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1. A Synthesis of Production Systems, Neural Networks, and Fuzzy Logic

For many years, the subjects of artificial intelligence, neural networks, and fuzzy logic
were developed by separate intellectual communities. This was due more, perhaps, to social
and institutional barriers to communication than to inherently different research goals and
results. One manifestation of these barriers came in the form of claims, especially from the
Al community, that the other approaches could not succeed at solving certain problems,
despite progress to the contrary. This divisive period is fortunately substantially behind us.
A growing number of models now computationally synthesize properties of expert production
systems, neural networks, and fuzzy logic. Fuzzy ARTMAP, the topic of this chapter, is one
such model. Fuzzy ARTMAP is a family of self-organizing neural architectures that are
capable of rapidly learning to recognize, test hypotheses about, and predict consequences of

analog or binary input patterns occurring in a nonstationary time series.

Fuzzy ARTMAP is the class of Adaptive Resonance Theory (ART) architectures designed
for supervised learning. Since the introduction of ART as a cognitive and neural theory
(Grossberg 1976a, 1976b), an ever expanding family of ART neural network architectures
has been progressively developed at Boston University. These models include ART 1, ART 2,
ART 2-A, ART 3, Fuzzy ART, ARTMAP, Fuzzy ARTMAP, and Fusion ARTMAP (Asfour,
Carpenter, Grossberg, and Lesher, 1993; Carpenter and Grossberg, 1987a, 1987b, 1990,
1991; Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg,
and Reynolds, 1991, 1993, 1994; Carpenter, Grossberg, and Rosen, 1991a, 1991b). Variants

of these models have also been developed by a number of other investigators.

ART systems from the outset incorporated properties of production systems and fuzzy
logic; e.g., see Grossberg (1980, 1982). However, Fuzzy ARTMAP provides a mathematically
precise realization of ART concepts that is computationally powerful enough to outperform
many expert systems, genetic algorithms, and other neural networks in benchmark studies
(Tables 1-3) and to help solve outstanding technological problems (Bachelder, Waxman, and
Seibert, 1993; Caudell, Smith, Johnson, Wunsch, and Escobedo, 1991; Dubrawski and Crow-
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ley, 1994a, 1994b; Escobedo, Smith, and Caudell, 1993; Gan and Lua, 1992; Gopal, Sklarew,
and Lambin, 1993; Ham and Han, 1993; Harvey, 1993; Kasperkiewicz, Racz, and Dubrawski,
1994; Keyvan, Durg, and Rabelo, 1993; Kumara, Merchawi, Karmarthi, and Thazhutaveetil,
1993; Johnson, 1993; Mehta, Vij, and Rabelo, 1993; Moya, Koch, and Hostetler, 1993;
Suzuki, Abe, and Ono, 1993; Wienke, 1993, 1994; Wienke and Kateman, 1994; Wienké, Xie,
and Hopke, 1994). A self-organizing neural architecture, called VIEWNET (Bradski and
Grossberg, 1994), that can learn to recognize 3-D objects from sequences of their 2-D views
is reviewed to show how Fuzzy ARTMAP can be embedded into larger systems. Another
simulation example of 3-D object recognition illustrates how the ART-EMAP architecture
(Carpenter and Ross, 1993, 1994a, 1994Db) uses distributed network activity to improve noise
tolerance while retaining the speed advantage of fast learning; and how temporal evidence

accumulation can augment ARTMAP capabilities.

Tables 1-3

One useful property of Fuzzy ARTMAP is that it can learn recognition categories and
predictions in an unsupervised mode, yet can also use predictive disconfirmations to super-
vise learning of categories that fit the statistics of the input-output environment. Such a
supervised architecture is capable of learning complex mappings from m-dimensional Eu-
clidean space to n-dimensional Euclidean space, given arbitrary finite dimensions m and

n.

There are several ways in which Fuzzy ARTMAP embodies fuzzy concepts. The most
general way concerns how the architecture autonomously calibrates the degree of compres-
sion, or generalization, that should occur in each category to fit the statistics of the envi-
ronment. More general categories embody more “fuzziness” in the range of featural values
accepted by the category. Category choice by the network embodies a decision process that

discovers which learned ranges of fuzzy features best match the input pattern.

Fuzzy logic enters this learned recognition process in a more precise sense as well. The
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fuzzy AND, or min, operator and the fuzzy OR, or max, operator are used to define the
range of mathematical values that are tolerated by a category for each linguistic variable,
or feature. The features of “hat on head” and “hair on head” are illustrative as applied
to the heads of men and dogs. Men sometimes wear a hat and usually have at least some
hair on their head. Dogs very rarely wear a hat but almost always have some hair on their
head. To express this mathematically, let each feature’s values lie in the interval [0,1], where
~ value 0 means “never,” value 1 means “always,” and intermediate values range from “rarely”
through “sometimes” to “frequently”. Then “hair on head” is represented for a man’s head
" by a wide interval [A,1], with A intermediate between 0 and 1. The variable of “hat on
head” also translates into a wide interval [0,B] of expectations, with B intermediate between
0 and 1. For a dog, “hair on head” is represented by a narrow interval [C,1] with C close to
1, whereas “hat on head” becomes a narrow interval [0,D] with D close to 0. Simultaneous
/representation of both fuzzy features is achieved by category rectangles whose sides have a

length and location that represent the fuzziness tolerated for the corresponding feature, as

in Figure 1. Hyper-rectangles in ®" code categories that represent n fuzzy features.

Figure 1

The min operator (A) defines features that are “critically present” with intervals such
as [C,1], whereas the max operator (V) defines features that are “critically absent” with
intervals such as [0,D]. As shown below, the min operator may be realized by the on-cells
of a neural network—namely, the nodes that are turned on by an input feature—whereas
the max operator is realized by the off-cells of a neural network—namely, the nodes that
are turned off by an input feature. Thus the duality between min and max in fuzzy logic
translates into a duality between on and off in neural networks. The hypothesis that on
and off cell pairs, or opponent processes, can represent fuzzy concepts has been part of ART
heuristics since their inception (Grossberg, 1976b, 1980), and indeed part of the earliest
modern tracts on neural networks (Grossberg, 1964, Section 170). Fuzzy ART and Fuzzy
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ARTMAP develop fuzzy concepts into a computationally effective algorithm.

Fuzzy ARTMAP also computationally incorporates the operation of fuzzy subsethood
(Kosko, 19/86,' Zadeh, 1965). Carpenter, Grossberg, and Rosen (1991b) observed that the
ART 1 computations of choice, match, and search naturally map into corresponding fuzzy
operations. (See Section 8.) In particular the ART 1 choice function that determines category
selection can be interpreted in terms of the degree to which a learned category representation

is a fuzzy subset of the current input.

Fuzzy logic provides a way for Fuzzy ARTMAP to adaptively categorize analog, as well
as binary, input patterns. In particular, Fuzzy ARTMAP can autonomously learn, recognize,

and make predictions with the following properties:
(A) Fast Learning of Rare Events

A successful autonomous agerit must be able to learn about rare events that have impor-
tant consequences, even if these rare events are similar to a surrounding cloud of frequent
events that have different consequences. Fast learning is needed to categorize a rare event be-
fore it is supplanted by more frequent subsequent events. Many traditional learning schemes
use a form of slow learning that tends to average over similar event occurrences. In contrast,
Fuzzy ARTMAP can rapidly learn a rare event that predicts different consequences than a

cloud of similar events in which it is embedded.
(B) Stable Learning of Large Nonstationary Data Bases

Rare events often occur in a nonstationary environment whose event statistics may
change rapidly and unexpectedly through time. Individual events may also occur with
variable probabilities and durations, and arbitrarily large numbers of events may need to be
processed. Each of these factors tends to destabilize the learning process vx;ithin traditional
algorithms. New learning in such algorithms tends to unselectively wash away the memory
traces of old, but still useful, knowledge. Using such an algorithm, for example, learning a

new face-to-name association could erase the memory of a parent’s face-to-name association.
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More generally, learning new facts could erase the memory of previous expert knowledge.
Fuzzy ART\MAP contains a self-stabilizing memory that permits accumulating knowledge
to be stably stored in response to arbitrarily many events in a nonstationary environment

under incremental learning conditions, until the algorithm’s full memory capacity, which can

be chosen arbitrarily large, is exhausted.
(C) Efficient Learning of Morphologically Variable Events

The morphological variability of information often changes through time, with some
information coarsely defined whereas other information is precisely characterized. For ex-
ample, it may only be necessary to recognize that an object is a face, or that it is the
face of one’s own father. It may be necessary to recognize that an object is a vehicle, or
that it is a particular type of tank that is manufactured by a particular country. Under
autonomous learning conditions, no teacher is generally available to instruct a system about
how coarse its generalization, or compression, of particular types of data should be. Multi-
ple scales of generalization, from fine to coarse, need to be available on an as-needed basis.
Fuzzy ARTMAP automatically adjusts its scale of generalization to match the morphological
variability of the data using a Minimax Learning Rule that conjointly minimizes predictive
error and maximizes generalization using only information that is locally available under
incremental learning conditions. The Minimax Learning Rule enables Fuzzy ARTMAP to
autonomously calibrate how much fuzziness should be tolerated on each feature dimension

of a category in order to achieve accurate predictive generalization.
(D) Associative Learning of Many-to-One and One-to-Many Maps

Many-to-one learning includes both categorization and associative prediction (Figure 2).
For example, during categorization of printed letter fonts, many similar instances of the
same printed letter may establish a single recognition category, or compressed representa-
tion. Different printed letter fonts or written versions of the letter may establish additional

categories. Each of these categories carries out a many-to-one map of input into category.
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During prediction, all of the categories that represent the same letter may be associatively
mapped into the letter name, or prediction. This is a second, distinct, type of many-to-one
map, since there need be no relationship between the visual features that define a printed
letter A and a written letter A, yet both categories may have the same name for cultural rea-
sons. The symbol that represents this name may, in turn, be transformed through learning
into an arbitrary output pattern.

This two-stage many-to-one, or compressive, transformation, followed by a learned out-
put transformation, is what enables Fuzzy ARTMAP to learn essentially arbitrary maps
from ®™ to ®*. Individual recognition categories may be compared to the hidden units in
the back propagation model (Parker, 1982; Rumelhart, Hinton, and Williams, 1986; Werbos,
1974). Fuzzy ARTMAP discovers on its own the number of categorical “hidden units” that
it needs to achieve Minimax Learning, unlike back propagation where a human operator

decides by trial and error how many hidden units are needed.

