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1. ART: A Biological Theory of Autonomous Real-Time Learning about a
Changing World

How the mammalian brain can rapidly but stably learn about a changing world filled

" with unexpected events is one of the most challenging scientific problems of our time. The

brain’s ability to autonomously discover and learn appropriate representations of the world
in real-time, without the intervention of an external teacher to signal that external changes
have occurred or the nature of these changes, lies at the heart of this problem. Adaptive
Resonance Theory, or ART, was introduced in 1976 (Grossberg, 1976a, 1976b) in order to
analyse how brain networks can autonomously learn about a changing world in a rapid but
stable fashion. Popular alternative models, such as back propagation, can learn only slowly,
in an off-line setting, about an essentially stationary environment that includes an external
teacher whose explicitly coded answers drive learning using non-local operations that seem
to have no biological analog (Carpenter, 1989; Grossberg, 1988b; Parker, 1982; Rumelhart,
Hinton, and Williams, 1986; Werbos, 1974, 1982). The present chapter summarizes some
recent results concerning how ART systems control distributed hypothesis testing and
memory search in order to autonomously discover and learn predictive representations for

recognition and recall.
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2. ART Predictions about Neural Information Processing and Learning

One classical test of a physical theory’s promise is its ability to generate unifying
explanations of paradoxical data and predictions of new data. In an interdisciplinary field
such as the behavioral and brain sciences, where scientists use such different tools and have
such different training, there does not exist any single intellectual community to rapidly
assimilate and critically test interdisciplinary predictions. Notwithstanding these problems
of communication, key ART predictions have received accumulating experimental support
over the years.

Predictions of particular interest to the present chapter include the following: In 1972,
it was predicted that norepinephrine and acetylcholine jointly control brain plasticity dur-
ing learning of reinforcement and recognition codes (Grossberg, 1972b). In 1976, this
analysis was extended to predict that norepinephrine and acetylcholine control cortical
plasticity during the critical period in visual cortex (Grossberg, 1976b). Several experimen-
tal studies have described relevant data (Bear and Singer, 1986; Kasamatsu and Pettigrew,
1976; Pettigrew and Kasamatsu, 1978). A role for attention in the regulation of cortical
plasticity was also predicted (Grossberg, 1976b) and subsequently reported (Singer, 1982).
Standing waves of resonant cortical activity were predicted to subserve these cortical dy-
namics (Grossberg, 1976b; 1978). Several labs have recently explored the role of such
resonant standing waves (Eckhorn et al., 1988; and Gray et al., 1989). These theoretical
results built upon earlier predictions that synaptic plasticity is controlled by processes
in which an inward Nat current and an outward K™ current interact synergetically with
an inward Ca*™* current that competes with an Mg*™* current (Grossberg, 1968; 1969a).
Recent data about the role of NMDA réceptors have refined contemporary understanding
of such synergetic interactions (Kleinschmidt, Bear, and Singer, 1987). An associative
learning law was introduced in which synaptic efficacy is gated by postsynaptic activity
such that, with the learning gate open, synaptic strength can either increase or decrease
(Grossberg, 1969b, 1976a, 1978). Such a gated learning law has since been reported in
visual cortex and hippocampus (Levy, 1985; Levy, Brassel, and Moore, 1983; Levy and
Desmond, 1985; Rauschecker and Singer, 1979; Singer, 1983). It is the basic learning law
used in the ART models.

A top-down template matching event that regulates selective attention was derived
in Grossberg (1976b, 1978). It has the properties of the Processing Negativity event-
related potential that was reported by Naatanen, Gaillard, and Mantysalo (1978). See also
Naitdnen (1982). A hippocampal generator of the P300 event-related potential, as distinct

from possible neocortical generators, was predicted in Grossberg (1980, p.25) from an




analysis of how short term memory is reset by novel events. A hippocampal P300 generator
was experimentally reported in Halgren et al., (1980). An analysis of how the emotional
meaning of cues modulates attention led to a complementary prediction. Grossberg (1975)
predicted that both negative and positive emotions generate positive attentional feedback.
Experimental support for this prediction was found by Bower (1981) and Bower, Gilligan,
and Monteiro (1981). The pathway subserving this attentional feedback process, called
incentive motivation, was interpreted in Grossberg (1975) as a pathway from hippocampus
to neocortex. Such a pathway was discovered by Rosene and Hoesen (1977).

