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Fuzzy ARTMAP: A Neural Network Architecture
for Incremental Supervised Learning of
Analog Multidimensional Maps
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Abstract— A new mneural network architecture is introduced
for incremental supervised learning of recognition categories and
multidimensional maps in response to arbitrary sequences of
analog or binary input vectors, which may represent fuzzy or
crisp sets of features. The architecture, called fuzzy ARTMAP,
achieves a synthesis of fuzzy logic and adaptive resonance theory
(ART) neural networks by exploiting a close formal similarity
between the computations of fuzzy subsethood and ART category
choice, resonance, and learning. Fuzzy ARTMAP also realizes a
new minimax learning rule that conjointly minimizes predictive
error and maximizes code compression, or generalization. This
is achieved by a match tracking process that increases the ART
vigilance parameter by the minimum amount needed to correct
a predictive error. As a result, the system automatically learns
a minimal number of recognition categories, or “hidden units,”
to meet accuracy criteria. Category proliferation is prevented by
normalizing input vectors at a preprocessing stage. A normaliza-
tion procedure called complement coding leads to a symmetric
theory in which the AND operator (V) and the OR operator (N)
of fuzzy logic play complementary roles. Complement coding
uses on cells and off cells to represent the input pattern, and
preserves individual feature amplitudes while normalizing the
total on cell/off cell vector, Learning is stable because all adaptive
weights can only decrease in time. Decreasing weights correspond
to increasing sizes of category “boxes.” Smaller vigilance values
lead to larger category boxes. Improved prediction is achieved
by training the system several times using different orderings
of the input set. This voting strategy can also be used to assign
confidence estimates to competing predictions given small, noisy,
or incomplete training sets. Four classes of simulations illustrate
fuzzy ARTMAP performance in relation to benchmark back-
propagation and genetic algorithm systems. These simulations
include (i) finding points inside versus outside a circle; (ii)
learning to tell two spirals apart, (iii) incremental approximation
of a piecewise-continuous function; and (iv) a letter recognition
database. The fuzzy ARTMAP system is also compared with
Salzberg’s NGE system and with Simpson’s FMMC system.

I. INTRODUCTION

RTMARP is a class of neural network architectures that
perform incremental supervised learning of recognition
categories and multidimensional maps in response to input
vectors presented in arbitrary order. The first ARTMAP system
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[1] was used to classify inputs by the set of features they
possess, that is, by an ordered n-tuple (also called a pattern or
vector) of binary values representing the presence or absence
of each possible feature. This article introduces a more general
ARTMAP system that learns to classify inputs by a fuzzy set
of features, or a pattern of fuzzy memberships values between
0 and 1 indicating the extent to which each feature is present.
This generalization is accomplished by replacing the ART 1
modules [2], [3] of the binary ARTMAP system with fuzzy
ART modules [4], [5]. Where ART 1 dynamics are desctibed
in terms of set-theory operations, fuzzy ART dynamics are de-
scribed in terms of fuzzy set-theory operations [6], [7]. Hence
the new system is called fuzzy ARTMAP. Also introduced
is an ARTMAP voting strategy. This voting strategy is based
on the observation that ARTMAP fast learning typically leads
to different adaptive weights and recognition categories for
different orderings of a given training set, even when the
overall predictive accuracy of all simulations is similar. The
different category structures cause the set of test set items
where errors occur to vary from one simulation to the next.
The voting strategy uses an ARTMAP system that is trained
several times on input sets with different orderings. The final
prediction for a given test set item is the one made by the
largest number of simulations. Since the set of items making
erroneous predictions varies from one simulation to the next,
voting cancels many of the errors. Further, the voting strategy
can be used to assign confidence estimates to competing
predictions given small, noisy, or incomplete training sets.

Four classes of simulations illustrate fuzzy ARTMAP per-
formance in relation to benchmark back-propagation and ge-
netic algorithm systems. These applications involve analog
patterns that are not necessarily interpreted as fuzzy set, but
serve to illustrate the properties of the system and allow
comparison with several existing systems. In all cases, fuzzy
ARTMAP simulations lead to favorable levels of learned
predictive accuracy, speed, and code compression in both on-
line and off-line settings. Fuzzy ARTMAP is also easy to use.
It has a small number of parameters and requires no problem-
specific system crafting or choice of initial weight values. One
way in which fuzzy ARTMAP differs from many previous
fuzzy pattern recognition algorithms [8], [9] is that it learns
each input as it is received on-line, rather than performing an
off-line optimization of a criterion function.

Each ARTMAP system includes a pair of adaptive reso-
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nance theory modules (ART, and ARTS) that create stable
recognition categories in response 0 arbitrary sequences of
input patterns (Fig. 1). During supervised learning, ART,
receives a stream {a(P)} of input patterns, and ART} receives
a stream {b®} of input patterns, where b®) is the correct
prediction given a'®). These modules are linked by an asso-
ciative learning network and an internal controller that ensures
autonomous system operation in real time. The controller is
designed to create the minimal number of ART, recognition
categories, or “hidden units,” needed to meet accuracy criteria.
It does this by realizing a minimax learning rule that enables an
ARTMAP system to learn quickly, efficiently, and accurately
as it conjointly minimizes predictive error and maximizes
predictive generalization. This scheme automatically links pre-
dictive success to category size on a trial-by-trial basis using
only local operations. It works by increasing the vigilance
parameter p, of ART, by the minimal amount needed to
correct a predictive etror at ARTp.