Figure 2

One-to-many learning is used to discover and accumulate expert knowledge about an
object or event (Figure 3). For example, a computerized record of a patient’s medical check-
up may lead to a series of predictions about the patient’s health. A chemical assay of a
sample of coal or petroleum may lead to many predictions about its uses as an energy source
or structural material. In many learning algorithms, including back propagation, the attempt
to learn more than one prediction about an event leads to unselective forgetting of previously
learned predictions, for the same reason that these algorithms become unstable in response

to nonstationary data.

Figure 3

2. Attention, Hypothesis Testing, Match-Learning, and Confidence Estimation

Fuzzy ARTMAP achieves the properties (A)—(D) of Section 1 by implementing the fol-

lowing types of processes:
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(E) Paying Attention and Top-Down Priming

A Fuzzy ARTMAP system can learn top-down expectations (also called primes, or
queries) that can bias the system to ignore masses of irrelevant data. A large mismatch
between a bottom-up input vector and a top-down expectation can suppress features in the
input pattern that are not conﬁrmed)by the top-down prime and thereby drive an adaptive

memory search that carries out a bout of hypothesis testing.
(F) Hypothesis Testing and Match-Learning

The system hereby selectively searches for recognition categories, or hypotheses, whose
top-down expectations provide an acceptable match to bottom-up data. Each top-down
expectation begins to focus attention upon, and bind, that cluster of input features that
are part of the prototype which it has already learned, while suppressing features that are
not. The search continues if the current match is not good enough. If no previously learned
category, or hypothesis, provides a good enough match, then selection and learning of a new
category and top-down expectation is zﬁitomatically initiated. When the search discovers an
old or new category that provides an acceptable match, the system locks into an attentive
resonance during which learning occurs. The input pattern hereby refines the adaptive

weights of the category prototype based on any new information that it contains.

Unlike many learning systems, such as back propagation, the Fuzzy ARTMAP system
carries out match-learning, rather than mismatch-learning. A category modifies its previ-
ous learning only if its top-down expectation matches the input vector well enough to risk
changing its defining characteristics. Otherwise, hypothesis testing selects a new category

on which to base learning of a novel event.
(G) Choosing the Globally Best Answer without Recursive Search

In many learning algorithms, as learning proceeds, local minima or less than optimal
solutions may be selected to represent the data. In Fuzzy ARTMAP, at any stage of learning,
an input pattern first selects the category whose top-down expectation provides the globally
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best match. It is in this sense that a top-down expectation acts as a prototype for the class of
all the input patterns that its category represents. After learning self-stabilizes, every input
directly selects and resonates with the globally best-matching category without triggering a
recursive search. Familiar events directly resonate with the globally best category without
recursive search, even if they are interspersed with unfamiliar events that drive recursive

hypothesis testing for better matching categories.
(H) Learning Both Prototypes and Exemplars

The prototype represents the cluster of input features that the category learns based
upon its past experience. The prototype represents the features to which the category “pays
attention.” In cognitive psychology, an input pattern is called an exemplar. A classical
issue in cognitive psychology concerns whether the brain learns prototypes or exemplars. It
sometimes seems that the brain learns prototypes, or abstract types of knowledge, such as
being able to recognize that a particular object is a face or an animal. At other times, the
brain appears to learn individual exemplars, or concrete types of knowledge, such as being
able to recognize a particular face or a particular animal. What sort of hybrid system can
learn both types of knowledge (Smith, 1990)? Fuzzy ARTMAP is such a hybrid system. It
uses the Minimax Learning Rule to control how abstract or concrete—how fuzzy—a category
can become in order to conjointly minimize predictive generalization and maximize predictive

generalization. The next section indicates how this is accomplished.
(I) Controlling Vigilance to Calibrate Confidence

A confidence measure, called vigilance, calibrates how well an exemplar needs to match
the prototype that it reads out in order for the corresponding category to resonate with
it and be chosen. In other words, vigilance calibrates how well the hypothesis represented
by the category matches the data. If vigilance is low, even poor matches are accepted.
Many different exemplars can then be incorporated into one category, so compression and
generalization by that category are high. If vigilance is high, then even good matches may
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be rejected, and hypothesis testing may be initiated to select a new category. In this case,
few exemplars activate the same category, so compression and generalization are low. A
very high vigilance can select a unique category for a rare event that predicts an outcome
different from that of any of the similar exemplars that surround it. In this limiting case,
the prototype of the category learns the unique exemplar that the category represents, so

that prototype learning reduces to exemplar learning.

The Minimax Learning Rule is realized by adjusting the vigilance parameter in response
to a predictive error. Vigilance is increased just enough to initiate hypothesis testing to
discover a better category, or hypothesis, with which to match the data. In this way, a
minimum amount of generalization is sacrificed to correct the error. This process is called
match tracking because vigilance tracks the degree of match between exemplar and prototype

in response to a predictive error. How this is computed is described below.
(J) Rule Extraction and Fuzzy Reasoning

At any stage of learning, a user can translate the state of a Fuzzy ARTMAP system into
a fuzzy set of rules. These rules evolve as the system is exposed to new inputs. Suppose, for
example, that n categories are associated with the mt® prediction of the network. Backtrack
from prediction m along the associative pathways whose adaptive weights have learned to
connect the n categories to this prediction (Figure 2). Each of these categories codes a
“reason” for making the mth prediction. The prototype of each category embodies the set of
features, or constraints, whose binding together constitutes that category’s “reason”. The
[F-THEN rule takes the form: IF the features of any of these n categories are found bound
together, within the fuzzy constraints that lead to selection of that category, THEN the
mth prediction holds. An example of such a rule is: if feature 1 falls in interval [a;, b;]
and feature 7 falls in interval [a;, by], or feature 3 falls in interval [ag, b3], feature 8 falls
in interval [ag, bg], and feature 94 falls in interval [agq, bg4], then prediction 7 is made.
Fuzzy ARTMAP is thus a type of self-organizing fuzzy production system (Laird, Newell,

and Rosenbloom, 1987) that evolves adaptively from its unique input-output experiences.
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The IF-THEN rules of Fuzzy ARTMAP can be read off from the learned adaptive weights
of the system at any stage of the learning process. This property is particularly important in
applications such as medical diagnosis from a large database of patient records, where doctors
may want to study the rules by which the system reaches its diagnostic decisions. Tables 1-
3 summarize some medical and other benchmark studies that compare the performance
of Fuzzy ARTMAP with alternative recognition and prediction models. These and other
benchmarks are described elsewhere in greater detail (Carpenter, Grossberg, and lizuka,
1992; Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg,

and Reynolds, 1991).
(K) Properties Scale to Arbitrarily Large Databases

One of the most serious weaknesses of traditional Artificial Intelligence algorithms is
that their desirable properties tend to break down as small toy problems are generalized to
large-scale problems. In contrast, all of the desirable properties of Fuzzy ARTMAP scale to
arbitrarily large problems. On the other hand, Fuzzy ARTMAP helps to solve only learned
categorization and prediction problems. These problems are, however, core problems in many

intelligent systems, and have been technology bottlenecks for many alternative approaches.

A summary is now given of Adaptive Resonance Theory, or ART, networks for unsuper-
vised learning and categorization. Th.e connection between ART systems and fuzzy logic is
noted in an exposition of Fuzzy- ART networks for unsupervised learning and categorization.
Fuzzy ART modules are then combined into a Fuzzy ARTMAP system that is capable of

supervised learning, recognition, and prediction.

3. Unsupervised Self-Organizing Feature Map and ART Systems

As noted above, Adaptive Resonance Theory was introduced as a theory of human cog-
nitive information processing (Grossberg, 1976b, 1980). Theoretical development has con-
tinued to explain and predict ever-larger cognitive and neural data bases to the present day;
see Carpenter and Grossberg (1991, 1993); Grossberg (1987a, 1987b, 1988, 1994); Grossberg
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and Merrill (1992); and Grossberg, Mingolla and Ross (1994a) for illustrative contributions.
In addition, an evolving series of self-organizing neural network models have been developed
= for applications to adaptive pattern recognition and prediction. These self-organizing models
can operate in either an unsupervised or a supervised mode. Unsupervised learning occurs
i when network predictions do not generate environmental feedback. Supervised learning oc-
curs when prediction-contingent feedback is available. This option does not occur in many
supervised learning algorithms, such as back propagation, which can learn only when feed-
back is available. Unsupervised ART models learn stable recognition categories in response
to arbitrary input sequences with either fast or slow learning. These model families include
= ART 1 (Carpenter and Grossberg, 1987a), which can stably learn to categorize binary input
patterns presented in an arbitrary order; ART 2, ART2-A, and Fuzzy ART (Carpenter and
Grossberg, 1987b; Carpenter, Grossberg, and Rosen, 1991a, 1991b), which can stably learn
to categorize either analog or binary input patterns presented in an arbitrary order; and
ART 3 (Carpenter and Grossberg, 19,90)’ which can carry out parallel search, or hypothesis
testing, of distributed recognition codes‘ in a multi-level network hierarchy. Variations of
these models adapted to the demands of individual applications have been developed by a

number of authors.

Figure 4

Figure 4 illustrates one example from the family of ART 1 models, and Figure 5 illustrates
a typical ART search cycle. Level Fj in Figure 4 contains a network of nodes, each of which
represents a particular combination of sensory features. Level Fj contains a network of nodes
- that represent recognition codes which are selectively activated by patterns of activation
across Fy. The activities of nodes in Fy and F, are also called short term memory (STM)
traces. STM is the type of memory that can be rapidly reset without leaving an enduring
trace. For example, it is easy to reset the STM of a list of numbers that a person has just

heard once by distracting the person with an unexpected event. STM is distinct from LTM,

11




October 26, 1994
or long term memory, which is the type of memory that we usually ascribe to learning. For
example, we do not forget our parents’ names when we are distracted by an unexpected

event.

Figure 5

As shown in Figure 5a, an input vector I registers itself as a pattern X of activity across
level F;. The Fj output vector S is then transmitted through the multiple converging and
diverging adaptive filter pathways emanating from Fj. This transmission event multiplies the
vector S by a matrix of adaptive weights, or LTM traces, to generate a net input vector T to
level F5. The internal competitive dynamics of F contrast-enhance vector T. Whereas many
F, nodes may receive inputs from Fj, competition or lateral inhibition between F, nodes
allows only a much smaller set of F» nodes to store their activation in STM. A compressed
activity vector Y is thereby generated across F,. In ART 1, the competition is tuned so that
the F, node that receives the maximal Fy — Fy input is selected. Only one component of Y
is nonzero after this choice takes plécé. Activation of such a winner-take-all node defines the
category, or symbol, of the input pattern I. Such a category represents all the inputs I that
maximally activate the corresponding node. So far, these are the rules of a self-organizing
feature map, also called competitive learning, self-organizing feature maps, or learned vector

quantization.

