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Adaptive resonance (ART) architectures are neural networks that self-organize stable N

pattern recognition codes in real-time in response to arbitrary sequences of analog or binary. .

input patterns. In ART architectures, top-down learned expectation and matching mech- - -
anisms are critical in self-stabilizing the code learning process. A parallel search schemie = -
updates itself adaptively as the learning process unfolds, and realizes a form of real-time. -
hypothesis discovery, testing, learning, and recognition. A parameter called the attentional

vigilance parameter determines how fine the categories will be. If vigilance increases (de:

creases) due to environmental feedback, then the system automatically searches for and learns. ' E

finer (coarser) recognition categories. Learned representations are encoded in bottom-up and.
top-down adaptive filters whose long-term memory (LTM) traces vary slowly compared to
the rapid short-term memory (STM) information processing.

Adaptive Resonance Theory emerged from an analysis of the instabilities inherent in
feedforward adaptive coding structures (Grossberg, 1976a,b). More recent work has led to
the development of three classes of ART neural network architectures, specified as systems
of differential equations. The first class, ART 1, self-organizes recognition categories for
arbitrary sequences of binary input patterns (Carpenter and Grossberg, 1987a). A second
class, ART 2, does the same for either binary or analog inputs (Carpenter and Grossberg,
1987b). The talk will include ART 2 simulations that demonstrate how varying vigilance
during learning can lead to the stable coexistence of coarse and fine category groupings that
depend on the learning history, and show a non-uniform degree of discrimination across the
set of inputs.

A third class, ART 3, solves computational problems of ART systems embedded in net-
work hierarchies, where there can, in general, be either fast or slow learning and distributed
or compressed code representations (Carpenter and Grossberg, 1990). ART 3 architec-
tures incorporate a third memory, on an intermediate time scale, whose dynamics may be
interpreted as chemical transmitter processes. The ART 3 medium-term memory (MTM)
equations model the dynamics of production and release of a chemical transmitter substance;
the inactivation of transmitter at postsynaptic binding sites; and the modulation of these
processes via a nonspecific control signal. The net effect of these transmitter processes is to
alter the ionic permeability at the postsynaptic membrane site, thus effecting excitation or
inhibition of the postsynaptic cell. Specifically, the presynaptic signal, or action potential,
S; arrives at a synapse whose adaptive weight, or LTM trace, is denoted z;;. The variable
zj is identified with the maximum amount of available transmitter. When the transmitter
at this synapse is fully accumulated, the amount of transmitter u;; available for release is
equal to z;;. When a signal S; arrives, transmitter is typically released. The variable Vij
denotes the amount of transmitter released into the extracellular space, a fraction of which is
assumed to be bound at the postsynaptic cell surface and the remainder rendered ineffective
in the extracellular space. Finally, z; denotes the activity, or membrane potential, of the
postsynaptic cell. o
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Initially the transmitted signal pattern S-uj, as well as the postsynaptic activity z;, are
proportional to the weighted signal pattern S - z; of the linear filter. The a_bc'tlwty pattgrn
of the target field is then contrast-enhanced, due to the internal competitive dynamics.
The primary ART 3 MTM hypothesis assumes that the transmitter release rate is greatly
amplified in proportion to the level of postsynaptic activity. A subsequent reset signal may
thus selectively inactivate those pathways that cause an error. Following such a reset wave,
the new signal S - u; is no longer proportional to S - z; but is, rather, biased against the
previously active representation due to transmitter depletion at those sites. A series of reset
events ensue, until an adequate match or a new category is found. Learning occurs on a
time scale that is long relative to that of the search process.

The ART 3 MTM serves other functions as well as implementing the ART mismatch-
reset-search cycle. In particular it allows the neural network to dispense With.spec1al_ pro-
cesses to reset STM at onset or offset of an input pattern. The representation of input
patterns as a sequence, I1,I,I3,. . ., corresponds to the assumption that each input is con-
stant for a fixed time interval. In practice, an input vector I(t) may vary continuously
through time. The input need never be constant over an interval, and there may be no
temporal marker to signal offset or onset of “an input pattern” per se.

The ART 3 MTM transmitter depletion process can also serve to enhance features that
were previously ignored. For example, suppose that the input (I) signal pathways contain
an ART 3 MTM process, and that a reset signal is generated, say, by an internal s_,ystem
error or by an external teaching input. Features represented in I that were not salient in
the matched STM pattern X are enhanced, due to depletion in pathways leading to those
features that, for whatever reason, generated an error signal. For instance, the previously
ignored color of an object may be brought forth to enhance discrimination between category
exemplars. ’

The mechanisms described thusfar are part of the recognition learning circuit of ART 3.
Recognition learning is, however, only one of several processes whereby an intelligent system
can learn a correct solution to a problem. We have called Recognition, Reinforcement, and
Recall the “3 R’s” of neural network learning (Carpenter and Grossberg, 1988). Various
types of reaction to reinforcement feedback may be useful in applications. For example, a
change in vigilance alters the overall sensitivity of the system to pattern differences; a shift
in attention and the reset of active features can help to overcome prior coding biases that
may be maladaptive in novel contexts.

In summary, the MTM provides the extra degree of freedom needed to embed ART
systems in neural network hierarchies with fast or slow learning and compressed or distributed
codes. The ART 3 MTM transmitter processes can also be used in a wide variety of fully
or partially connected and adaptive or non-adaptive neural networks. The ART 3 search
mechanism serves at least four distinct functions: to correct erroneous category choices;
to learn from reinforcement feedback or disconfirmed expectations; to respond to changing
input patterns; and, when as error signal occurs, to amplify features that were Rrevmugly
ignored. The talk will illustrate how ART modules embedded in neural network hierarchies
carry out various target recognition functions.
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