A reciprocal pathway for associative learning of conditioned reinforcers was predicted
to pass from neocortical sensory representations to hippocampal pyramidal cells (Gross-
berg, 1971, 1972a, 1972b, 1975). Experimental evidence was reported by Berger and
Thompson (1978) who first interpreted their results as the discovery of a general neural
“engram.” Subsequent experiments considered the effects of selective ablations on learn-
ing both in hippocampus and in cerebellum, leading to the conclusion that hippocampal
learning is indeed a variant of the predicted conditioned reinforcer learning, whereas the
cerebellum carries out a type of motor learning (Thompson et al., 1984). These experimen-
tal results concerning differences between reinforcement learning and motor learning are
related to a prediction concerning the control of motivated instrumental behavior; namely,
that hippocampal processes bifurcate into the aforementioned positive attentional feed-
back pathway to neocortex and into a motivationally signed motor mapping subsystem
for control of approach and avoidance behavior (Grossberg, 1975). Experimental evidence
for spatial mapping properties of the hippocampus was described by O’Keefe and Nadel
(1978). A reciprocal cortico-hippocampal interaction between conditioned reinforcers and
incentive motivational sources was also suggested in Grossberg (1975), along with the
implication that the hippocampus mediates stimulus-reinforcement contingencies whose
mismatch with sensory processing in the cortex prevents read-out of cortical commands.
Gabriel, Foster, Orona, Saltwick, and Stanton (1980) have reported compatible data.

A study of how reinforcing cues are forgotten, or extinguished, led to a network design
in which opponent processes are gated by slowly varying chemical transmitters (Grossberg,
1972b). These opponent processes were interpreted in terms of the dynamics of hypotha-
lamus and medial forebrain bundle, and the chemical transmitters were interpreted to
be catecholaminergic. A mathematical study of these opponent processes led to the dis-
covery in Grossberg (1972b) of a formal behavioral syndrome wherein catecholaminergic
underarousal could cause an elevated behavioral threshold to coexist with suprathreshold

hypersensitivity. Moreover, an arousing drug could transform this underaroused syndrome
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Figure 1. Matching by the 2/3 Rule in ART 1: (a) A top-down expectation from F,
inhibits the attentional gain control source as it subliminally primes target F; cells. Dot-
ted outline depicts primed activation pattern. (b) Only F, cells that receive bottom-up
inputs and gain control signals can become supraliminally active. (c¢) When a bottom-up
input pattern and a top-down template are simultaneously active, only those F; cells that
receive inputs from both sources can become supraliminally active. (d) Intermodality in-
hibition can shut off the F; gain control source and thereby prevent a bottom-up input
from supraliminally activating F;, as when attention shifts to a different input channel.
Similarly, disinhibition of the F; gain control source in (a) may cause a top-down prime
to become supraliminal, as during an internally willed fantasy.

into an overaroused syndrome by moving the system over an inverted U whose peak corre-
sponds to normal sensitivity. The overaroused syndrome has formal emotional properties
symptomatic of certain schizophrenias. A similar underaroused syndrome in hyperactive
children has been described by Shaywitz, Cohen, and Bowers (1977) and Shekim, DeKir-
menjian, and Chapel (1977), notably the elevated threshold (Weber and Sulzbacher, 1975).
Amphetamine is an arousing therapeutic drug which improves symptoms in small enough
quantities (Swanson and Kinsbourne, 1976; Weiss and Hechtmann, 1979), but which is
capable of causing schizophrenic syndromes in large enough doses (Ellinwood and Kilbey,
1980; MacLennan and Maier, 1983).

This partial list of predictions and supportive data illustrates the difficulty of under-
standing and evaluating interdisciplinary brain theories and their experimental implica-
tions from the perspective of traditional specialties. Simultaneous analysis of multiple
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levels of brain organization is characteristic of the theoretical development of neural archi-
tectures. Experimental evidence from multiple levels of brain organization is thus needed,
from biochemical data about membrane channels and neurotransmitters, to emergent net-
work properties about resonance and attention. Organizational principles and their mech-
anistic realizations need to simultaneously satisfy constraints on multiple levels of design
in order to rule out the many hypotheses which seem plausible in the light of a limited set
of data, but are incompatible with more global theoretical constraints. Fortunately, the
sociological organization of the brain sciences is rapidly adapting to meet the intellectual
challenge posed by the explanations and predictions of interdisciplinary brain theories,
although experimental tests are still often reported either without knowledge or citation of
their theoretical antecedents. As the infrastructure needed for cooperative work between
theorists and experimentalists matures, more efficient and critical tests of theories can be

anticipated.

Such a development is much to be desired, since many theoretical predictions have not
yet been tested at all. One such neurophysiologically untested ART prediction is that cor-
tical recognition codes are regulated by a matching law called the 2/3 Rule (Carpenter and
Grossberg, 1987a). This prediction, as well as other neurobiologically testable predictions,
are described below.