In a self-organizing feature map, only the F5 nodes that win the competition and store
their activity in STM can influence the learning process. STM activity opens a learning gate
at the LTM traces that abut the winning nodes. These LTM traces can then approach, or
track, the input signals in their pathways by a process of steepest descent. This learning law
is thus often called gated steepest descent, or instar learning. It was introduced into neural
network models in Grossberg (1969) and is the learning law that was used to introduce ART
(Grossberg, 1976b). Such an LTM trace can either increase or decrease to track the signals in

its pathway. Since it is thus not a strictly Hebbian associative law, which allows traces only
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to increase, the instar law is sometimes said to be both Hebbian and anti-Hebbian. It has
been used to model neurophysiological data about hippocampal LTP (Levy, 1985; Levy and
Desmond, 1985) and adaptive tuning of cortical feature detectors during the visual critical
period (Rauschecker and Singer, 1979; Singer, 1983), lending support to ART predictions

that these two systems would employ such a learning law (Grossberg, 1976b).

Self-organizing feature map models were introduced and computationally characterized
in the early 1970s (Grossberg, 1972, 1976a, 1978; Malsburg, 1973). In brief, a model for

learned classification by an instar network was introduced in Grossberg (1972). Malsburg

- (1973) modified the model equations used in that paper to introduce the first biologically-

motivated self-organizing feature map (SOFM). The Malsburg model used a non-local adap-
tive weight equation and did not operate in real-time. The Grossberg (1976a) model (Fig-
ure 6) showed how to modify the Malsburg (1973) model to introduce the first locally defined
real-time SOFM, whose rules have been used in essentially all such subsequent models. This
model achieves L! normalization of its.input patterns and adaptive weights. Rumelhart and
Zipser (1985) used this version of the SOFM model in their computer simulations of com-
petitive learning. Grossberg (1978) noted how a Euclidean, or L2, norm achieves unbiased
learning, and more generally considered L.P norms. Kohonen (1984/1989) popularized the
L? version through his influential book. Other contributions and applications of the SOFM
model include those of Amari and Takeuchi (1978), Bienenstock, Cooper, and Munro (1982),
Cohen and Grossberg (1987), Grossberg, and Kuperstein (1986/1989), Linsker, (1986), and
Willshaw and Malsburg (1976).

Figure 6

By now, there are many hundreds of papers that develop variants of the SOFM model,
either mathematically or in applications. That is because they exhibit many useful proper-
ties, especially if not too many input patterns, or clusters of input patterns, perturb level
Fy relative to the number of categorizing nodes in level F5. Under these sparse environmen-
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tal conditions, category learning is provably stable: the LTM traces track the statistics of
the environment, are self-normalizing, and oscillate a minimum number of times; and the
classifier has Bayesian properties (Grossberg, 1976a, 1978). These are the key properties
that Kohonen (1984/1989) discussed and applied. It was also proved, however, that under
arbitrary environmental conditions, learning becomes unstable (Grossberg, 1976b). Such
a model could forget its parents’ faces. Although a gradual switching off of plasticity, or
very slow learning, can partially overcome this problem, such a mechanism cannot work in

a recognition learning system whose plasticity is maintained throughout adulthood.

This memory instability is due to basic properties of feedforward associative learning
networks. An analysis of this instability, as well as of behavioral and neural data about
categorization, learning, and attention, led to the introduction of ART top-down feedback, or
expectation, that stabilizes the memory of SOFM models in response to an arbitrary stream
of input patterns (Grossberg, 1976b). Thus ART models were introduced as examples of how
internal control mechanisms can self-stabilize SOFM learning. Learning in SOFM models
has also been partially stabilized by external control of the learning rate. One theme of
considerable research interest still today is whether, and how, external or internal controllers

are used to stabilize SOFM learning.

4. Hypothesis Testing, Attention, and Resonance

The ART scheme for self-stabilizing its embedded SOFM model incorporates heuristics
that are also used in expert production systems and fuzzy systems. In particular, ART
systems carry out a form of hypothesis testing to discover new recognition categories and to
stabilize learning. Thus in an ART model (Carpenter and Grossberg, 1987a, 1991), learning
does not occur whenever some winning Fy activities are stored in STM. Instead activation
of F, nodes may be interpreted as “making a hypothesis” about an input I. When Y is
activated (Figure 5a), it generates an output vector U that is sent top-down through the
second adaptive filter. After multiplication by the adaptive weight matrix of the top-down
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filter, a net vector V inputs to Fy (Figure 5b). Vector V plays the role of a learned top-
down expectation. Activation of V by Y may be interpreted as “testing the hypothesis”
Y, or “reading out the category prototype” V. The ART 1 network is designed to match
the “expected prototype” V of the category against the active input pattern, or exemplar,
I. Nodes that are activated by I are suppressed if they do not correspond to large LTM
traces in the prototype pattern V (Figure 5¢). Thus F; features that are not “expected”
by V are suppressed. Expressed in a different way, the matching process may change the
Fy activity pattern X by suppressing activation of all the feature detectors in I that are
not “confirmed” by hypothesis Y. The resultant pattern X* encodes the cluster of features
in I that the network deems relevant to the hypothesis Y based upon its past experience.

Pattern X* encodes the pattern of features to which the network “pays attention.”

If the expectation V is close enough to the input I, then a state of resonance develops as
the attentional focus takes hold. The pattern X* of attended features reactivates hypothesis
Y which, in turn, reactivates X*. The network locks into a resonant state through the
mutual positive feedback that dynamically links X* with Y. In ART, the resonant state,
rather than bottom-up activation, drives the learning process. The resonant state persists
long enough, at a high enough activity level, to activate the slower learning process; hence
the term adaptive resonance theory. ART systems learn prototypes, rather than exemplars,
because the attended feature vector X*, rather than the input I itself, is learned. These

prototypes may, however, also be used to encode individual exemplars, as described below.

5. Pattern Matching, Stable Learning, and Phonemic Restoration

The ART attentive matching process may be realized in several ways (Carpenter and
Grossberg, 1987a). In one instantiation, three different types of inputs are combined at
level Fy (Figure 4): bottom-up inputs, top-down expectations, and attentional gain control
signals. The attentional gain control channel sends the same signal to all F; nodes; it is a
“nonspecific”, or modulatory, channel. This sort of attentive matching is said to obey a 2/3
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Rule (Carpenter and Grossberg, 1987a): an Fj node can be fully activated only if two of the

three input sources that converge upon it send positive signals at a given time.

The 2/3 Rule allows F; nodes to generate supratheshold outputs in response to bottom-
up inputs, since an input directly activates its target Fj features and indirectly activates
them via the nonspecific gain control channel to satisfy the 2/3 Rule (Figure 5a). After the
input instates itself at F, leading to selection of a hypothesis Y and a top-down prototype V,
the 2/3 Rule ensures that only those F nodes that are confirmed by the top-down prototype
can remain active and be attended at F) after an F, category is selected, since top-down

feedback shuts off the attentional gain control signals.

ART matching rules like the 2/3 Rule enable an ART network to realize a self-stabilizing
learning process. Carpenter and Grossberg (1987a) proved that ART learning and memory
are stable in arbitrary environments, but become unstable when the ART matching rule is
eliminated. They also defined several circuits that generate the desired matching properties.
Thus a type of matching that guarantees stable learning also enables the network to selec-

tively pay attention to feature combinations that are confirmed by a top-down expectation.

ART matching in the brain is illustrated by experiments on phonemic restoration (Repp,
1991; Samuel, 1981a, 1981b; Warren, 1984; Warren and Sherman, 1974). Suppose that
a noise spectrum replaces a letter séund in a word heard in an otherwise unambiguous
context. Then subjects hear the correct letter sound, not the noise, to the extent that the
noise spectrum includes the letter formants. If silence replaces the noise, then only silence
is heard. Top-down expectations thus amplify expected input features while suppressing

unexpected features, but do not create activations not already in the input.

ART matching rules also show how an ART system can be primed, or biased, to respond
differently based upon prior short-term activation. This property has been used to explain
paradoxical reaction time and error data from priming experiments during lexical decision
and letter gap detection tasks (Grossberg and Stone, 1986; Schvaneveldt and MacDonald,
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1981). Although priming is often thought of as a residual effect of previous bottom-up
activation, a combination of bottom-up activation and top-down ART matching was needed
to explain the complete data pattern. This analysis combined bottom-up priming with a
type of top-down priming; namely, the top-down activation that prepares a network for
an expected event that may or may not occur. ART matching rules clarify why top-down
priming, by itself, has subthreshold (and in the brain unconscious) effects, even though it

can facilitate suprathreshold processing of a subsequent expected event.

6. Vigilance, Hypothesis Testing, and the Control of Category Generalization

The criterion of an acceptable match is defined by a parameter p called vigilance (Car-
penter and Grossberg, 1987a, 1991). The vigilance parameter is computed in the orienting
subsystem A. Vigilance weighs how similar an input exemplar must be to a top-down pro-
totype in order for resonance to occur. Resonance occurs if p|I| — |X*| <0, where 0 < p < 1.
This inequality says that the F} attentional focus X* inhibits .A more than the input I excites

it. If A remains quiet, then an F; < F5 resonance can develop.

Vigilance calibrates how much novelty the system can tolerate before activating A and
searching for a different category. If the top-down expectation and the bottom-up input are
too different to satisfy the resonance criterion, then hypothesis testing, or memory search,
is triggered. Memory search leads to selection of a better category at level Fy with which to
represent the input features at level F}. During search, the orienting subsystem interacts with
the attentional subsystem, as in Figures 5c¢ and 5d, to rapidly reset mismatched categories
and to select other Fy representations with which to learn about novel events, without
risking unselective forgetting of previous knowledge. Search may select a familiar category if
its prototype is similar enough to the input to satisfy the vigilance criterion. The prototype
may then be refined by top-down attentional focussing. If the input is too different from any
previously learned prototype, then an uncommitted population of F; cells is selected and
learning of a new category is initiated.
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Because vigilance can vary across learning trials, recognition categories capable of en-
coding widely differing degrees of generalization or abstraction can be learned by a single
ART system. Low vigilance leads to broad generalization and abstract prototypes since then
p|I| - 1X*| < 0 for all but the poorest matches. High vigilance leads to narrow generalization
and to prototypes that represent fewer input exemplars, even a single exemplar. Thus a
single ART system may be used, say, to recognize abstract categories of faces and dogs,
as well as individual faces and dogs. A single system can learn both, during supervised
learning, by increasing vigilance just enough to activate A if a previous categorization leads
to a predictive error (Carpenter and Grossberg, 1992; Carpenter, Grossberg, and Reynolds,
1991; Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992). ART systems hereby
provide a new answer to whether the brain learns prototypes or exemplars. Various authors
have realized that neither one nor the other alternative is satisfactory, and that a hybrid
system is needed (Smith, 1990). ART systems can perform this hybrid function in a manner

that is sensitive to environmental demands.

