how fine the learned categories
will be. If vigilance increases due. for example. to a negative reinforcement. then the system
automatically searches for and learns finer recognition categories. The learned top-down
expectancies become more abstract as the recognition categories become broader. The
learned code is a property of network interactions and the entire history of input pattern
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presentations. The interactions generate emergent rules such as a Weber Law Rule, a 2/3
Rule, and an Associative Decay Rule. No serial programs or algorithmic rule structures

are used.

1. Introduction: Self-Organization of Recognition Categories. A fundamental
problem of perception and learning concerns the characterization of how recognition cat-
egories emerge as a function of experience. When such categories spontaneously emerge
through an individual’s interaction with an environment, the processes are said to undergo
self-organization [1]. A theory of how recognition categories can self-organize is outlined
in this report, which summarizes the model’s design and mathematical analysis, developed
in other articles [2-4]. In those articles, the adaptive resonance theory is also related to
recent data about evoked potentials and about amnesias due to malfunction of medial
temporal brain structures. Results of evoked potential and clinical studies suggest which
macroscopic brain structures could carry out the theoretical dynamics. The theory also
specifies microscopic neural dynamics, with local processes obeying membrane equations
(Appendix).

We focus herein upon principles and mechanisms that are capable of self-organizing
stable recognition codes in response to arbitrary temporal sequences of input patterns.
These principles and mechanisms lead to the design of a neural network whose parameters
can be specialized for applications to particular problem domains, such as speech and
vision. In these domains, preprocessing stages prepare environmental inputs for the self-
organizing category formation and recognition system. Work on speech and language
preprocessing has characterized those stages after which such a self-organizing recognition
system can build up codes for phonemes, syllables. and words [5-7]. Work on form and color
preprocessing has characterized those stages after which such a self-organizing recognition
system can build up codes for visual object recognition [8,9].

2. Bottom-Up Adaptive Filtering and Contrast-Enhancement in Short Term
Memory. We now introduce in a qualitative way the main mechanisms of the theory. We
do so by considering the typical network reactions to a single input pattern I within a
temporal stream of input patterns. Each input pattern may be the output pattern of
a preprocessing stage. The input pattern I is received at the stage F, of an attentional
subsystem. Pattern I is transformed into a pattern X of activation across the nodes of
F, (Figure 1). The transformed pattern X represents a pattern in short term memory
(STM). In F; each node whose activity is sufficiently large generates excitatory signals
along pathways to target nodes at the next processing stage F,. A pattern X of STM
activities across F; hereby elicits a pattern S of output signals from F;. When a signal
from a node in F, is carried along a pathway to F,, the signal is multiplied. or gated. by
the pathway’s long term memory (LTM) trace. The LTM gated signal (i.e., signal times
LTM trace), not the signal alone, reaches the target node. Each target node sums up all
of its LTM gated signals. In this way, pattern 3 generates a pattern T of LTM-gated and
summed input signals to F, (Figure 2a). The transformation from S to T is called an
adaptive filter.

The input pattern T to F, is quickly transformed by interactions among the nodes
of Fy. These interactions contrast-enhance the input pattern T. The resulting pattern of
activation across F, is a new pattern Y. The contrast-enhanced pattern Y, rather than the
input pattern T, is stored in STM by F,.

A special case of this contrast-enhancement process, in which F, chooses the node
which receives the largest input, is here considered. The chosen node is the only one that
can store activity in STM. In more general versions of the theory. the contrast enhancing
transformation from T to Y enables more than one node at a time to be active in STM.
Such transformations are designed to simultaneously represent in STM many subsets, or
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Figure 1. Stages of bottom-up activation: The input pattern I generates a pattern of
STM activation X across F;. Sufficiently active F; nodes emit bottom-up signals to F,.
This signal pattern S is gated by long term memory (LTM) traces within the F; — F,
pathways. The LTM-gated signals are summed before activating their target nodes in F,.
This LTM-gated and summed signal pattern T generates a pattern of activation Y across
F,.

groupings. of an input pattern [6.10]. When F, is designed to make a choice in STM. it
selects that global grouping of the input pattern which is preferred by the adaptive filter.
This process automatically enables the network to partition all the input patterns which
are received by F; into disjoint sets of recognition categories, each corresponding to a
particular node in F,.