3. Control of Attention, Hypothesis Testing, and Memory Search by 2/3 Rule
Matching

In its most general form, the 2/3 Rule summarizes a type of matching in which the
effects of converging bottom-up and top-down excitatory signals are modulated by a third,
inhibitory process. The 2/3 Rule was derived from one of the central ideas of ART; namely,
that learning of top-down expectations, and focusing of attention upon particular featural
groupings, are mechanisms that help to control rapid learning about novel behavioral
events, without causing unselective forgetting of prior memories that are still behaviorally
useful. A system with these properties resolves the stability-plasticity dilemma (Grossberg,
1982). The 2/3 Rule explains how a top-down expectation can attentionally prime a
network to anticipate bottom-up data that may or may not occur (Figure 1). The priming
state subliminally sensitizes the network to be ready for an expected event, without forcing
the network to generate a full-blown, attentionally focussed resonance before the event
actually occurs. Thus 2/3 Rule matching converts an ART system into an intentional
system capable of anticipating events before they actually occur. As indicated in Figure
1lc, this intentionality property implies that matching of a top-down expectation with
bottom-up data carries out a type of analog spatial logic. Thus, within ART, aspects of
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The core mechanism that ensures code stability is matching of bottom-up inputs with
their learned top-down expectations. In addition, the 2/3 Rule enables an ART system
tq rapidly initiate a cycle of hypothesis testing and memory search for more appropriate
recognition codes when a selected recognition code is found to be unpredictive in a novel
environment. Figures 2 and 3 illustrate how this works.

Figure 2 schematizes a two-level network in which level F; codes features and level
F, codes recognition categories. In Figure 2, a recognition category at level F;, labelled
“chair,” reads out a learned top-down expectation to level F,. Due to prior learning, the
adaptive weights, or Long Term Memory (LTM) traces, of the top-down expectation are
large at combinations of features that are common to several types of chairs. During prior
experience, however, the color of a chair, whether red or blue, has been irrelevant, so the
bottom-up and top-down LTM traces corresponding to color features are very small or
zero (Figures 2 and 3a).

As a result of 2/3 Rule matching, bottom-up activation at the level F, features corre-
sponding to color features is suppressed when the chair category is activated (Figure 3b).
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Figure 3. (a) When a red chair is presented, the color features corresponding to red
are activated at level F';, but their bottom-up LTM traces to the chair category in level
F, are zero. Despite this fact, the chair category provides the best representation of red
chair features, and is thus selected at F;. (b) The top-down learned expectation from
the “chair” category suppresses activation of red features at level F; via the 2/3 Rule.
The chemical transmitters in the bottom-up pathways that abut the active F; features are
habituated (see half-empty semi-circular synapses). (c) A reset event triggers a search by
zeroing activity at all nodes. Since the transmitter in the pathways activating red features
were not habituated, these features get more activity in the next processing cycle, leading
to selection in (d? of a new category representation for “red chair” that will include color
features when it learns its bottom-up and top-down LTM representations.
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Color features are deemed irrelevant, based upon prior experience, even though they may
receive large bottom-up activations. No “attention” is focussed upon the irrelevant color

features, even though the color of the chair is processed by preattentive mechanisms.

Suppose, however, that environmental contingencies change, so that the red color of a
chair becomes predictive in a new situation. Then the previously learned chair category
leads to an action which causes disconfirming environmental feedback, such as negative
reinforcement. This feedback triggers a nonspecific reset event. The reset event, in turn,
initiates a cycle of parallel hypothesis testing, or memory search, within the network that
automatically assigns a larger activation weight to features in the bottom-up input that
have previously been suppressed by 2/3 Rule matching (Figure 3c). This search cycle
leads to the discovery and learning of a new category in which both the color of the chair
and its chair-like shape features are simultaneously incorporated (Figures 3d). The present

chapter summarizes recent modelling results concerning how this search cycle is controlled.

4. A Role for a Neurotransmitter Medium Term Memory in Hypothesis Testing
and Memory Search

This hypothesis testing model clarifies why ART predictions involve multiple levels of
brain organization, from membrane channels and neurotransmitters to network properties
like attention and resonance. On a formal level, the model implements parallel search
of compressed or distributed recognition codes in a neural network hierarchy. The search
process functions well with either fast learning or slow learning, and can robustly cope with
sequences of asynchronous input patterns in real-time. Such a search process emerges
when computational properties of neurotransmitters, such as transmitter accumulation,
release, inactivation, and modulation, are embedded within an Adaptive Resonance Theory
architecture called ART 3. A key part of the search process utilizes formal analogs of
synergetic interactions between ions such as Na™ and Ca?*. These interactions control a
nonlinear feedback process that enables the spatial pattern of presynaptic transmitter to
model the spatial pattern of postsynaptic activation that represents a recognition code, as
in Figure 3.

The spatial pattern of postsynaptic activation operates on a fast time scale, called
Short Term Memory (STM). The spatial pattern of presynaptic transmitter operates on
a slower time scale, called Medium Term Memory (MTM). Speaking intuitively, MTM
encodes the state of transmitter habstuation through time. Together, as in Figure 3, STM
and MTM control a rapid search process which ends with a state of STM resonance that
defines the network’s focus of attention. The STM resonance also triggers selective learning

within the adaptive weights whose pathways support the resonating STM activities. The




adaptive weights operate on the network’s slowest time scale, called Long Term Memory
(LTM). The remainder of the chapter explains how STM, MTM, and LTM work together
to control the search process.