7. Memory Consolidation and Direct Access to the Globally Best Category

As inputs are practiced over learning trials, the search process eventually converges
upon stable categories. The process .wilereby search is automatically disengaged may be
interpreted as a form of memory consolidation. Inputs familiar to the network access their
correct category directly, without the need for search. The category selected is the one
whose prototype provides the globally best match to the input pattern. If both familiar
and unfamiliar events are experienced, familiar inputs can directly activate their learned
categories, while unfamiliar inputs continue to trigger adaptive memory searches for better
categories, until the network’s memory capacity is fully utilized (Carpenter and Grossberg,

1987a).

These ART properties have been used to explain and predict of cognitive and brain data

that have, as yet, received no other theoretical explanation (Carpenter and Grossberg, 1991;
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Grossberg, 1987a, 1987b). For example, a formal lesion of the orienting subsystem creates a
memory disturbance that remarkably mimics properties of medial temporal amnesia (Car-
penter and Grossberg, 1987c, 1993; Grossberg and Merrill, 1992). These and related data
correspondences to orienting properties (Grossberg and Merrill, 1992) have led to a neuro-
biological interpretation of the orienting subsystem in terms of the hippocampal formation
of the brain. In applications to visual object recognition, the interactions within the Fy and
F, levels of the attentional subsystem are interpreted in terms of data concerning the pre-
striate visual cortex and the inferotemporal cortex (Desimone, 1992), with the attentional

gain control pathway interpreted in terms of the pulvinar region of the brain.

Figure 7

8. Natural Link between ART Systems and Fuzzy Logic

Fuzzy ART is a generalization of ART 1 that incorporates operations from fuzzy logic
(Carpenter, Grossberg, and Rosen, 1991b). Although ART 1 can learn to classify only binary
input patterns, Fuzzy ART can learn to classify both analog and binary input patterns.
Moreover, Fuzzy ART reduces to ART 1 in response to binary input patterns. As shown in
Figure 7, the generalization to learning both analog and binary input patterns is achieved
simply by replacing appearances of the binary intersection operator (n) in ART 1 by the
analog MIN operator (A) of fuzzy set theory. The MIN operator reduces to the intersection
operator in the binary case. Of particular interest is the fact that, as parameter a approaches
-0, the function T; which controls category choice through the bottom-up filter (Figure 5a)
then measures the degree to which the adaptive weight vector w; is a fuzzy subset (Kosko,

1986) of the input vector I. The network first chooses the category j that maximizes Tj.
Figure 8

In Fuzzy ART, input vectors are L1 normalized at a preprocessing stage (Figure 8).
This normalization procedure, called complement coding, leads to a symmetric theory in
which the MIN operator (A) and the MAX operator (v) of fuzzy set theory (Zadeh, 1965)
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play complementary roles. Geometrically, the categories formed by Fuzzy ART are then
hyper-rectangles. Figure 9 illustrates how MIN and MAX define these rectangles in the
2-dimensional case, with the MIN and MAX values defining the acceptable range of feature
variation in each dimension. Complement coding uses on-cell (with activity a in Figure 8)
and off-cell (with activity a¢ in Figure 8) opponent processes to represent the input pattern.
This representation preserves individual feature amplitudes while normalizing the total on-
cell/off-cell vector. The on-cell portion of a prototype encodes features that are critically
present in category exemplars, while the off-cell portion encodes features that are critically
absent (Figure 8). Each category is then defined by an interval of expected values for each
input feature (Figure 9). Thus, as noted in Section 1, for the category “man”, Fuzzy ART
would encode the feature of “hair on head” by a wide interval ([A, 1]) and the feature “hat
on head” by a wide interval ([0, B]) (Figure 1). For the category “dog”, two narrow intervals,
[C, 1] for hair and [0, D] for hat correspond to narrower ranges of expectations for these two

features.

Figure 9

Learning in Fuzzy ART is stable because all adaptive weights can only decrease in time.
Decreasing weights correspond to in(tréasillg sizes of category “boxes”. Smaller vigilance
values lead to larger category boxes. Learning stops when the input space is covered by
boxes. The use of complement coding works with the property of increasing box size to
prevent a proliferation of categories. With fast learning, constant vigilance, and a finite
input set of arbitrary size and composition, learning stabilizes after just one presentation
of each input pattern. A fast-commit slow-recode option combines fast learning with a
forgetting rule that buffers system memory against noise. Using this option, rare events can
be rapidly learned, yet previously learned memories are not rapidly erased in response to
statistically unreliable input fluctuations. The equations that define the Fuzzy ART and

ARTMAP algorithms are listed in the Appendix.
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9. Fuzzy ARTMAP

Each Fuzzy ARTMAP system includes a pair of Fuzzy ART modules (ART, and
as in Figure 10. During supervised learning, ART, receives a stream {a(P)} of input patterns
and ART), receives a stream {b(P)} of input patterns, where b(®) is the correct prediction
given a(P). These modules are linked by an associative learning network and an internal
controller that ensures autonomous system operation in real time. The controller is designed

”

to create the minimal number of ART, recognition categories, or “hidden units,” needed to
meet accuracy criteria. As noted above, this is accomplished by realizing a Minimax Learning
Rule that conjointly minimizes predictive error and maximizes category generalization. This
scheme automatically links predictive success to category size on a trial-by-trial basis using

only local operations. It works by increasing the vigilance parameter p, of ART, by the

minimal amount needed to correct a predictive error at ART, (Figure 11).

Figure 11

Parameter p, calibrates the minimum confidence that ART, must have in a recognition
category, or hypothesis, that is activated by an input a(P) in order for ART, to accept that
category, rather than search for a better one through an automatically controlled process of
hypothesis testing. As in ART 1, lower values of p, enable larger categories to form. These
lower pq values lead to broader generalization and higher code compression. A predictive
failure at ART} increases the minimal confidence p, by the least amount needed to trigger
hypothesis testing at ART,, using a mechanism called match tracking (Carpenter, Gross-

berg, and Reynolds, 1991). Match tracking sacrifices the minimum amount of generalization
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necessary to correct the predictive error. Speaking intuitively match track embodies the idea
that the criterion confidence level that permitted selection of the active hypothesis needs to
be raised to satisfy the demands of the current environment. Match tracking increases the
criterion confidence just enough to trigger hypothesis testing. Hypothesis testing leads to
the selection of a new ART, category, which focuses attention on a new cluster of a() input
features that is better able to predict b(P). The combination of match tracking and fast
learning allows a single ARTMAP system to learn a different prediction for a rare event
than for a cloud of similar frequent events in which it is embedded. The equations for Fuzzy

ART and Fuzzy ARTMAP are given in the Appendix in algorithmic form.

The next two sections illustrate how variants of Fuzzy ARTMAP can be embedded into

larger neural architectures.

10. VIEWNET: A Neural Architecture for Learning to Recognize 3-D Objects

from Sequences of 2-D Views

This section shows how a Fuzzy ARTMAP network can be incorporated into a self-
organizing neural architecture for invariant 3-D object recognition (Bradski and Grossberg,
1994). This architecture is called VIEWNET because it uses View Information Encoded
With NETworks (Figure 12). VIEWNET accumulates evidence across sequences of possibly
noisy or incomplete 2-D views of a 3-D object in order to generate more accurate object iden-
tifications than would otherwise be possible. VIEWNET processes individual 2-D views of
3-D objects using the CORT-X 2 filter (Carpenter, Grossberg, and Mehanian, 1989; Gross-
berg and Wyse, 1991), which discounts the illuminant, regularizes and completes figural
boundaries, and removes noise from the images. A log-polar transform is taken with respect
to the centroid of the resulting figure and then re-centered to achieve 2-D scale and rotation
invariance. The invariant images are coarse coded to further reduce noise, reduce foreshort-
ening effects, and increase generalization. These compressed codes are input into a variant of
the Fuzzy ARTMAP algorithm which learns 2-D view categories. Evidence from sequences
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of 2-D view categories is stored in a working memory. Voting based on the unordered set of
stored categories determines object recognition. Recognition performance was tested with
noisy and clean images using slow and fast learning on an MIT Lincoln Laboratory database
of 2-D views of aircraft with and without additive noise. A recognition rate of up to 90%
was achieved with one 2-D view category and of up to 98.5% correct with three 2-D view

categories.

Figure 12

Seibert and Waxman (1990a, 1990b, 1991, 1992) pioneered the 'use of 2-D view sequences
for 3-D object recognition by adaptive neural networks. Seibert and Waxman developed
their neural architecture based on the Koenderink and van Doorn (1979) concept of As-
pect Graphs. The VIEWNET model is inspired by the Seibert-Waxman model, but uses
a different preprocessor, adaptive pattern classifier, and evidence accumulation scheme to
achieve better compression and higher accuracy on the same data base from MIT Lincoln

Laboratory, which they generously shared.

Seibert and Waxman used an unsupervised ART 2 network to classify coarse-coded
maximal curvature image data. This approach generated unambiguous recognition based on
one category only 25% of the time, using 41 categories, as compared to the VIEWNET 90%
accuracy using 33 categories.

To compensate for the general categories formed in their model, the Seibert-Waxman
model used ordered view transitions between pairs of view categories to supplement individ-
ual recognition categories. For example, to recognize multiple views of an F-16 aircraft, 70
view transitions were learned. VIEWNET used only the unordered set of 2-D view categories,
stored in a working memory, to vote for a best object. No view transitions were used, and it
was shown that they do not improve accuracy. Two views achieved up to 94% accuracy, and
three views up to 98.5% accuracy. These results suggest that the selection of preprocessor,

classifier, and evidence accumulation scheme may substantially alter predictive accuracy. A
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number of issues, including the possible utility of ordered view transitions, remain open for

further study.