Only those nodes of F; which maintain stored activity in STM can elicit new learning
at contiguous LTM traces. Whereas all the LTM traces in the adaptive filter, and thus
all learned past experiences of the network. are used to determine recognition via the
transformation I-X—S—T-—Y, only those LTM traces whose STM activities in Fy survive
the contrast-enhancement process can learn in response to the activity pattern X.
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Figure 2. Search for a correct Fy code: (a) The input pattern I generates the specific
STM activity pattern X at F, as it nonspecifically activates A. Pattern X both inhibits A
and generates the output signal pattern S. Signal pattern S is transformed into the input
pattern T, which activates the STM pattern Y across F,. (b) Pattern Y generates the top-
down signal pattern U which is transformed into the template pattern V. If V mismatches
I at Fy, then a new STM activity pattern X* is generated at F;. The reduction in total
STM activity which occurs when X is transformed into X* causes a decrease in the total
inhibition from F; to A. (c¢) Then the input-driven activation of A can release a nonspecific
arousal wave to Fy, which resets the STM pattern Y at F,. (d) After Y is inhibited. its
top-down template is eliminated. and X can be reinstated at F;. Now X once again
generates input pattern T to F,, but since Y remains inhibited T can activate a different
STM pattern Y* at F5. If the top-down template due to Y* also mismatches I at F;, then
the rapid search for an appropriate F, code continues.




The bottom-up STM transformation I -=X—S— T—Y is not the only process that
regulates network learning. In the absence of top-down processing. the LTM traces within
the adaptive filter S—T (Figure 2a) can respond to certain sequences of input patterns
by being ceaselessly recoded in such a way that individual events are never eventually
encoded by a single category no matter how many times they are presented. An infinite
class of examples in which temporally unstable codes evolve is described in Section 7. It
was the instability of bottom-up adaptive coding that led Grossberg [11,12] to introduce

the adaptive resonance theory.

In the adaptive resonance theory, a matching process at F; exists whereby learned top-
down expectancies, or templates, from F; to F, are compared with the bottom-up input
pattern to F;. This matching process stabilizes the learning that emerges in response to
an arbitrary input environment. The constraints that follow from the need to stabilize
learning enable us to choose among the many possible versions of top-down template
matching and STM processes. These learning constraints upon the adaptive resonance top-
down design have enabled the theory to explain data from visual and auditory information
processing experiments in which learning has not been a manipulated variable [4,6,7].
These mechanisms have now been developed into a rigorously characterized learning system
whose properties have been quantitatively analysed [2,3]. This analysis has revealed new
design constraints within the adaptive resonance theory. The system that we will describe
for learned categorical recognition is one outcome of this analysis.

Figure 3 summarizes the total network architecture. It includes modulatory processes,
such as attentional gain control, which regulate matching within F;, as well as modulatory
processes, such as orienting arousal, which regulate reset within F,y. Figure 3 also includes’
an attentional gain control process at F5. Such a process enables offset of the input pattern
to terminate all STM activity within the attentional subsystem in preparation for the next
input pattern. In this example, STM storage can persist after the input pattern terminates
only if an internally generated or intermodality input source maintains the activity of the
attentional gain control system.

3. Top-Down Template Matching and Stabilization of Code Learning. We
now begin to consider how top-down template matching can stabilize code learning. In
order to do so, top-down template matching at F; must be able to prevent learning at
bottom-up LTM traces whose contiguous F, nodes are only momentarily activated in
STM. This ability depends upon the different rates at which STM activities and LTM
traces can change. The STM transformation I-X— S—T—Y takes place very quickly.
By “very quickly” we mean much more quickly than the rate at which the LTM traces in
the adaptive filter S—T can change. As soon as the bottom-up STM transformation X—Y
takes place, the STM activities Y in F, elicit a top-down excitatory signal pattern U back
to F;. Only sufficiently large STM activities in Y elicit signals in U along the feedback
pathways Fy —F.

As in the bottom-up adaptive filter. the top-down signals U are also gated by LTM
traces before the LTM-gated signals are summed at F; nodes. The pattern U of output
signals from F, hereby generates a pattern V of LTM-gated and summed input signals
to F;. The transformation from U to V is thus also an adaptive filter. The pattern V is
called a top-down template, or learned ezpectation (Figure 2b).

Two sources of input now perturb F;: the bottom-up input pattern I which gave rise
to the original activity pattern X, and the top-down template pattern V that resulted from
activating X. The activity pattern X* across F,; that is induced by I and V taken together
is typically different from the activity pattern X that was previously induced by I alone.
In particular. F; acts to match V against I. The result of this matching process determines
the future course of learning and recognition by the network.
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Figure 3. Anatomy of the attentional-orienting system: This figure describes all the
interactions of the model without regard to which components are active at any given
time.