Parameter p, calibrates the minimum confidence that ART,
must have in a recognition category, or hypothesis, activated
by an input a® in order for ART, to accept that category,
rather than search for a better one through an automatically
controlled process of hypothesis testing. Lower values of
pa enable larger categories to form. These lower p, values
lead to broader generalization and higher code compression.
A predictive failure at ART, increases pq by the minimum
amount needed to trigger hypothesis testing at ART,, us-
ing a mechanism called match tracking [1]. Match tracking
sacrifices the minimum amount of generalization necessary
to correct a predictive error. Hypothesis testing leads to the
selection of a new ART, category, which focuses attention
on a new cluster of a® input features that is better able to
predict b(®). Because of the combination of match tracking and
fast learning, a single ARTMAP system can learn a different
prediction for a rare event than for a cloud of similar frequent
events in which it is embedded.

Whereas binary ARTMAP employs ART 1 systems for
the ART, and ART, modules, fuzzy ARTMAP substitutes
fuzzy ART systems for these modules. Fuzzy ART shows
how computations from fuzzy set theory can be incorporated
naturally into ART systems. At the same time, it becomes
convenient to switch from the set-theory notation of ART 1
to membership-function or logical notation in which each
component of a fixed-length pattern represents whether, or
the extent to which, a corresponding feature is present. Thus,
the crisp (nonfuzzy) intersection operator () that describes
ART 1 dynamics is replaced by the fuzzy AND operator (A) of
fuzzy set theory [7] in the choice, search, and learning laws of
ART 1 (Fig. 2). Especially noteworthy is the close relationship
between the computation that defines fuzzy subsethood [6]
and the computation that defines category choice in ART 1.
Replacing the crisp logical operations of ART 1 with their
fuzzy counterparts leads to a more powerful version of ART 1.
Whereas ART 1 can learn stable categories only in response
to binary input vectors, fuzzy ART can learn stable categories
in response to either analog or binary input vectors. Moreover,
fuzzy ART reduces to ART 1 in response to binary input
vectors. Because fuzzy ART, and thus fuzzy ARTMAP, can
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Fig. 1. Fuzzy ARTMAP architecture. The ART, complement coding pre-
processor transforms the M, vector a into the 2M, vector A = (a,a‘) at
the ART,, field F§ - A is the input vector to the ART, field F{. Similarly,
the input to F} is the 2Mj vector (b, b%). When a prediction by ART, is
disconfirmed at ART}, inhibition of map field activation induces the match
tracking process. Match tracking raises the ARTo vigilance (pa) to just above
the F¢ to F§¢ match ratio |*|/|Al. This triggers an ART, search which
leads 1o activation of either an ART, category that correctly predicts b or to
a previously uncommitted ART, category node.

ART 1 FUZZY ART
(BINARY) (ANALOG)
CATEGORY CHOICE

Inw; Inw;
T7=a+wjj| Tj=a+wjj
MATCH CRITERION
Inw > I/\W| >
FAST LEARNING
wj(new) =1nN wj(old) wj(new) =1A wj(old)
N = logicalAND A = fuzzy AND
intersection minimum

Fig. 2. Comparison of ART 1 and fuzzy ART.

operate on input patterns of continuous values whether or not
they represent fuzzy sets, we will often refer to inputs simply
as analog patterns or vectors. A neural network realization of
the fuzzy ART algorithm is described in [10].

In fuzzy ART, learning always converges because all adap-
tive weights are monotonically nonincreasing. Without addi-
tional processing, this useful stability property could lead to
the unattractive property of category proliferation as too many
adaptive weights converge to zero. A preprocessing step, called
complement coding, uses on-cell and off-cell responses to
prevent category proliferation. Complement coding normalizes
input vectors while preserving the amplitudes of individual
feature activations. Without complement coding, an ART
category memory encodes the degree to which critical features
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are consistently present in the training exemplars of that
category. With complement coding, both the degree of absence
and the degree of presence of features are represented by
the category weight vector. The corresponding computations
employ fuzzy OR (V, maximum) operators, as well as fuzzy
AND (A, minimum) operators.

This article includes self-contained summaries of the fuzzy
ART and fuzzy ARTMAP systems. Sections II and III de-
scribe the fuzzy ART model. Section II summarizes the fuzzy
ART equations. Section III describes the model’s dynamics,
including a geometric interpretation of the fuzzy ART learning
process. Section IV contains a comparison between fuzzy
ARTMAP, the nested generalized exemplar (NGE) algorithm
[11]-[13], and the fuzzy min-max classifier (FMMC) [14].
Section V describes how two fuzzy ART unsupervised learn-
ing modules are linked to form the fuzzy ARTMAP supervised
learning system.