The image database used to test the VIEWNET architecture consists of multiple 2-D
images of three jets. Video images were taken of 3 airplane models: an F-16, an F-18, and an
HK-1. Each airplane was painted black and suspended by string against a light background
to aid in segmentation. The camera was mounted anywhere in an arc around the jets that
started at 0.0 degrees above horizontal and went in increments of 4.5 degrees to a maximum
of 72.0 degrees above horizontal. For each camera angle, the airplanes were spun and frames
covering one full revolution (an average of 88 frames) were retained resulting in 1200 to 1400
images per object. The images themselves were 128x128 pixel gray scale. The images were
then thresholded and binarized into a SUN raster format to form the “raw” database. For
our processing, data was turned into a floating point format scaled between 0.0 and 1.0 and
an additive noise process was introduced. The noise consisted of a 128 x 128 pixel images
with each pixel taken from a unifor}m‘ distribution between 0.0 and 1.0 scaled by a constant
C' > 0.0. These scaled, 128 x 128 noise images were then added to the 128 x 128 jet images
prior to preprocessing. Thus, both noise-free and noisy 2-D views covering a half-sphere

surrounding the 3-D object were collected, keeping their spatial relationships intact.

Even numbered rotation images from each camera angle were taken as the training set
with the odd numbered images forming the test set. The system was trained using random
walks over the half-sphere of training images. Testing was done using random walks over
the half-sphere of test images so that the paths taken and views seen were never the same

between the training and test sets.

Figure 13

The CORT-X 2 filter (Grossberg and Wyse, 1991, 1992) discounts the illuminant and
normalizes image contrasts, regularizes and completes figural boundaries, and suppresses

image noise. Alternative filters could have been used on the present data. CORT-X 2 was
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used because it is also capable of preprocessing more complex noisy images. The processing
stages of CORT-X 2 are shown in Figure 13. They embody a one-shot feedforward simpli-
fication of a model of the boundary segmentation process that takes place in visual cortex

(Grossberg, Mingolla, and Todorovi¢, 1989).

The 2-D boundary segmentation is centered by dividing its 15¢ moments by its 0** mo-
ment to find the figure centroid, subtracting off the center of the image and then shifting
the figure by this amount. A log-polar transform is then taken with respect to the center of
the image. Each point (z,y) is represented as re?. Taking the logarithm yields coordinates
of log radial magnitude and angle. As is well known (Schwartz, 1977) figural sizes and ro-
tations of a centered image are converted into figural shifts under log-polar transformation.
Using these shift parameters to center the log-polar transformed image leads to a figural

representation that is invariant under 2-D changes in position, size and rotation.

Coarse coding, or data reduction, reduces memory requirements as it helps to com-
pensate for inaccuracies of figural aiig11me11t, 3-D viewpoint specific foreshortening, and
self-occlusions. Too much coarse coding can, however, obscure critical input features and
thereby harm recognition performance. These effects were balanced to maximize the benefits

of coarse coding.

Coarse coded used a spatial averaging method that convolved the original image I with a
function ¥ and then sampled the resultant image with delta functions spaced every T pixels:

6(x —nT,y— kT). For simplicity, in 1D this is

(I+0). S §(z—nT). (1)

nN=—0oo

If the Fourier transform of I is I, and that of ¥ is ¥, then the Fourier transform of equation
is
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(1-0). 2% S 80— k), 2)
k=—o00
where s = 27 /T, and T is the sampling period in pixels. If Qy is the highest frequency in
the image, then for the image to be uniquely determined by its samples, we must have by
the Nyquist sampling theorem that
2T

Qs = 7 > 20y, (3)

Two simple spatial averaging functions ¥ are: (1) uniform averaging of the input image
so that all pixels in a window of some width are summed and divided by the number of pixels
in the window; (2) Gaussian averaging of the input image so that a normalized, Gaussian
weighted sum of all pixels is taken over a window of some width. Both approaches were
investigated by Bradski and Grossberg (1994). Method (1) has the problem that uniform
averaging is a rectangular filter in the space domain and a sinc function in the frequency
domain which introduces high frequency aliasing (“ringing”) in the resultant image. The
Gaussian function of method (2) is a “smoother” low pass filter and so does not suffer from
this problem. A Gaussian is also an eigenfunction of a Fourier transform, which simplifies

calculation.
Figure 14
To best set the standard deviation o of the Gaussians, we define two standard deviations

away from the Gaussian midpoint to be essentially zero. The cutoff frequency of such a low

pass filter is then 7 /20, which by equation (3) yields at equality:

o= =. (4)

Thus, the zero point of each Gaussian just touches the center of the next Gaussian. Figure 14
summarizes the preprocessing: 14(a) shows the output of CORT-X 2, 14(b) the centered log
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polar transform of (a), 14(c) depicts Gaussian coarse coding according to equation (4), and
14(d-f) show coarse coding down to 16 x 16, 8 x 8, and 4 x 4 pixels. The best results, as

summarized in Table 4, were achieved with 16 x 16 coarse coding.

Table 4

A modified version of Fuzzy ARTMAP was used in the VIEWNET architecture. First the
network was simplified, as in Carpenter, Grossberg, and lizuka (1992), to consist of a Fuzzy
ART module (Carpenter, Grossberg, and Rosen, 1991b) ART, and a field of output nodes F®,
rather than an ART; module, linked to ART, by an associative memory F'*® that is called the
map field (see Appendix). Fuzzy ARTMAP was modified to allow for on-line slow learning
from ART, 2-D view category nodes F§ to the map field nodes (Carpenter, Grossberg, and
Reynolds, 1993, 1994). A maximal ART, vigilance level, pmqr was introduced such that an
error at the map field triggers match tracking only if match tracking leads to a vigilance
Pa < Pmaz- If pa > Pmaz, learning takes place instead of memory search. By setting the
map field learning rate 8,;, baseline (p) and maximal (pmaz) vigilance levels appropriately,
weights from F§ nodes to the map field approximate the conditional probability of the true

class given the selected Fi§ category (Table 4).

For the airplane data set as processed by VIEWNET, the average overall length of an
error sequence was 1.31 2-D views with a standard deviation of 0.57 views. Thus, when
an error occurs, collecting evidence from, and voting over, two more views will usually be
sufficient to correct the error. This can be done most simply in VIEWNET by adding an
integration field (F"t), or working memory, to accumulate evidence between the map field
(F*b) and the winner-take-all field (F*%). The equation for the integrator field is stepped

once each time ART, chooses a category:

(:L.;Zzt)new = /Hintxz‘b + (1 - :Bint)(x}.gnt)dda (5)

where zi* is an integrator node for the kt* object, B, is the integration rate each time
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the equation is stepped, and z¢ is the k** map field category. The maximal integration
node is chosen by the winner-take-all field (F*%) as the network’s identification of the 3-D
object. Thus VIEWNET recognition is based upon the unordered winner of a temporal

voting scheme.

The Fuzzy ARTMAP architecture computes goodness of fit information that may be used
to enhance its power in various applications. For example, the algorithm’s match or choice
equation in may be used to measure to the quality of the recognition. Thus if VIEWNET
recognizes a 3-D object, but its ART, category prototype provides a poor fit to the input
vector, then the goodness of fit information could be used to cause VIEWNET to collect
more data before a final recognition decision is made. Likewise, if VIEWNET is embedded
in an active vision system, then a poorly fitting view could be used to trigger the system to

move to get a better perspective.

11. ART-EMAP: Object Recognition by Spatial and Temporal Evidence Accu-

mulation

ART-EMAP (Figure 15) uses spatial and temporal evidence accumulation to recognize
target objects and pattern classes in noisy or ambiguous input environments (Carpenter and
Ross, 1993, 1994b). During performance, ART-EMAP integrates spatial evidence distributed
across recognition categories to predict a pattern class. During training, ART-EMAP is
equivalent to fuzzy ARTMAP and so inherits the advantages of fast, on-line, incremental
learning, such as speed, stability, and the ability to encode rare cases (Section 1). Distributed
activation during performance also endows the network with the advantages of slow learning,
including noise tolerance and error correction. When a decision criterion determines the
pattern class choice to be ambiguous, additional input from the same unknown class may be
sought. Evidence from multiple inputs accumulates until the decision criterion is satisfied
and the system makes a high confidence prediction. Accumulated evidence can also fine-tune
performance during unsupervised rehearsal learning.
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Figure 15

In four incremental stages, ART-EMAP improves predictive accuracy of fuzzy ARTMAP
and extends its domain to include spatio-temporal recognition and prediction. ART-EMAP
applications include a vision system that samples 2-D perspectives of 3-D objects. In this
scenario, a sensor generates an organized database of inputs that are views of each object
from different perspectives or noisy samples of fixed views. Evidence accumulation has been
successfully used in neural network machine vision applications, as in the aspect network
(Baloch and Waxman, 1991; Seibert and Waxman, 1990b). ART-EMAP further develops

this strategy.

Figure 16

3-D object recognition: Simulations illustrate performance of fuzzy ARTMAP and
ART-EMAP (Stages 1-4), on a recognition problem that requires a system to identify three
similar 3-D objects (pyramid, prism, ilduse). Inputs consist of ambiguous 2-D views taken
from various angles (Figure 16). The problem is made difficult by the similarity of views
across objects and by several test set views that do not resemble any training set view of the
same object. Fuzzy ARTMAP correctly identifies only 65% of the objects from noise-free
test set images. Sﬁage 1 ART-EMAP raises performance accuracy to 71%, while Stage 2 and

Stage 3 both boost performance to 98.0% (Figure 17).

Figure 17

Database inputs: The simulation database was constructed using Mathematica to
generate shaded 2-D projections of 3-D objects illuminated by an achromatic point light
source. For each of the three objects, 24 training set views were obtained from perspectives
spaced 30° to 60° apart around a viewing hemisphere (Figure 16a). For each object, 17
test set views, spaced at 45° intervals, were obtained from perspectives between those of the
training set (Figure 16b). Each 2-D view was then preprocessed, using Gabor filters (Gabor,
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1946; Daugman, 1988) to recover boundaries, competitive interactions to sharpen boundary
locations and orientations (Grossberg and Mingolla, 1985), and coarse coding, to yield a
100-component input vector a. The preprocessing algorithm is a typical feature extractor,
chosen to illustrate comparative performance of different recognition systems, and was not

selected to optimize performance of any one of these systems.

Training regime: Fuzzy ARTMAP and ART-EMAP Stage 1 through Stage 4 were
evaluated using both a noise-free test set and a noisy test set. The noisy test set was
constructed by adding Gaussian noise (SD = 0.2) to each input component. Each system
was initially trained under one standard supervised learning protocol, with the training set
presented once. Since the training set views were selected to be sparse and nonredundant,
a situation of minimal code compression was simulated during training. This was achieved
by assigning a high value to the ARTMAP baseline vigilance (g, = 0.9), which established

58 ART, recognition categories for the 72 training set pairs.

Fuzzy ARTMAP simulation; Performance measures of fuzzy ARTMAP and ART-
EMAP on the 3-D object recognition database are summarized in Figure 17, for noise-free
test set inputs (plots a-c) and for noisy test set inputs (plots d-f). The prediction of each
test set view is represented graphically, on shaded viewing hemispheres. Each hemisphere
shows 17 faces, which correspond to thev 17 test set viewing angles (Figure 16b). For each
simulation, three hemispheres show object class predictions made by the system in response
to the corresponding input, with shading of a face indicating a prediction of pyramid (black),

prism (gray), or house (white).