The entire activation sequence
I-X—-S—-T->Y->U—-V-X" (1)

takes place very quickly relative to the rate with which the LTM traces in either the
bottom-up adaptive filter S—T or the top-down adaptive filter U—V can change. Even
though none of the LTM traces changes during such a short time. their prior learning
strongly influences the STM patterns Y and X* that evolve within the network. We now




discuss how a match or mismatch of I and V at F; regulates the course of learning in
response to the pattern L

4. Interactions between Attentional and Orienting Subsystems: STM Reset
and Search. This section outlines how a mismatch at F; regulates the learning process.
With this general scheme in mind, we will be able to consider details of how bottom-up
filters and top-down templates are learned and how matching takes place.

Level F, can compute a match or mismatch between a bottom-up input pattern I
and a top-down template pattern V, but it cannot compute which STM pattern Y across
F, generated the template pattern V. Thus the outcome of matching at F; must have a
nonspecific effect upon F, that can potentially influence all of the F; nodes, any one of
which may have read-out V. The internal organization of F, must be the agent whereby
this nonspecific event, which we call a reset wave, selectively alters the stored STM activity
pattern Y. The reset wave is one of the three types of nonspecific arousal that exist within
the network. In particular, we suggest that a mismatch of I and V within F; generates a
nonspecific arousal burst that inhibits the active population in F, which read-out V. In
this way, an erroneous STM representation at F, is quickly eliminated before any LTM
traces can encode this error.

The attentional subsystem works together with an orienting subsystem to carry out
these interactions. All learning takes place within the attentional subsystem. All matches
and mismatches are computed within the attentional subsystem. The orienting subsystem
is the source of the nonspecific arousal bursts that reset STM within level F, of the
attentional subsystem. The outcome of matching within F; determines whether or not
such an arousal burst will be generated by the orienting subsystem. Thus the orienting
system mediates reset of F, due to mismatches within F;.

Figure 2 depicts a typical interaction between the attentional subsystem and the ori-
enting subsystem.In Figure 2a, an input pattern I instates an STM activity pattern X
across F;. The input pattern I also excites the orienting population A, but pattern X at
F, inhibits A before it can generate an output signal.

Activity pattern X also generates an output pattern S which. via the bottom-up adap-
tive filter, instates an STM activity pattern Y across F,. In Figure 2b, pattern Y reads
a top-down template pattern V into F;. Template V mismatches input I, thereby signifi-
cantly inhibiting STM activity across F;. The amount by which activity in X is attenuated
to generate X* depends upon how much of the input pattern I is encoded within the tem-
plate pattern V.

When a mismatch attenuates STM activity across F, this activity no longer prevents
the arousal source A from firing. Figure 2¢ depicts how disinhibition of A releases a
nonspecific arousal burst to Fy. This arousal burst, in turn, selectively inhibits the active
population in Fy. This inhibition is long-lasting. One physiological design for F, processing
which has these necessary properties is a dipole field [4.13]. A dipole field consists of
opponent processing channels which are gated by habituating chemical transmitters. A
nonspecific arousal burst induces selective and enduring inhibition within a dipole field.
In Figure 2c. inhibition of Y leads to inhibition of the top-down template V. and thereby
terminates the mismatch between I and V. Input pattern I can thus reinstate the activity
pattern X across F;, which again generates the output pattern S from F; and the input
pattern T to Fy. Due to the enduring inhibition at F,, the input pattern T can no longer
activate the same pattern Y at Fy. A new pattern Y* is thus generated at F, by I (Figure
2d). Despite the fact that some F, nodes may remain inhibited by the STM reset property,
the new pattern Y* may encode large STM activities. This is because level F, is designed
so that its total suprathreshold activity remains approximately constant. or normalized,
despite the fact that some of its nodes may remain inhibited by the STM reset mechanism.
This property is related to the limited capacity of STM. A physiological process capable




of achieving the STM normalization property can be based upon on-center off-surround
interactions among cells obeying membrane equations [4.14].

The new activity pattern Y* reads-out a new top-down template pattern V*. If a
mismatch again occurs at F;, the orienting subsystem is again engaged, thereby leading
to another arousal-mediated reset of STM at F,. In this way, a rapid series of STM
matching and reset events may occur. Such an STM matching and reset series controls the
system’s search of LTM by sequentially engaging the novelty-sensitive orienting subsystem.
Although STM is reset sequentially in time. the mechanisms which control the LTM search
are all parallel network interactions. rather than serial algorithms. Such a parallel search
scheme is necessary in a system whose LTM codes do not exist a priori. In general, the
spatial configuration of codes in such a system depends upon both the system’s initial
configuration and its unique learning history. Consequently, no prewired serial algorithm
could possibly anticipate an efficient order of search.

The mismatch-mediated search of LTM ends when an STM pattern across F, reads-out
a top-down template which either matches I. to the degree of accuracy required by the level
of attentional vigilance, or has not vet undergone any prior learning. In the latter case, a
new recognition category is established as a bottom-up code and top-down template are
learned.