5. Control of Hypothesis Testing by the Attentional and Orienting Subsystems

Adaptive Resonance Theory first emerged from an analysis of the coding properties
and instabilities inherent in feedforward adaptive coding structures (Grossberg, 1976a).
More recent work has led to the development of three classes of ART neural network
architectures, specified as systems of differential equations. The first class, ART 1, self-
organizes recognition categories for arbitrary sequences of binary input patterns (Carpenter
and Grossberg, 1987a). A second class, ART 2, does the same for either binary or analog
inputs (Carpenter and Grossberg, 1987b). The third class, ART 3, solves computational
problems of ART systems embedded in network hierarchies where there can, in general, be
either fast or slow learning and distributed or compressed code representations (Carpenter
and Grossberg, 1990).

Both ART 1 and ART 2 use a maximally compressed, or winner-take-all, pattern
recognition code. Such a code is a limiting case of the partially compressed recogni-
tion codes that are typically used in explanations by ART of biological data (Grossberg,
1982, 1987a, 1987b). Both winner-take-all and partially compressed recognition codes had
previously been mathematically a.nalysed in models for competitive learning, also called
self-organizing feature maps. The basic equations and mathematical properties of com-
petitive learning and self-organizing feature maps were described by Grossberg (1972c,
1976a, 1978), Malsburg (1973), and Willshaw and Malsburg (1976), and further developed
by Kohonen (1984). The name “GKM models” may be used to summarize this historical
development.

A GKM model forms part of the bottom-up dynamics of every ART model. The
remaining ART mechanisms show how GKM learning can be self-stabilized in an arbitrary
environment without slowing or terminating the learning rate. In particular, winner-take-
all recognition codes were used in ART 1 and ART 2 to enable a rigorous analysis to be
made of how the bottom-up and top-down dynamics of ART systems can be joined together
in a real-time self-organizing system capable of learning a stable pattern recognition code
in response to an arbitrary sequence of input patterns. These results have provided a
computational foundation for designing ART systems capable of stably learning partially
compressed recognition codes, as in the ART 3 systems.

The main elements of a typical ART 1 module are illustrated in Figure 4. F; and F,
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Figure 4. Typical ART 1 neural network module (Carpenter and Grossberg, 1987a).

are fields of network nodes. An input is initially represented as a pattern of activity across
the nodes, or feature detectors, of field F;,. The pattern of activity across F; corresponds
to the category representation. Because patterns of activity in both fields may persist
after input offset yet may also be quickly inhibited, these patterns are called Short Term
Memory, or STM, representations. The two fields, linked both bottom-up and top-down
by adaptive filters, constitute the Attentional Subsystem. Because the connection weights
defining the adaptive filters may be modified by inputs and may persist for very long
times after input offset, these connection weights are called Long Term Memory, or LTM,
variables. The Orienting Subsystem becomes active during search. It interacts with the
Attentional Subsystem in order to enable new learning within the Attentional Subsystem

to occur without causing unselective forgetting of previously learned categories to occur.
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Figure 5. ART search cycle (Carpenter and Grossberg, 1987a).

This search process is the subject of the present chapter.

6. An ART Search Cycle

Figure 5 illustrates a typical ART search cycle. An input pattern I registers itself as a
pattern X of activity across F; (Figure 5a). The F; output signal vector S is then trans-
mitted through the multiple converging and diverging weighted adaptive filter pathways
emanating from F,;, sending a net input signal vector T to F3. The internal competi-
tive dynamics of F'; contrast-enhance T. The F; activity vector Y therefore registers a
compressed representation of the filtered F; — F3; input and corresponds to a category
representation for the input active at F;. These are the typical dynamics of competitive
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learning.

In addition, within ART, vector Y generates a signal vector U that is sent top-down
through the second adaptive filter, giving rise to a net top-down signal vector V to F;
(Figure 5b). F; now receives two input vectors, I and V. An ART system is designed to
carry out a matching process whereby the original activity pattern X due to input pattern
I may be modified by the template pattern V that is associated with the current active
category. If I and V are not sufficiently similar according to a flexible matching criterion
established by a dimensionless vigilance parameter p, a reset signal quickly and enduringly
shuts off the active category representation (Figure 5¢), allowing a new category to become
active. Search ensues (Figure 5d) until either an adequate match is made or a new category
is established.

Prior to the introduction of ART 3, we proposed that the enduring shut-off of erroneous
category representations by a nonspecific reset signal could occur at F, if F, were organized
as a gated dipole field, whose dynamics depend on habituative transmitter gates (Carpenter
and Grossberg, 1987a; Grossberg, 1976b). Though the ART 3 search process does not use
a gated dipole field, it does retain and extend the core idea that habituative transmitter
dynamics can enable a robust search process when appropriately embedded in an ART
system.