Fuzzy ARTMAP made only 64.7% correct object class predictions on the noise-free test
set (Figure 17a), and 60.8% correct predictions on the noisy test set (Figure 17d). This poor
performance indicates the difficult nature of the problem when prediction must be made on
the basis of a single view. Note, for example, that many of the test set inputs from the lower
left part of the pyramid view hemisphere were incorrectly identified as prism views. The
reason for these errors can be inferred from the correspondence between certain pyramid
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test set views and similar prism training set views (Figure 16).

ART-EMAP Stage 1: Spatial evidence accumulation

ART-EMAP employs aAspatizﬂ evidence accumulation process that integrates a dis-
tributed pattern of activity across coded category nodes to help disambiguate a noisy or
novel test set input. In contrast, previous ART and ARTMAP simulations chose only the
most highly activated, winner-take-all category node at the field Fi§ as the basis for recog-
nition and prediction.

In the fast-learn fuzzy ARTMAP system, the input from F} to the jt* F$ node (Figure

15) is given by:

T¢—|AAW?| (6)
I at|wep

as in Figure 7. Fuzzy ARTMAP uses a binary choice rule:

yo = { 1 if'Tj >‘TJ‘-1 for all j #J ™
0 otherwise.

Then, only the F§ category J that receives maximal F{* — F§ input predicts the ART,

output.

ART-EMAP also uses the binary choice rule (7) during the initial period of supervised
training. However, during performance, F¢ output y* is determined by less extreme contrast
enhancement of the F* — Fif input pattern T*. Limited contrast enhancement extracts more
information from the relative activations of F§ categories than does the all-or-none choice
rule (7).

Power rule: Raising the input T of the jt F§ category to a power p > 1 is a simple

way to implement contrast enhancement. Equation (8) defines a normalized power rule:

_ (T]a)p
S (T
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Normalization constrains the Fi output values to a manageable range without altering rel-
ative values or subsequent predictions. The power rule (8) approximates the dynamics of
a shunting competitive short-term-memory (STM) network that contrast-enhances its input
pattern (Grossberg, 1973). The power rule is equivalent to the choice rule (7) when p is large.
For smaller p, the distributed activity pattern (8) uses information from the relative Fi¢ cat-
egory activations to improve test set predictive performance at ART,. In all ART-EMAP

3-D object simulations, p = 24.

After contrast enhancement, the F§ output y* is filtered through the weights w;‘f to

activate the EMAP field Fb. The input S¢ from Fg to the k** Fgb node obeys the equation:

N
Sgh =" witys. (9)
i=1

Since distributed Fj activity generally determines distributed EMAP field Fl“” input, some
means of choosing a winning prediction at the EMAP field is required. The simplest method
is to choose the EMAP category K that receives maximal input from Fg. This can be

implemented by letting z¢® = 5% and defining Fgb activity by:

f eab ab . .
y%g _ { 1 if .r,k-‘ > T for all £k # K (10)
0 otherwise.

Other methods for predicting an ART, category will be discussed below.

Stage 1 simulation: Like fuzzy ARTMAP, Stage 1 ART-EMAP, with its spatially
distributed activity pattern at F§, is required to make a prediction from each single test set
view. Nevertheless, predictive accuracy improves significantly, from 64.7% to 70.6% on the
noise-free test set (Figure 17b) and from 60.8% to 64.7% on the noisy test set (Figure 17e).
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Stage 2: EMAP predictive decision criterion

An alternative to the Stage 1 predictive choice rule (10) uses a decision criterion (DC) at
the EMAP field Fgb. The decision criterion permits ART} choice only when the most active
category K becomes a minimum proportion more active than the next most active EMAP

category. Thus:

ab _ [1 if 2% > (DC)xgt for all k # K 1
YK {0 otherwise, (11)

where DC > 1. With DC = 1, the Stage 2 decision criterion rule (11) reduces to the Stage 1
Fgb choice rule (10). With DC > 1, the decision criterion prevents prediction when multiple
EMAP categories are about equally activated at Fl“b, representing ambiguous predictive
evidence. As the DC increases, both accuracy and the number of required input samples per
decision tend to increase. When the decision criterion fails, and (11) implies that y¢* = 0
for all k, additional input is sought to resolve the perceived ambiguity. In an application,

additional inputs might correspond to multiple views or to multiple samples of a single view.

Stage 2 simulation: Stage 1 spatial evidence accumulation improves performance by
causing a novel view to activate categories of two or more nearby training set views, which
then strongly predict the correct object. However, many single view errors, caused by similar
views across different objects, remain. Stage 2 or Stage 3 corrects most of these errors, when
multiple views of the unknown object are available. With a high fixed decision criterion
(DC=5.0) and an average of 4.8 test set views, Stage 2 ART-EMAP achieves 98.0% accuracy
on the noise-free test set. Even on the noisy test set, object identification remains at 90.2%
accurate, with an average of 6.8 test set views. Both performance and the average number

of views decrease as the fixed decision criterion decreases from 5 to 1.

Stage 3: Temporal evidence accumulation

The predictive decision criterion strategy (Stage 2 ART-EMAP) searches multiple views

or samples until one input satisfies the decision criterion. However any single noisy input
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vector a might produce map field activity that satisfies a given decision criterion but still
make an incorrect prediction. The Stage 2 strategy does not benefit from the partial evidence
provided by all the views that failed to meet the decision criterion. Further performance
improvement in a noisy input environment is achieved through the application of a decision
criterion to time-integrated predictions that are generated by multiple inputs. Stage 3 ART-
EMAP accumulates evidence at a map evidence accumulation field Fg (Figure 15). The
time scale of this medium-term memory (MTM) process is longer than that of the STM
field activations resulting from the presence of a single view, but shorter than the long-term

memory (LTM) stored in adaptive weights.

Additive evidence integration: A straightforward way to implement evidence accu-
mulation at the EMAP module is to sum a sequence of F#® map activations at the evidence

accumulation field Fgb:

(T]?b)(new) — (Tlgb)(ald) + xzb. (12)

At Fgh, evidence accumulating MTM (T¢) starts at zero and is reset to zero when the

decision criterion is met. Activities y¢® at field Figb obey:

y2b = { L if T > (DC)T for all k # K (13)
0 otherwise.

A decision will eventually be made if the DC starts large and gradually decreases toward 1.
As in Stage 2, larger DC values tend to covary with both greater accuracy and longer input

sequences. In simulations, the DC decreased exponentially from 6 to 1:

DC(1) =5(1.0 - r)=1 41, (14)

where a(l) is the [** input in a same-class sequence (I = 1,2, ...). The decay rate (r) was
set equal to 0.2. Additive integration is equivalent to applying the decision criterion to a
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running average of map field activations x* rather than to x® itself.

Stage 3 simulation: For a two-class prediction problem, evidence accumulation im-
proves performance primarily by averaging across noisy inputs. Stage 3 ART-EMAP becomes
increasingly useful as the number of predicted classes increases, since evidence accumulation
can also help solve the difficult problem of disambiguating nearly identical views of different
objects. With three or more object classes, when equal predictive evidence may exist for
both the correct object and an incorrect one, the identity of the erroneous class tends to vary
from one input to the next. As the sequence of views grows, erroneous evidence is quickly
overwhelmed by evidence for the correct object. In the Stage 3 ART-EMAP three-object
simulations, with the decreasing DC function (14), an average of 9.2 views were needed to
reach 98.0% correct performance on the noise-free test set (Figure 17c). On the noisy test
set, an average of 11.3 views allowed the system to reach 92.2% correct performance (Figure

17f).

Stage 4: Unsupervised rehearsal learning

Temporal evidence accumulation allows the Stage 3 ART-EMAP system to recognize
objects from a series of ambiguous views. However the system learns nothing from the final
outcome of this decision process. If, for example, an input sequence a(l), ..., a(£) predicts an
ARTy category K, by (12)-(13), the entire sequence would need to be presented again before

the same prediction would be made.

Unsupervised rehearsal learning (Stage 4) fine-tunes performance by feeding back to the
system knowledge of the final prediction. Specifically, after input a(l) allows ART-EMAP
to choose the ART} category K, the sequence a(l), ..., a(l) is re-presented, or rehearsed.
Weights in an adaptive filter ug} from Fy to Fg are then adjusted, shifting category decision
boundaries so that each input a(!) in the sequence becomes more likely, on its own, to predict

category K.

Stage 4 simulation: Unsupervised rehearsal learning improves single view test set
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performance only marginally on the 3-D object simulations. Stage 4 rehearsal learning was
conducted on the 51 noise-free test set views. Temporal evidence accumulation drew from
an enlarged test set that included 72 additional views. Accessing exemplars from this larger
test set allows stable fine-tuning by decreasing the percentage of ambiguous test views. After
this fine-tuning, performance on individual views from the original 51 test set inputs was

73%, compared to 70.6% at Stage 1 (Figure 17b).

Spatial and temporal evidence accumulation by ART-EMAP have been shown to im-
prove fuzzy ARTMAP performance on both the ARPA benchmark circle-in-the-square prob-
lem (Carpenter and Ross, 1993, 1994b; Wilensky, 1990) and on the 3-D object recognition
problem described here. Unsupervised rehearsal learning illustrates how self-training can
fine-tune system performance. ART-EMAP is a general purpose algorithm for pattern class
prediction based on the temporal integration of predictive evidence resulting from distributed
recognition across a small set of trained categories. The system promises to be of use in a

variety of applications, including spatio-temporal image analysis and prediction as well as

recognition of 3-D objects from ambiguous 2-D views.

12. Concluding Remarks

ARTMAP systems illustrate how neural networks can incorporate properties of fuzzy
logic and expert production systems into a unified computational framework. Such algo-
rithms are helping to overcome previously arbitrary boundaries between these disciplines.
They exhibit combinations of properties that have not been attainable by more traditional
approaches, which helps to explain the rapidly growing number of diverse applications in

which they are being successfully used.