We now begin to consider details of the bottom-up/top-down matching process across
F,. The nature of this matching process is clarified by a consideration of how F; distin-
guishes between activation by bottom-up inputs and top-down templates.

5. Attentional Gain Control and Attentional Priming. The importance of
the distinction between bottom-up and top-down processing becomes evident when' one
observes that the same top-down template matching process which stabilizes learning is
also a mechanism of attentional priming. Consider, for example, a situation in which F,
is activated by a level other than F; before F; is itself activated. In such a situation, F,
can generate a top-down template V to F;. The level F; is then primed, or ready, to
receive a bottom-up input that may or may not match the active expectancy. Level F;
can be primed to receive a bottom-up input without necessarily eliciting suprathreshold
output signals in response to the priming expectancy. If this were not possible, then every
priming event would lead to suprathreshold consequences. Such a property would prevent
subliminal anticipation of a future event.

On the other hand. an input pattern I must be able to generate a suprathreshold
activity pattern X even if no top-down expectancy is active across F; (Figure 2). How does
F, know that it should generate a suprathreshold reaction to a bottom-up input pattern
but not to a top-down input pattern? In both cases, an input pattern stimulates F; cells.
Some auxiliary mechanism must exist to distinguish between bottom-up and top-down
inputs. We call this auxiliary mechanism attentional gain control to distinguish it from
attentional priming by the top-down template itself. The attentional priming mechanism
delivers specific template patterns to F;. The attentional gain control mechanism has a
nonspecific effect on the sensitivity with which F; responds to the template pattern. as
well as to other patterns received by F;. Attentional gain control is one of the three types
of nonspecific arousal that exist within the network. With the addition of attentional gain
control. we can explain qualitatively how F; can tell the difference between bottom-up and
top-down signal patterns.

The need to dissociate attentional priming from attentional gain control can also be
seen from the fact that top-down priming events do not lead necessarily to subliminal reac-
tions at F;. Under certain circumstances. top-down expectancies can lead to suprathresh-
old consequences. We can. for example. experience internal conversations or images at will.
Thus there exists a difference between the read-out of a top-down template, which is a
mechanism of attentional priming, and the translation of this operation into suprathreshold




signals due to attentional gain control. An “act of will” can amplify attentional gain con-
trol signals to elicit a suprathreshold reaction at F; in response to an attentional priming
pattern from F,.

Figure 4 depicts one possible scheme whereby supraliminal reactions to bottom-up
signals, subliminal reactions to top-down signals. and supraliminal reactions to matched
bottom-up and top-down signals can be achieved. Figure 4d shows, in addition, how
competitive interactions across modalities can prevent I';, from generating a supraliminal
reaction to bottom-up signals, as when attention shifts from one modality to another.

6. Matching: The 2/3 Rule. We can now outline the matching and coding proper-
ties that are used to generate learning of self-stabilizing recognition categories. Two dif-
ferent types of properties need to be articulated: the bottom-up coding properties which
determine the order of search, and the top-down matching properties which determine
whether an STM reset event will be elicited. Order of search is determined entirely by
properties of the attentional subsystem. The choice between STM reset and STM res-
onance is dependent upon whether or not the orienting subsystem will generate a reset
wave. This computation is based on inputs received by the orienting subsystem from both
the bottom-up input pattern I and the STM pattern which F; computes within the at-
tentional subsystem (Figure 2). Both the order of search and the choice between reset
and resonance are sensitive to the matched patterns as a whole. This global sensitivity is
key to the design of a single system capable of matching patterns in which the number of
coded features. or details, may vary greatly. Such global context-sensitivity is needed to
determine whether a fixed amount of mismatch should be treated as functional noise, or as
an event capable of eliciting search for a different category. For example, one or two details
may be sufficient to differentiate two small but functionally distinct patterns, whereas the
same details. embedded in a large, complex pattern may be quite irrelevant.

We first discuss the properties which determine the order of search. Network interac-
tions which control search order can be described in terms of three rules: the 2/3 Rule,
the Weber Law Rule, and the Associative Decay Rule.

The 2/3 Rule follows naturally from the distinction between attentional gain control
and attentional priming. It says that two out of three signal sources must activate an F;
node in order for that node to generate suprathreshold output signals. In Figure 4a, for
example, during bottom-up processing, a suprathreshold node in F; is one which receives
a specific input from the input pattern I and a nonspecific attentional gain control signal.
All other nodes in F; receive only the nonspecific gain control signal. Since these cells
receive inputs from only one pathway they do not fire.