7. ART 2: Three-Layer Competitive Fields

Figure 6 shows the principal elements of a typical ART 2 module. In addition to
incorporating many characteristics of the ART 1 module, ART 2 networks all have three
processing layers within the F; field. These three processing layers allow ART 2 to stably
categorize sequences of analog input patterns that can, in general, be arbitrarily close to
one another. In Figure 6, one F; layer reads in the bottom-up input, one layer reads in
the top-down filtered input from F;, and a middle layer matches patterns from the top
and bottom layers before sending a composite pattern back through the F; feedback loop.
Both F; and F; are shunting competitive networks that contrast-enhance and normalize

their activation patterns (Grossberg, 1982).

In applications, ART modules are often embedded in larger architectures that are
hierarchically organized. When an ART module is embedded in a network hierarchy, it
is no longer possible to make a sharp distinction between the characteristics of the input
representation field F; and the category representation field F,. In order for them to serve
both functions, the basic structures of all the network fields in a hierarchical ART system

should be homologous, in so far as possible. This constraint is satisfied if all fields of the
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Figure 6. Typical ART 2 neural network module, with three-layer F, field (Carpenter and
Grossberg, 1987b) Large filled circles are gain control nuclei that nonspecifically inhibit
target nodes in proportion to the Euclidean norm of activity in their source fields.

hierarchy are endowed with the F; structure of an ART 2 module (Figure 8). Such a design
is sufficient for the F; field as well as the F; field because the principal property required
of a category representation field, namely that input patterns be contrast-enhanced and
normalized, is a property of the three-layer F; structure.

8. Parallel Search of Distributed Codes in an ART 8 Hierarchy

We now consider the problem of implementing parallel search among the distributed
codes of a hierarchical ART system all of whose fields are homologous. Assume that a
top-down/bottom-up mismatch has occurred somewhere in the system. How can a reset
signal search the hierarchy in such a way that an appropriate new category is selected?

13
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Figure 7. Interfield reset in an ART bidirectional hierarchy.

A: key observation is that a reset signal can act upon an ART hierarchy between its fields
Fa, Fy, F.... (Figure 7). Locating the site of action of the reset signal between the fields
allows each individual field to carry out its pattern processing function without introducing
processing biases directly into a field’s internal feedback loops.

9. Habituative Chemical Transmitters in ART Search

The computational requirements of the ART search process can be fulfilled by formal
properties of neurotransmitters if these properties are appropriately embedded in the total
architecture model. In particular, the ART 3 search equations incorporate the dynamics of
production and release of a chemical transmitter substance; the inactivation of transmitter
at postsynaptic binding sites; and the modulation of these processes via a nonspecific con-
trol signal. A conjoint interaction between a presynaptic Nat current and a postsynaptic
Ca*™ current is suggested to control the release of presynaptic transmitter (Ito, 1984,
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Figure 8. Notation for the ART chemical synapse.

p. 52; Zucker, 1989). The net effect of these transmitter processes is to alter the ionic
permeability at the postsynaptic membrane site, thus effecting net excitation or inhibition
of the postsynaptic cell. ART 3 dynamics hereby suggest a possible role for postsynaptic
cell activation in the control of the presynaptic Ca*t™ current.

The notation to describe these transmitter properties is summarized in Figure 8, for a
synapse between the ith presynaptic node and the jth postsynaptic node. The presynaptic
signal, or action potential, S; arrives at a synapse whose adaptive weight, or long term
memory trace, is denoted z;. The variable 2;; is identified with the maximum amount
of available transmitter. When the transmitter at this synapse is fully accumulated, the
amount of transmitter u;; available for release is equal to z;;. When a signal S; arrives,
transmitter is typically released. Variables v;; and w;; denote the amount of transmitter
released into the extracellular space from the bottom-up filter and intrafield feedback,
respectively. A fraction of this total transmitter pool is assumed to be bound at the
postsynaptic cell surface and the remainder rendered ineffective in the extracellular space.
Finally, z; denotes the activity, or membrane potential, of the postsynaptic cell.

The search mechanism can be realized using one of several closely related sets of equa-
tions, with corresponding differences in biophysical interpretation. An illustrative system
of equations is described in terms of the variables z;, u,;, vij, w;j, and z; at the : jth
pathway and jt» node of an ART 3 system.