13. Appendix: Fuzzy ART Algorithm and Fuzzy ARTMAP

Fuzzy ART activity vectors: Each ART system includes a field F of nodes that
represent a current input vector; a field F} that receives both bottom-up input from Fj and

top-down input from a field F; that represents the active code, or category. The Fj activity
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vector is denoted I = (Iy,..., 1), with each component /; in the interval [0,1],7=1,..., M.
The Fy activity vector is denoted x = (z1,...,7)) and the Fy activity vector is denoted
y =(y1,---,¥n). The number of nodes in each field is arbitrary.

Weight vector: Associated with each F, category node j(j = 1,...,N) is a vector

w; = (wj1, - -, w;y) of adaptive weights, or LT M traces. Initially
wjl(O)I...Z’LUjM(O)Zl; (Al)

then each category is said to be uncommitted. After a category is selected for coding it be-
comes committed. As shown below, each LTM trace w;; is monotone nonincreasing through
time and hence converges to a limit. The Fuzzy ART weight vector w; subsumes both the

bottom-up and top-down weight vectors of ART 1.

Parameters: Fuzzy ART dynamics are determined by a choice parameter a > 0; a
learning rate parameter 3 € [0,1]:"and a vigilance parameter p € [0, 1].
Category choice: For each input I and F; node j, the choice function T} is defined by

T;1) = a Tt wj’ (42)
where the fuzzy AND (Zadeh, 1965) operator A is defined by
(P Aq); = min(p;, g;) (A3)
and where the norm |- | is defined by
M
lpl=)] Ipil- (A4)
i=1

for any M-dimensional vectors p and q. For notational simplicity, T;(I) in (A2) is often
written as T; when the input I is fixed.

The system is said to make a category choice when at most one F, node can become

active at a given time. The category choice is indexed by J, where

T;=max{T;:j=1...N}. (A5)
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If more than one T} is maximal, the category j with the smallest index is chosen. In
particular, nodes become committed in order j = 1,2,3,... . When the J** category is
chosen, y; =1; and y; =0 for j # J. In a choice system, the Fy activity vector x obeys the
equation

x= {-}/\WJ :? gfel?‘];;‘]aglzide is chosen. (46)

Resonance or reset: Resonance occurs if the match function [Inw ;|/[I| of the chosen

category meets the vigilance criterion:

LAl s o (A7

that is, by (A6), when the J* category is chosen, resonance occurs if
x| = [LAw; | > pi]. (A8)

Learning then ensues, as defined below. Mismatch reset occurs if

AWl ), (49)
I
that is, if
x| = [Taw,| < plI]. (A10)

Then the value of the choice function 7'y is set to 0 for the duration of the input presentation
to prevent the persistent selection of the same category during search. A new index J is

then chosen, by (A5). The search process continues until the chosen J satisfies (A7).

Learning: Once search ends, the weight vector w is updated according to the equation
wit® = gaaAwlPD) 4 (1 - g)wlY, (A11)

Fast learning corresponds to setting = 1.

Fast-commit slow-recode option: For efficient coding of noisy input sets, it is useful

to set # = 1 when J is an uncommitted node, and then to take § < 1 after the category
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is committed. Then W(Jnew) =T the first time category J becomes active. Moore (1989)
introduced the learning law (A11), with fast commitment and slow recoding, to investigate
a variety of generalized ART 1 models. Some of these models are similar to Fuzzy ART,
but none includes the complement coding option. Moore described a category proliferation

problem that can occur in some analog ART systems when a large number of inputs erode

the norm of weight vectors. Complement coding solves this problem.

Input normalization/complement coding option: Proliferation of categories is
avoided in Fuzzy ART if inputs are normalized. Complement coding is a normalization rule
that preserves amplitude information. Complement coding represents both the on-response
and the off-response to an input vector a (Figure 8). To define this operation in its simplest
form, let a itself represent the on-response. The complement of a, denoted by a¢, represents
the off-response, where

ai=1-a;. (A12)

The complement coded input I to the field F} is the 2M-dimensional vector

I=(a,a%) =(ay,...,ap,af,...,a5). (A13)
Note that i
11| = |(a,a%)]
M M
=> a;+(M->a;) (A14)
i=1 i=1
= M,

so inputs preprocessed into complement coding form are automatically normalized. Where

complement coding is used, the initial condition (A1) is replaced by

’wjl(O):...:wijM(O): 1. (A15)

Fuzzy ARTMAP Algorithm

The Fuzzy ARTMAP system incorporates two Fuzzy ART modules ART, and ART,

that are linked together via an inter-ART module F% called a map field (Figure 10). The
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map field is used to form predictive associations between categories and to realize the match
tracking rule whereby the vigilance parameter of ART, increases in response to a predictive
mismatch at ART,. The interactions mediated by the map field Feb may be operationally

characterized as follows.

ART, and ART,: Inputs to ART, and ART, are in the complement code form: for
ART,, I =’A = (a,a®); for ART};, I = B = (b,b¢). Variables in ART, or ART, are
designated by subscripts or superscripts “a” or “b”. For ART,, let x% = (¢ .. .nga) denote
the F{' output vector; let y* = (yf...y% ) denote the F§ output vector; and let wi =
(wh,w, ..., wjap,) denote the j** ART, weight vector. For ART,, let x* = (z}...25,, )
denote the F} output vector; let yb = (y{’...y?\,b) denote the F? output vector; and let
wh = (w,’;l,w’éQ,...,wg’sz) denote the k** ART, weight vector. For the map field, let
x® = (z§,...,2%) denote the Feb output vector, and let W;’f” = (w;*{’,...,w‘}’}vb) denote
the weight vector from the jt* Fg node to F®. Vectors x2,y?%,x%,y?, and x are set to 0

between input presentations.

Map field activation: The map field F%b is activated whenever one of the ART, or
ART), categories is active. If node J of F§ is chosen, then its weights w% activate Feb. If
node K in F? is active, then the node K in F¢ is activated by 1-to-1 pathways between F
and Feb, If both ART, and ART, are active, then F'® becomes active only if ART, predicts
the same category as ART} via the weights w4?. The F"*® output vector x* obeys

ybAw® if the Jth F§ node is active and FY is active

ab . a L . b tal .
xab — wa ff the '.]t.h F 'node is agt.lve ax}d F} is inactive (A16)
y _if F§ is inactive and F} is active
0 if F¢ is inactive and FY is inactive.

By (A16), x® = 0 if the prediction w% is disconfirmed by y®. Such a mismatch event
triggers an ART, search for a better category, as follows.

Match tracking: At the start of each input presentation the ART, vigilance parameter

pa €quals a baseline vigilance 7. The map field vigilance parameter is p,;. If

x| < pap 1y, (A17)
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then p, is increased until it is slightly larger than |A/\W“}||A|—1, where A is the input to

F¢, in complement coding form. Then
X% = |[AAWY| < palAl, (A18)

where J is the index of the active F¢ node, as in (A10). When this occurs, ART, search

leads either to activation of another Fg¢ node J with
x* = |AAWS| > palA] (A19)

and

x| = [y* AW > posly?l; (A20)

or, if no such node exists, to the shut-down of F{ for the remainder of the input presentation.

Map field learning: Learning rules determine how the map field weights w;‘,’: change

through time, as follows. Weights w;’,’i in F¢ — F paths initially satisfy
wi(0) = 1. (A21)

During resonance with the ART, category J active, W‘j” approaches the map field vector
x%. With fast learning, once J learns to predict the ART, category K, that association is

permanent; i.e., w4 =1 for all time.
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FIGURE CAPTIONS

Figure 1. Representation of fuzzy categories using feature rectangles and, in higher dimen-
sions, hyper-rectangles. [Reprinted with permission from Carpenter, G.A. and Grossberg,
S. (1994). Fuzzy ARTMAP: A synthesis of neural networks and fuzzy logic for supervised
categorization and nonstationary prediction. In R.R. Yager and L.A. Zadeh (Eds.), Fuzzy
sets, neural networks, and soft computing. New York, NY: Van Nostrand Reinhold,

p. 128.]

Figure 2. Many-to-one learning combines categorization of many exemplars into one cate-
gory, and labelling of many categories with the same name. [Reprinted with permission from
Carpenter, G.A. and Grossberg, S. (1994). Fuzzy ARTMAP: A synthesis of neural networks
and fuzzy logic for supervised categorizatiori and nonstationary prediction. In R.R. Yager
and L.A. Zadeh (Eds.), Fuzzy sets, neural networks, and soft computing. New York,
NY: Van Nostrand Reinhold, p. 131.]

Figure 3. One-to-many learning enables one input vector to be associated with many output
vectors. If the system predicts an output that is disconfirmed at a given stage of learning,
the predictive error drives a memory search for a new category to associate with the new
prediction, without degrading its previous knowledge about the input vector. [Reprinted
with permission from Carpenter, G.A. and Grossberg, S. (1994). Fuzzy ARTMAP: A syn-
thesis of neural networks and fuzzy logic for supervised categorization and nonstationary
prediction. In R.R. Yager and L.A. Zadeh (Eds.), Fuzzy sets, neural networks, and soft

computing. New York, NY: Van Nostrand Reinhold, p. 132.]

Figure 4. Interactions between the attentional and orienting subsystems of an adaptive
resonance theory (ART) circuit: Level Fy encodes a distributed representation of an event

to be recognized via a short-term memory (STM) activation pattern across a network of

53




October 26, 1994

feature detectors. Level Fy encodes the event to be recognized using a more compressed STM
representation of the Fy pattern. Learning of these recognition codes takes place at the long-
term memory (LTM) traces within the bottom-up and top-down pathways between levels
F; and F;. The top-down pathways can read-out learned expectations whose prototypes
are matched against bottom-up input patterns at Fj. Mismatches in response to novel
events activate the orientation subsystem A, thereby resetting the recognition codes that
are active in STM at F; and initiating a memory search for a more appropriate recognition
code. Output from subsystem A can also trigger an orienting response. (a) Block diagram of
circuit. (b) Individual pathways of circuit, including the input level Fy that generates inputs
to level F1. The gain control input to level F7 helps to instantiate the 2/3 Rule (see text).
Gain control to level Fy is needed to instate a category in STM. [Reprinted with permission
from Carpenter, G.A. and Grossberg, S. (1987a). A massively parallel architecture for a
self-organizing neural pattern recognition machine. Computer Vision, Graphics, and Image

Processing, 37, p. 56.]