In Figure 4b, during top-down processing, or priming, some nodes in F; receive a
template signal from F,, whereas other nodes receive no signal whatsoever. All the nodes
of F; receive inputs from at most one of their three possible input sources. Hence no cells
in F; are supraliminally activated by a top-down template.

During simultaneous bottom-up and top-down signalling. the attentional gain control
signal is inhibited by the top-down channel (Figure 4c¢). Despite this fact. some nodes of
F, may receive sufficiently large inputs from both the bottom-up and the top-down signal
patterns to generate suprathreshold outputs. Other nodes may receive inputs from the
top-down template pattern or the bottom-up input pattern, but not both. These nodes
receive signals from only one of their possible sources. hence do not fire. Cells which receive
no inputs do not fire either. Thus only cells that are conjointly activated by the bottom-
up input and the top-down template can fire when a top-down template is active. The
2/3 Rule clarifies the apparently paradoxical process whereby the addition of top-down
excitatc)>ry inputs to F; can lead to an overall decrease in F;’s STM activity (Figures 2a
and 2b).
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Figure 4. Matching by 2/3 Rule: (a) In this example. nonspecific attentional gain control
signals are phasically activated by the bottom-up input. In this network, the bottom-up
input arouses two different nonspecific channels: the attentional gain control channel and
the orienting subsystem. Only F; cells that receive bottom-up inputs and gain control
signals can become supraliminally active. (b) A top-down template from F, inhibits the
attentional gain control source as it subliminally primes target F; cells. (c) When a
bottom-up input pattern and a top-down template are simultaneously active, only those
F cells that receive inputs from both sources can become supraliminally active, since the
gain control source is inhibited. (d) Intermodality inhibition can shut off the gain control
source and thereby prevent a bottom-up input from supraliminally activating F;.




7. Example of Code Instability. We now illustrate the importance of the 2/3 Rule
by describing how its absence can lead to a temporally unstable code. In the simplest
type of code instability example, the code becomes unstable because neither top-down
template nor reset mechanisms exist [11]. Then, in response to certain input sequences
that are repeated through time, a given input pattern can be ceaselessly recoded into
more than one category. In the example that we will now describe, the top-down template
signals are active and the reset mechanism is functional. However, the inhibitory top-down
attentional gain control signals (Figures 3 and 4c) are chosen too small for the 2/3 Rule to
hold at F;. We show also that a larger choice of attentional gain control signals restores
code stability by reinstating the 2/3 Rule. These simulations also illustrate three other
points: how a novel exemplar can directly access a previously established category; how
the category in which a given exemplar is coded can be influenced by the categories which
form to encode very different exemplars: and how the network responds to exemplars as
coherent groupings of features, rather than to isolated feature matches or mismatches.

Figure 5a summarizes a computer simulation of unstable code learning. Figure 5b
summarizes a computer simulation that illustrates how reinstatement of the 2/3 Rule can
stabilize code learning.

The first column of Figure 5a describes the four input patterns that were used in the
sitnulation. These input patterns are labeled A. B. C, and D. Patterns B, C, and D are
all subsets of A. The relationships among the inputs that make the simulation work are as
follows:

Code Instability Example

DcCcA. (2)

B C 4, (3)

B[(C = o. (4)

| DI<[B|<|C]. (3)

These results thus provide infinitely many examples in which an alphabet of just four input
patterns cannot be stably coded without the 2/3 Rule. The numbers 1, 2, 3, ... listed

in the second column itemize the presentation order. The third column, labeled BU for
Bottom-Up. describes the input pattern that was presented on each trial. In both Figures
5a and 5b, the input patterns were periodically presented in the order ABCAD.

Each of the Top-Down Template columns in Figure 5 corresponds to a different node
in Fy, with column 1 corresponding to node v;, column 2 corresponding to node v,, and
so on. Each row summarizes the network response to its input pattern. The symbol RES,
which stands for resonance, designates the node in Fy which codes the input pattern on
that trial. For example, v, codes pattern C on trial 3, and v; codes pattern B on trial
7. The patterns in a given row describe the templates after learning has occurred on that
trial.

In Figure 5a, input pattern A is periodically recoded: On trial 1. it is coded by v;; on
trial 4, it is coded by vy: on trial 6. it is coded by vy: on trial 9, it is coded by v,. This
alternation in the nodes v; and v, which code pattern A repeats indefinitely.