Presynaptic Transmitter

du:. '
ditq' = (245 = ug5) — u,;[release rate] (1)

Bound Transmitter in Bottom-Up Filter

dvij e
7 = vt u;j[release rate] — v;;[inactivation rate]

= —v;; + u;j[release rate] — v;;[reset signal|

Bound Transmitter in Intrafield Feedback Pathways

Wi =Wt [intrafield feedback] — w;[inactivation rate] (3)

= —w; + [intrafield feedback| — w;[reset signall

Postsynaptic Activation

dz.:
e% = —z; + (A — z;)[excitatory inputs] — (B + z;)[inhibitory inputs] :
4
=—z;+ (A —z;) [E v + wJ-] — (B + z;)[internode competition)] )
i

Equation (1) says that presynaptic transmitter is produced and/or mobilized until the
amount u,; of transmitter available for release reaches the maximum level 2;;. The adap-
tive weight 2;; itself changes on the slower time scale of learning, but remains essentially
constant on the time scale of a single reset event. Available presynaptic transmitter u;; is
released at a rate that is specified below. ‘

A fraction of presynaptic transmitter becomes postsynaptic bound transmitter after
being released. For simplicity, we ignore the fraction of released transmitter that is in-
activated in the extracellular space. Equation (2) says that the bound transmitter is
inactivated by the reset signal. Equation (3) posits a similar process for the transmitter
released from intrafield feedback pathways.‘

Equation (4) for the postsynaptic activity z; is a shunting membrane equation such that
excitatory inputs drive z; up toward a maximum depolarized level equal to A; inhibitory
inputs drive z; down toward a minimum hyperpolarized level equal to —B; and activity
passively decays to a resting level equal to O in the absence of inputs. The net effect of
bound transmitter at all synapses converging on the jth node is assumed to be excitatory,

via the term

ngj + wy;. (5)
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Bottom-up signals and internal feedback from within the target fleld are excitatory (Figure
5), whereas the competitive interactions from other intrafield nodes are inhibitory. Param-

eter ¢ is small, corresponding to the assumption that activation dynamics are fast relative

to the transmitter accumulation rate, equal to 1 in equation (1).

The ART 3 system can be simplified for purposes of simulation. Suppose that ¢ << 1
in (4); the reset signals in (2) and (3) are either 0 or >> 1; and net intrafield feedback is
excitatory. Then equations (1), (6), (7), and (8) below approximate the main properties
of ART 3 system dynamics.

Simplified ART 3 Equations

d;tts'j = (24 — ;) — u4j[release rate] (1)

d";" = —vi; + u;; [release rate] if reset =0

vi;(t) =0 if reset >> 1

{ dw;= —w; + [intrafield feedback] if reset =0

wi(t) = 0 if reset >> 1

0 { Tivij + wjy if reset =0
:L'j =
if reset >> 1.

10. Conjoint Influence of Presynaptic and Postsynaptic Activity on Transmitter
Release

The transmitter release and inactivation rates in equations (1)—(3) will now be specified.
Then we trace the dynamics of the system during a brief time interval after the input turns
on (t = 0%), when the signal S; first arrives at the synapse; when subsequent internal
feedback signals act from within the target field, following contrast-enhancement of the
inputs; and when a reset signal implements a rapid and enduring inhibition of erroneously
selected pattern features. We begin with the

ART Search Hypothesis 1: Presynaptic transmitter u;; is released at a rate jointly
proportional to the presynaptic signal S; and a function f(z;) of the postsynaptic activity.
That is, in equations (1), (2), and (86),

release rate = S;f(z;). (9)
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Figure 9. The ART Search Hypothesis 1 specifies the transmitter release rate.

The function f(z;) in equation (9) has the qualitative properties illustrated in Figure
9, where f(z;) has a positive value when z, is at its O resting level, so that transmitter u,;
can be released when the signal S; arrives at the synapse. In addition, f(z;) equals 0 when
z; is significantly hyperpolarized, but rises steeply when z; is near 0. In our computer
simulations, f(z;) is linear above a small negative threshold.

The form factor S;f(z;) is a familiar one in the neuroscience and neural network
literatures. In particular, such a product is often used to model associative learning,
where it links the rate of learning in the 15th pathway to the presynaptic signal S; and the
postsynaptic activity z;. Associative learning occurs, however, on a time scale that is much
slower than the time scale of transmitter release. On the fast time scale of transmitter
release, the form factor S;f(z;) may be compared to interactions between voltages and
ions, where the presynaptic signal depends on the Na* ion, the postsynaptic signal on
the Ca?* ion, and presynaptic transmitter release on the joint fluxes of these two ions
(Ito, 1984). The ART Search Hypothesis 1 formalizes this type of synergetic relationship
between presynaptic and postsynaptic processes in effecting transmitter release. Moreover,
the rate of transmitter release is typically a function of the concentration of Ca?* in the

extracellular space, and this function has qualitative properties similar to the function
f(z;) shown in Figure 9 (Kandel and Schwartz, 1981, p. 84; Kuffler, Nicholls, and Martin,
1984, p. 244).