Figure 5. ART search for an F; recognition code: (a) The input pattern I generates the
specific STM activity pattern X at Fj as it nonspecifically activates the orienting subsystem
A. X is represented by the hatched pattern across Fj. Pattern X both inhibits .4 and
generates the output pattern S. Pattern S is transformed by the LTM traces into the input
pattern T, which activates the STM pattern Y across Fs. (b) Pattern Y generates the top-
down output pattern U which is transformed into the prototype pattern V. If V mismatches
I at Fy, then a new STM activity pattern X* is generated at Fj. X* is represented by the
hatched pattern. Inactive nodes corresponding to X are unhatched. The reduction in total
STM activity which occurs when X is transformed into X* causes a decrease in the total
inhibition from Fj to A. (c) If the vigilance criterion fails to be met, A releases a nonspecific
arousal wave to F;, which resets the STM pattern Y at F,. (d) After Y is inhibited, its top-

down prototype signal is eliminated, and X can be reinstated at Fj. Enduring traces of the
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prior reset lead X to activate a different STM pattern Y* at Fy. If the top-down prototype
due to Y* also mismatches I at Fy, then the search for an appropriate F, code continues
until a more appropriate F, representation is selected. Then an attentive resonance develops
and learning of the attended data is initiated. [Reprinted with permission from Carpenter,
G.A. and Grossberg, S. (1987a). A massively parallel architecture for a self-organizing neural

pattern recognition machine. Computer Vision, Graphics, and Image Processing, 37, p. 61.]

Figure 6. The computational rules for the self-organizing feature map model were estab-
lished in 1976. [Reprinted with permission from Grossberg, S. (1976a). Adaptive pattern
classification and universal recoding, I: Parallel development and coding of neural feature

detectors. Biological Cybernetics, 23, p. 122.]

Figure 7. Comparison of ART 1 and Fuzzy ART. [Reprinted with permission from Car-
penter,G.A., Grossberg, S. and Rosen, D.B. (1991b). Fuzzy ART: Fast stable learning and
categorization of analog patterns by an Adap.tive resonance system. Neural Networks, 4,

p. 762.]

Figure 8. Complement coding uses on-cell and off-cell pairs to normalize input vectors.
[Reprinted with permission from Carpenter, G.A., Grossberg, S. and Rosen, D.B. (1991D).
Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive reso-

nance system. Neural Networks, 4, p. 764.]

Figure 9. Fuzzy AND and OR operations generate category hyper-rectangles. [Reprinted
with permission from Carpenter, G.A., Grossberg, S. and Rosen, D.B. (1991b). Fuzzy ART:
Fast stable learning and categorization of analog patterns by an adaptive resonance system.

Neural Networks, 4, p. 763.]

Figure 10. Fuzzy ARTMAP architecture. The ART, complement coding preprocessor

transforms the M,-vector a into the 2M,-vector A = (a,a®) at the ART, field F§. A is the
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input vector to the ART, field F}*. Similarly, the input to F{’ is the 2My-vector (b, b¢). When
a prediction by ART, is disconfirmed at ART}, inhibition of map field activation induces
the match tracking process. Match tracking raises the ART, vigilance pq to just above the
F¢ to F¢ match ratio |x*|/|A|. This triggers an ART, search which leads to activation of
either an ART, category that correctly predicts b or to a previously uncommitted ART,
category node. [Reprinted with permission from Carpenter, G.A., Grossberg, S., Markuzon,
N., Reynolds, J.H., and Rosen, D.B. (1992). Fuzzy ARTMAP: A neural network architecture
for incremental supervised learning of analog multidimensional maps. IEEE Transactions on

Neural Networks, 8, p. 699.]

Figure 11. Match tracking: (a) A prediction is made by ART, when the baseline vigi-
lance pq is less than the analog match value. (b) A predictive error at ART; increases the
baseline vigilance value of ART, until it just exceeds the analog match value, and thereby
triggers hypothesis testing; that searches for a more predictive bundle of features to which to
attend. [Reprinted with permission from Carpenter, G.A. and Grossberg, S. (1994). Fuzzy
ARTMAP: A synthesis of neural networks and fuzzy logic for supervised categorization and
nonstationary prediction. In R.R. Yager and L.A. Zadeh (Eds.), Fuzzy sets, neural net-

works, and soft computing. New York, NY: Van Nostrand Reinhold, p. 148.]

Figure 12. The image processing flow chart of the VIEWNET system, from presenting a

2-D imagé in the image database until the read-out of the predicted 3-D object.
Figure 13. CORT-X 2 flow chart.

Figure 14. Preprocessing summary. (a) Output of CORT-X 2 preprocessing. (b) Centered
log-polar image. (c) Gaussian coarse coding pattern. (d-f) Coarse coding reduction from

- 128 x 128 pixels down to 16 x 16, 8 x 8, and 4 x 4 pixels.

Figure 15. ART-EMAP synthesizes adaptive resonance theory (ART) and spatial and tem-

poral evidence integration for dynamic predictive mapping (EMAP). The network extends
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the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed
pattern representation at a view category field. Stage 2 adds a decision criterion to the map-
ping between view and object categories, delaying identification of ambiguous objects when
faced with a low confidence prediction. Stage 3 augments the system with a field where evi-
dence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning
process to fine-tune performance after the limited initial period of supervised network train-
ing. Simulations of the four ART-EMAP stages demonstrate performance on a difficult 3-D
object recognition problem. [Reprinted with permission from Carpenter, G.A. and Ross,
W.D. (1993a). ART-EMAP: A neural network architecture for learning and prediction by
evidence accumulation. In Proceedings of the world congress on neural networks

(WCNN-93), Hillsdale, NJ: Lawrence Erlbaum Publishing, ITI, p. 650.]

Figure 16. 3-D object recognition training and test set images for ART-EMAP simulations.
Circled exemplars indicate that single-view object identification may be difficult because a
training set view of one object can be the same as a test set view of a different object; and
because test set views of two different objects can be the same. [Reprinted with permission
from Carpenter, G.A. and Ross, W.D. (1994). 3-D object recognition by the ART-EMAP
evidence accumulation network. In Proceedings of the world congress on neural

networks (WCNN-94), Hillsdale, NJ: Lawrence Erlbaum Publishing, I, p. 751.]

Figure 17. 3-D object simulations. Response viewing hemispheres for each object show
predictions from each test set view. A window in the hemisphere corresponds to one of the
17 test views (Figure 16b). Plots (a), (b), and (c) show noise-free test set results and plots (d),
(e), and (f) show noisy test set results. Plots (a) and (d) show fuzzy ARTMAP performance,
using the Fi¢ choice rule. Plots (b) and (e) show Stage 1 ART-EMAP performance using the
power rule (3) with p = 24. Plots (c) and (f) show Stage 3 ART-EMAP performance with
p = 24 plus temporal evidence accumulation with the decreasing decision criterion (14) and
multiple views. [Reprinted with permission from Carpenter, G.A. and Ross, W.D. (1994). 3-
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D object recognition by the ART-EMAP evidence accumulation network. In Proceedings

of the world congress on neural networks (WCNN-94), Hillsdale, NJ: Lawrence

Erlbaum Publishing, I, p. 753.]
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TABLE CAPTIONS

Table 1. ARTMAP benchmark studies. [Reprinted with permission from Carpenter, G.A.
and Grossberg, S. (1993). Normal and amnesic learning, recognition, and memory by a

neural model or cortico-hippocampal interactions. Trends in Neurosciences, 16, p. 134.]

Table 2. Fuzzy ARTMAP applied to the Landsat image database (Feng et al., 1993). With
the exception of K-N-N, Fuzzy ARTMAP test set performance exceeded that of other neural
network and machine learning algorithms. Compared to K-N-N, Fuzzy ARTMAP showed a

6:1 code compression ratio.

Table 3. On the Pima Indian Diabetes (PID) database, Fuzzy ARTMAP test set perfor-
mance was similar to that of the ADAP algorithm (Smith et al., 1988) but with far fewer
rules and faster training. An ARTMAP pruning algorithm (Carpenter and Tan, 1994) fur-
ther reduces the number of rules by an order of magnitude, and also boosts test set accuracy

to 79%.

Table 4. VIEWNET recognition results on noisy data (C' = 1) with slow learning to the
map field (B, = 0.2, pmac = 0.95). Due to the low levels of noise surviving CORT-X 2
preprocessing, the recognition results here are not substantially different than those found
using fast learning in noise. As noise increases, slow learning becomes more important for

maintaining good recognition scores.
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a - present features hat feature (usually absent)
a® - absent features — 0 in both cases.
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ARTMAP BENCHMARK STUDIES

1. Medical database - mortality following coronary bypass grafting (CABG) surgery
FUZZY ARTMARP significantly outperforms:
LOGISTIC REGRESSION
ADDITIVE MODEL
BAYESIAN ASSIGNMENT
CLUSTER ANALYSIS
CLASSIFICATION AND REGRESSION TREES
EXPERT PANEL-DERIVED SICKNESS SCORES
PRINCIPAL COMPONENT ANALYSIS

2. Mushroom database

DECISION TREES ( 90-95 % correct )

ARTMAP ( 100% correct)
Training set an order of magnitude smaller

4 -

3. Letter recognition database
GENETIC ALGORITHM ( 82% correct )
FUZZY ARTMAP ( 86% correct )

S~

. Circle-in-the-Square task
BACK PROPAGATION ( 90% correct )
FUZZY ARTMAP ( 99.5% correct )

5. Two-Spiral task

BACK PROPAGATION (10,000 - 20,000 training epochs)
FUZZY ARTMAP ( 1-5 training epochs )

Table 1



Application:

Landsat Satellite Image Classification
(Feng, King, Sutherland, Muggleton, & Henery, 1993)

Algorithm Accuracy(%) Algorithm | Accuracy(%)
k-N-N Q1 | NewlD 85
fuzzy ARTMAP 89 CN2 85

RBF 88 Quadra 85
Alloc80 87 , SMART 84
INDCART 86 LogReg 83
CART 86 Discrim 83
Backprop 86 CASILE 81

C4.5 85

Test (%) | Compression
K-NN Q1% 1:1
fuzzy ARTMAP| 89% 6: 1




Supervised Learning

Training Test
576 192

(1) ADAP (Smith, Everhart, Dickson,
Knowler, and Johannes, 1988)

« 100,000 rules
. 76% C'Or‘r‘ect on test set

. slow learning

(2) Fuzzy ARTMAP
(Carpenter et al., 1992)

o 50-80 rules
. 76% correct on test set

. fast learning (6-15 epochs)

Table 3




CORT-X 2 Data Coarse code using spatial avg | Gaussian avg
filter set | presentation| 4x4 | 88 | 16x16
Small Ordered | 79.9/83.1 | 84.0/85.6 84.7/89.9
Small Unordered | 78.8/83.3 | 83.2/85.7 84.9/89.1
Large Ordered | 76.3/78.2 | 78.5/81.5 77.0/78.8
Large Unordered | 77.4/80.2 | 79.6/80.41 75.8/79.2