Violation of the 2/3 Rule occurs on trials 4. 6. 8, 9, and so on. This violation is
illustrated by comparing the template of v, on trials 3 and 4. On trial 3, the template of
vy is coded by pattern C, which is a subset of pattern A. On trial 4, pattern A is presented
and directly activates node v;. Because the 2/3 Rule does not hold, pattern A remains
supraliminal in F; even after the subset template C is read-out from vy. Thus no search
is elicited by the mismatch of pattern A and its subset template C. Consequently the
template of vy is recoded from pattern C to its superset pattern A.
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Figure 5. Stabilization of categorical learning by the 2/3 Rule: In both (a) and (b), four
input patterns A, B, C, and D are presented repeatedly in the list order ABCAD. In (a).
the 2/3 Rule is violated because the top-down inhibitory gain control mechanism be weak
(Figure 4c). Pattern A is periodically coded by v; and v,. It is never coded by a single
stable category. In (b), the 2/3 Rule is restored by strengthening the top-down inhibitory
gain control mechanism. After some initial recoding during the first two presentations of
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In Figure 5b. by contrast, the 2/3 Rule does hold due to a larger choice of the atten-
tional gain control parameter. Thus the network experiences a sequence of recodings that
ultimately stabilizes. In particular, on trial 4, node v; reads-out the subset template C,
which mismatches the input pattern A. The numbers beneath the template symbols in row
4 describe the order of search. First, v’s template C mismatches A. Then v,’s template
B mismatches A. Finally A activates the uncommitted node v3, which resonates with F,

as it learns the template A.

Scanning the rows of Figure 5b, we see that pattern A is coded by v; on trial 1; by v3
on trials 4 and 6; and by v4 on trial 9. On all future trials, input pattern A is coded by
vy. Moreover, all the input patterns A, B. C, and D have learned a stable code by trial 9.
Thus the code self-stabilizes by the second run through the input list ABCAD. On trials 11
through 15, and on all future trials, each input pattern chooses a different node (A — vy;
B — v;; C — v3; D — vy). Each pattern belongs to a separate category because the
vigilance parameter was chosen to be large in this example. Moreover, after code learning
stabilizes, each input pattern directly activates its node in F, without undergoing any
additional search. Thus after trial 9, only the “RES” symbol appears under the top-down
templates. The patterns shown in any row between 9 and 15 provide a complete description
of the learned code. Examples of how a novel exemplar can activate a previously learned
category are found on trials 2 and 5 in Figures 5a and 5b. On trial 2, for example, pattern
B is presented for the first time and directly accesses the category coded by v;, which was
previously learned by pattern A on trial 1. In terminology from artificial inteiligence. B
activates the same categorical “pointer,” or “marker,” or “index” as in A. In so doing,
B does not change the categorical “index,” but it may change the categorical template,
which determines which input patterns will also be coded by this index on future trials.
The category does not change. but its invariants may change.

An example of how presentation of very different input patterns can influence the
category of a fixed input pattern is found through consideration of trials 1, 4, and 9 in
Figure 5b. These are the trials on which pattern A is recoded due to the intervening
occurrence of other input patterns. On trial 1, pattern A is coded by v;. On trial 4, A is
recoded by v; because pattern B has also been coded by v; and pattern C has been coded
by v, in the interim. On trial 9, pattern A is recoded by v4 both because pattern C has
been recoded by v3 and pattern D has been coded by v, in the interim.

In all of these transitions, the global structure of the input pattern determines which
F, nodes will be activated, and global measures of pattern match at F; determine whether
these nodes will be reset or allowed to resonate in STM.

8. Vigilance, Orienting. and Reset. We now show how matching within the
attentional subsystem at F; determines whether or not the orienting subsystem will be
activated, thereby leading to reset of the attentional subsystem at F;. The discussion can
be broken into three parts:

A. Distinguishing Active Mismatch from Passive Inactivity

A severe mismatch at F| activates the orienting subsystem .4. In the worst possible
case of mismatch, none of the F; nodes can satisfy the 2/3 Rule. and thus no supraliminal
activation of 'y can occur. Thus in the worst case of mismatch, wherein F; becomes totally
inactive, the orienting subsystem must surely be engaged.

On the other hand, F, may be inactive simply because no inputs whatsoever are being
processed. In this case, activation of the orienting subsystem is not desired. How does the
network compute the difference between active mismatch and passive inactivity at F;?

This question led Grossberg [4] to assume that the bottom-up input source activates
two parallel channels (Figure 2a). The attentional subsystem receives a specific input
pattern at F;. The orienting subsystem receives convergent inputs at A from all the active




input pathways. Thus the orienting subsystem can be activated only when F; is actively
processing bottom-up inputs.
B. Competition between the Attentional and Orienting Subsystems

How, then, is a bottom-up input prevented from resetting its own F; code? What
mechanism prevents the activation of A by the bottom-up input from always resetting the
STM representation at F3? Clearly inhibitory pathways must exist from F; to A (Figure
2a). When F, is sufficiently active, it prevents the bottom-up input to A from generating
a reset signal to F,. When activity at F, is attenuated due to mismatch; the orienting
subsystem A is able to reset F, (Figure 2b.c,d). In this way, the orienting subsystem can
distinguish between active mismatch and passive inactavity at F;.