11. System Dynamics at Input Onset: An Approximately Linear Filter

Some implications of the ART Search Hypothesis 1 will now be summarized. Assume
that at time ¢ = 0 transmitter u;; has accumulated to its maximal level z;; and that activity
z; and bound transmitter v;; equal 0. Consider a time interval ¢t = 0" immediately after
a signal S; arrives at the synapse. During this brief initial interval, the ART equations
approximate the linear filter dynamics typical of many neural network models. In partic-

ular, equations (2) and (9) imply that the amount of bound transmitter is determined by
equation

d;;j = —vi; + ui;S; f(z;) — vij[inactivation rate]. (10)
Thus at times t = 0,
% ~ 2;5:f(0) (11)
and so
v;(t) ~ K (t)S;z; for timest = 0", (12)

Because equation (12) holds at all the synapses adjacent to cell j, equation (6) implies
that

zj(t) ~ ZK(t)S,-z,-J- = K(t)S-z; for timest =0". (13)
]

Here S denotes the vector (S;...S,), z; denotes the vector (2y;...2,;), and i =1...n.
Thus in the initial moments after a signal arrives at the synapse, the small amplitude
activity z; at the postsynaptic cell grows in proportion to the dot product of the incoming
signal vector S times the adaptive weight vector z;.

12. System Dynamics after Intrafield Feedback: Amplification of Presynaptic
Transmitter Release by Postsynaptic Activation

In the next time interval, the intrafield feedback signal contrast-enhances the initial
signal pattern (13) via equation (6) and amplifies the total activity across field F, in Figure
10a, thereby starting to generate an attentive focus. Figure 10b shows typical contrast-
enhanced activity profiles: partial compression of the initial signal pattern; or maximal
compression, or choice, where only one postsynaptic node remains active due to the strong
competition within the field F..

In summary, the model behaves initially like a linear filter. The resulting pattern of
activity across postsynaptic cells is contrast-enhanced, as required in the ART 2 model
as well as in the many other neural network models that incorporate competitive learning
(Grossberg, 1982). These models implicitly assume that intracellular transmitter u,; is
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Figure 10. (a) If transmitter is fully accumulated at ¢ = 0, low-amplitude postsynaptic
STM activity z; is initially proportional to the dot product of the signal vector S and the
weight vector z,. (b) Intrafield feedback rapidly contrast-enhances the initial STM activity
pattern. Large-amplitude activity is then concentrated at one or more nodes.

always accumulated up to its target level z;; and that postsynaptic activity z; does not
alter the rate of transmitter release:

Uiy N 24 and Vi N z;,-S;. (14)

We now suggest how nonlinearities of synaptic transmission and neuromodulation can,
when embedded in an ART circuit, help to correct coding errors by triggering a parallel
search, allow the system to respond adaptively to reinforcement, and rapidly reset itself
to changing input patterns. In equation (10), term

u;Si f(z5)




for the amount of transmitter released per unit time implies that the original incoming
weighted signal z;;S; is distorted both by depletion of the presynaptic transmitter u;; and
by the activity level z; of the postsynaptic cell. If these two nonlinearities are significant,
the net signal in the ¢{jth pathway depends jointly on the maximal weighted signal 2;;S;;
the prior activity in the pathway, as reflected in the amount of depletion of the transmitter
u;;; and the immediate context in which the signal is sent, as reflected in the target cell
activity z;. In particular, once activity in a postsynaptic cell becomes large, this activity
dominates the transmitter release rate, via the term f(z;) in (15). In other words, although
linear filtering properties initially determine the small-amplitude activity pattern of the
target field F,, once intrafield feedback amplifies and contrast-enhances the postsynaptic
activity z; (Figure 10b), it plays a major role in determining the amount of released
transmitter v;; (Figure 11). In particular, the postsynaptic activity pattern across the
field F, that represents the recognition code (Figure 10b) is imparted to the pattern of
released transmitter (Figure 11), which then also represents the recognition code, rather
than the initial filtered pattern S - z;.

13. System Dynamics during Reset: Inactivation of Bound Transmitter Chan-
nels ‘ '

The dynamics of transmitter release implied by the ART Search Hypothesis 1 can be
used to implement the reset process, by postulating the

ART Search Hypothesis 2: The nonspecific reset signal quickly inactivates postsy-
naptic membrane channels at which transmitter is bound (Figure 12).

The reset signal in equations (5) and (6) may be interpreted as assignment of a large
value to the inactivation rate in a manner analogous to the action of a neuromodulator.
Inhibition of postsynaptic nodes breaks the strong intrafield feedback loops that implement
ART 2 and ART 3 matching and contrast-enhancement (equation (3) or (6)).