Within this general framework, we now show how a finer analysis of network dynamics,
with particular emphasis on the 2/3 Rule, leads to a vigilance mechanism capable of
regulating how coarse the learned categories will be.

C. Collapse of Bottom-Up Activation due to Template Mismatch

Suppose that a bottom-up input pattern has activated F; and blocked activation of 4
(Figure 2a). Suppose, moreover, that F, activates an F, node which reads-out a template
that badly mismatches the bottom-up input at F; (Figure 2b). Due to the 2/3 Rule, many
of the F; nodes which were activated by the bottom-up input alone are suppressed by the
top-down template. Suppose that this mismatch event causes a large collapse in the total
activity across F;, and thus a large reduction in the total inhibition which F; delivers to
A. If this reduction is sufficiently large. then the excitatory bottom-up input to A may
succeed in generating a nonspecific reset signal from A to F, (Figure 2c).

In order to characterize when a reset signal will occur, we make the following natural
assumptions. Suppose that an input pattern I sends positive signals to | I | nodes of F;.
Since every active input pathway projects to A, I generates a total input to A that is
proportional to | I |. We suppose that A reacts linearly to the total input v | I |. We also
assume that each active F; node generates an inhibitory signal of fixed size to A. Since
every active F; node projects to A, the total inhibitory input é | X | from F; to 4 is
proportional to the number | X | of active F; nodes. When v | I |> 6 | X |, A receives a
net excitatory signal and generates a nonspecific reset signal to F, (Figure 2c¢).

In response to a bottom-up input pattern I of size | I |, as in Figure 2a, the total
inhibitory input from F; to A equals § | I |, so the net input to A equals (y—6) | I|. In
order to prevent A from firing in this case (Figure 2a), we assume that 6 > ~. We call

p=7 (6)

the vigilance parameter of the orienting subsystem. The constraints § > ~ > 0 are equiv-
alent to 0 < p < 1. The size of p determines the proportion of the input pattern which
must be matched in order to prevent reset.

When both a bottom-up input I and a top-down template V{?) are simultaneously
active (Figure 2b), the 2/3 Rule implies that the total inhibitory signal from F, to 4

equals 6 | V@) A T1. In this case, the orienting subsystem is activated only if
y|I>6|vUNT; (7)

that is, if
vl nr|
| 1]

In order to illustrate how the network codifies a series of patterns. we show in Figure
6 the first 20 trials of a simulation using alphabet letters as input patterns. In Figure 6a,

< p. (8)
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Figure 6. Alphabet learning: Different vigilance levels cause different numbers of letter
categories to form.




the vigilance parameter p = .5. In Figure 6b, p = .8. Three properties are notable in
these simulations. First, choosing a different vigilance parameter can determine different
coding histories, such that higher vigilance induces coding into finer categories. Second,
the network modifies its search order on each trial to reflect the cumulative effects of prior
learning. and bypasses the orienting system to directly access categories after learning has
taken place. Third, the templates of coarser categories tend to be more abstract because
they must approximately match a larger number of input pattern exemplars.

Given p = .5. the network groups the 26 letter patterns into 8 stable categories within
3 presentations. In this simulation, F, contains 15 nodes. Thus 7 nodes remain uncoded
because the network self-stabilizes its learning after satisfying criteria of vigilance and
global code self-consistency. Given p = .8 and 15 F, nodes, the network groups 25 of the
26 letters into 15 stable categories within 3 presentations. The 26th letter is rejected by
the network in order to self-stabilize its learning while satisfying its criteria of vigilance and
global code self-consistency. These simulations show that the network’s use of processing
resources depends upon an evolving dynamical organization with globally context-sensitive
properties. This class of networks is capable of organizing arbitrary sequences of arbitrarily
complex input patterns into stable categories subject to the constraints of vigilance, global
code self-consistency, and number of nodes in F, and F,.