The pattern of presynaptic transmitter provides a representation of the postsynaptic
recognition code. The arrival of a reset signal implies that some part of the system has
judged this code to be erroneous, according to some criterion. The ART Search Hypothesis
1 implies that the largest concentrations of bound extracellular transmitter are adjacent
to the nodes which the system, based on its past experiences, deems the most likely rep-
resentation of the data. Correspondingly, the presynaptic transmitter stores of the most
active postsynaptic cells are selectively inactivated, or habituated. If the hypothesis cor-
responding to this representation is supported, then the selective presynaptic transmitter
habituation does not compromise the postsynaptic representation. The ART Search Hy-
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TOTAL POSTSYNAPTICALLY
BOUND TRANSMITTER

X; (POST) DOMINATES

Figure 11. The ART Search Hypothesis 1 implies that large amounts of transmitter
(vij) are released only adjacent to postsynaptic nodes with large-amplitude activity (=)
Competition within the postsynaptic field therefore transforms the initial low-amplitude
distributed pattern of released and bound transmitter into a large-amplitude contrast-
enhanced pattern.

dv
il RELEASE INACTIVATION
_dt_- - V“ + u]; [ RATE b vil [ RATE ]

[ INACTIVATION ]
RATE

RESET SIGNALS

* Figure 12. The ART Search Hypothesis 2 specifies a high rate of inactivation of bound
transmitter following a reset signal. Postsynaptic action of the nonspecific reset signal is
similar to that of a neuromodulator.
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Figure 13. An ART 3 search cycle: Initial read-out of bottom-up signals behaves like
a linear filter. Read-out leads to contrast-enhancement and amplification both of the
postsynaptic activity pattern and the presynaptic transmitter pattern. A mismatch causes
a reset event that inactivates the channels at which transmitter is postsynaptically bound.
The presynaptic transmitter pattern biases the network against the previously most active
feature detectors. After such a reset event, the adaptive filter delivers a smaller signal to
the previously most active feature detectors, thereby testing a different hypothesis.

pothesis 2 implies that a reset event restores postsynaptic activation to an unbiased baseline
of inactivation, and leaves the selective presynaptic transmitter habituation intact. This
is the basis for calling the postsynaptic activation pattern Short Term Memory, or STM,

and the presynaptic transmitter pattern Medium Term Memory.

In summary, after a reset event occurs, the system maintains a presynaptic MTM
bias against postsynaptic activation of those nodes which were most responsible for the
predictive failure that led to the reset event. Although the transmitter signal pattern S-u;
originally sent to target nodes at times ¢t = 0" was proportional to S - z;, as in equation
(12), the transmitter signal pattern S - u; after the reset event is no longer proportional
to S - z;. Instead, it is selectively biased against those features that were previously most
active (Figure 13). The new signal pattern S-u; will lead to selection of another contrast-
enhanced representation, with more activation given to previously unattended features.
This representation may or may not then be reset. This search process continues until
an acceptable match is found, whence an attentive resonance is established and learning
triggered in those adaptive weights, or LTM traces, which abut resonant activations.

e - = g —————

MISMATCH INPUT INPUT
RESET OFF RESET

INACTIVATION
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Figure 14. Change of transmitter and short term memory patterns due to search: (a)
Initially the signal pattern S-u, may deliver a bigger input to nodes whose adaptive weights

2y are larger than to nodes whose adaptive weights better match the input pattern; (b)
contrast enhancement and amplification select the preferred nodes in short term memory;
(c) a reset event biases the transmitted signal pattern S - u, against these preferred nodes.

More than one reset event may be needed to accumulate sufficient bias to select a new
representation capable of supporting resonant attention and learning.

14. The Cycle of Search, Resonant Attention, and Learning: A New Round of
Neurobiological Predictions .

Figure 14 summarizes system dynamics of the ART search model during a single input
presentation. Initially the transmitted signal pattern S - u;, as well as the postsynaptic
activity z;, are proportional to the weighted signal pattern S - z; of the linear filter. The
postsynaptic activity pattern is then contrast-enhanced, due to the internal competitive
dynamics of the target field. The ART Search Hypothesis 1 implies that the transmitter
release rate is greatly amplified in proportion to the level of postsynaptic activity. A
subsequent reset signal selectively inactivates transmitter in those pathways that caused

an error. Following the reset wave, the new signal S - u; is no longer proportional to
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S - z; but is, rather, biased against the previously active representation, thereby causing
a shift in the attentive focus to a potentially more predictive pattern of features in short
term memory. A series of such reset events may ensue, until an adequate match or a new
category is found, thereby allowing the network to go into resonance and to maintain its
attentional focus. New code learning can then occur on a time scale that is long relative

to that of the search process.

Mathematical development and computer simulations of these ART 3 interactions are
described in Carpenter and Grossberg (1990). The ART 3 search cycle suggests another
round of interdisciplinary predictions which functionally integrate and interpret interac-
tions between microscopic cellular properties, such as the dynamics of ions and transmit-
ters, with more macroscopic network properties, such as search, resonant attention, and
learning.
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