APPENDIX
NETWORK EQUATIONS

STM Equations

The STM activity of any node v in F; or F, obeys a membrane equation of the form

d

1%k = —Azg + (B — Cxy)J, — Dz J, (A1)

where J;” and J,_ are the total excitatory input and total inhibitory input, respectively,
to vy and A, B, C, D are nonnegative parameters. If C > 0, then the STM activity z,(t)
remains within the finite interval [0, BC~!] no matter how large the inputs J; and J, are

chosen.
We denote nodes in F; by v,, where 1 = 1.2...., M. We denote nodes in F, by v,,

where j = M +1,M +2,...,N. Thus by (A1), |

d

d—t-.’t,' = —-A;z, + (-Bl - CI.L',')J: - Dl.'L',‘Ji— (A2)
and q
EIJ = —.‘42.’13]' + (Bz - C'gl']).]; - D2.’L'J'JJ_. (A3)

The input J,;” is a sum of the bottom-up input I, and the top-down template

V, = Zf(:z:j)z],, (A4)
3

that is,
Jo =1+, (A3)




where f(z;) is the signal generated by activity z; of v;. and z;, is the LTM trace in the
pathway from v, to v,.

The inhibitory input J;” controls the attentional gain:

Jo=FY f(z,). (46)
2

Thus J = 0 if and only if F, is inactive (Figure 4).
The inputs and parameters of STM activities in F; were chosen so that the F, node
which received the largest input from F; wins the competition for STM activity. Theorems

show how these parameters can be chosen [15-17]. The inputs J; and J have the
following form.
Input J” adds a positive feedback signal g(z;) from v, to itself to the bottom-up

adaptive filter input
T, =) h(z,)z,. (A7)

that is,

J7 = g(z,) +T,. (48)

where h(z,) is the signal emitted by v, and z;; is the LTM trace in the pathway from v, to
v;. Input J]_ adds up negative feedback signals ¢g(z,) from all the other nodes in F,:

J7 = > g(zk). (A9)
k#j

Such a network behaves approximately like a binary switching circuit:

I_:{G if T, > max(Ty : k # J) (A10)
g 0 otherwise.

LTM Equations

The LTM trace of the bottom-up pathway from v, to v; obeys a learning equation of
the form p

i
In (All1). term f(z,) is a postsynaptic sampling. or learning. signal because f(z,) = 0
implies %zl] = 0. Term f(z,) is also the output signal of v, to pathways from v; to Fy, as
in (Ad4).
The LTM trace of the top-down pathway from v, to v; also obeys a learning equation
of the form J

dt
In the present simulations, the simplest choice of H,, was made for the top-down LTM
traces:

= f(z;)[—Hijzi; + Kh(z,))]. (A11)

= f(z;)|—Hjizjo + Kh(zy)). (412)

Hj; = H = constant. (A13)



A more complex choice of H,; was made for the bottom-up LTM traces. This was
done to directly generate the Weber Law Rule [2] via the bottom-up LTM process itself.
The Weber Law Rule can also be generated indirectly by exploiting a Weber Law property
of competitive STM interactions across F;. Such an indirect instantiation of the Weber
Law Rule enjoys several advantages. In particular, it would enable us to also choose

Hj; = H = constant. Instead, we allowed the bottom-up LTM traces at each node v;

to compete among themselves for synaptic sites. Malsburg and Willshaw [18] have used
a related idea in their model of retinotectal development. In the present usage, it was
essential to choose a shunting competition to generate the Weber Law Rule, unlike the
Malsburg and Willshaw usage. Thus we let

H]',' = Lh(.’tl) + Z h(.’l,'k). (A14)
k#1

A physical interpretation of this choice can be seen by rewriting (A11) in the form

4 s = F@)E = Lag)h(z) - 2, X hlze)). (415)
k1 A

By (A15), when the postsynaptic signal f(z;) is positive, a positive presynaptic signal
h(z;) commits receptor sites to the LTM process z,, at a rate (K — Lz;)k(z;)f(z;). Si-
multaneously. signals h(zx), k # i. which reach v; at different regions of the v; membrane
compete for sites which are already committed to 2,, via the mass action competitive terms
—z;f(z;)h(z). When z,; equilibrates to these competing signals,
= KRz | e
(L = 1)h(z,) + Tk h(zk)

The signal function h(w) was chosen to rise quickly from O to 1 at a threshold activity
level wg. Thus if v, is a suprathreshold node in F;, (A16) approximates

N K
WTI o)+ X (417)

where | X | is the number of active nodes in F;. Term z,, obeys a Weber Law Rule if
L>1.

STM Reset System

The simplest possible mismatch-mediated activation of 4 and STM reset of F, by A
were implemented in the simulations. As outlined in Section &, each active input pathway
sends an excitatory signal of size vy to A. Potentials z; of F; which exceed a signal threshold
T generate an inhibitory signal of size —é6 to A. Population A, in turn, generates a
nonspecific reset wave to Fo whenever

NI =6]X|>0, (418)

where I is the current input pattern and | X | is the number of nodes across F; such that
z; > T. The nonspecific reset wave shuts off the active F, node until the input pattern I



shuts off. Thus (A10) must be modified to shut off all F; nodes which have been reset by
A during the presentation of L.
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