Sections VI to IX present four classes of benchmark simula-
tion results. Section VI describes a simulation task of learning
to identify which points lie inside and which lie outside a
given circle. Fuzzy ARTMAP on-line learning (also called
incremental learning) is demonstrated, with test set accuracy
increasing from 88.6% to 98.0% as the training set increased
in size from 100 to 100000 randomly chosen points. With
off-line learning, the system needed from two to 13 epochs to
learn all training set exemplars to 100% accuracy, where an
epoch is defined as one cycle of training on an entire set of
input exemplars. Test set accuracy then increased from 89.0%
t0 99.5% as the training set size increased from 100 to 100 000
points. Application of the voting strategy improved an average
single-run accuracy of 90.5% on five runs to a voting accuracy
of 93.9%, where each run trained on a fixed 1000-item set for
one epoch. These simulations are compared with studies by
Wilensky [15] of back-propagation systems. These systems
used at least 5000 epochs to reach 90% accuracy on training
and testing sets.

Section VII compares fuzzy ARTMAP and back-propa-
gation performance on another benchmark problem, learning
to tell two spirals apart. Lang and Witbrock [16] trained
a back-propagation system to perform this task in about
20000 epochs, or in 8000 epochs using the accelerated
quickprop weight update rule. With a comparable number of
weights, fuzzy ARTMAP performed this task in five epochs.
Section VIII shows, by example, how fuzzy ARTMAP creates
incremental approximations of arbitrary piecewise-continuous
mappings from bounded subsets of MM to bounded subsets
of /Y.

Section IX describes fuzzy ARTMAP performance on a
benchmark letter recognition task developed by Frey and Slate
[17]. Each database training exemplar represents a capital
letter, in one of a variety of fonts and with significant random
distortions, as a 16-dimensional feature vector. Each feature
is assigned a value from 0 to 15. A number from 0 to 25
identifies the letters A—Z. Thus the task is to learn a mapping
from P16 to 926, Frey and Slate used this database to train
a variety of classifiers that incorporate Holland-style genetic
algorithms [18]-[20]. Trained on 16 000 exemplars and tested
on 4000 exemplars, the best performing classifier had a test-

set error rate of about 17.3%, more than three times the
minimal error rate of an individual fuzzy ARTMAP system
(5.3%) and more than four times the error rate of a fuzzy
ARTMAP voting system (4.0%). In fact, application of the
voting strategy improved an average accuracy of 93.9% on
five separate runs to a voting accuracy of 96.0%. Moreover,
this improved ARTMAP performance did not require greater
memory resources: fuzzy ARTMAP created fewer than 1070
ART, recognition categories in all simulations, compared
with 1040—1302 rules created by the most accurate genetic
algorithms.

II. SUMMARY OF THE Fuzzy ART ALGORITHM

ART Field Activity Vectors: Each ART system includes a
field, Fp, of nodes that represent a current input vector; a
field, F, that receives both bottom-up input from Fp and
top-down input from a field, F», that represents the active
code, or category (Fig. 1). The Fy activity vector is denoted

I = (Iy,---,In), with each component I; in the interval
{01}, i = 1,---,M. The Fy activity vector is denoted
z = (z1,--,rym) and the F, activity vector is denoted
y = (y1,--,yn). The number of nodes in each field is
arbitrary.

Weight Vector: Associated with each F, category node
j(G=1,---,N)isavectorw; = (wj1,- -+, wjpr) of adaptive
weights, or LTM traces. Initially

win(0) = - =wn(0) =1 M)

then each category is said to be uncommitted. After a category
is selected for coding it becomes committed. As shown below,
each LTM trace w;; is monotonically nonincreasing through
time and hence converges to a limit. The fuzzy ART weight
vector w; subsumes both the bottom-up and top-down weight
vectors of ART 1.

Parameters: Fuzzy ART dynamics are determined by a
choice parameter o > 0; a learning rate parameter B efo,1];
and a vigilance parameter p € [0,1].

Category Choice: For each input I and F node 7, the choice
function, Tj, is defined by

T;(I) = Li:—l':}”%, o)
where the fuzzy AND [7] operator A is defined by
(p A g); = min (pi, ;) ©)]
and where the norm | - | is defined by
M
il = Ipil @)
i=1

for any M-dimensional vectors p and ¢. For notational sim-
plicity, T;(I) in (2) is often written as T; when the input 1
is fixed.

The system is said to make a category choice when at most
one F» node can become active at a given time. The category
choice is indexed by J, where

Ty= max{Tj:j=1---N} 3)
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If more than one T)j is maximal, the category j with the small-
est index is chosen. In particular, nodes become committed
in order j = 1,2,3,.--. When the Jth category is chosen,
y; = 1; and y; = 0 for j # J. In a choice system, the Fj
activity vector z obeys the equation

= 1
- IANwy

Resonance or Reset: Resonance occurs if the match func-
tion, |I Aw;|/|I| of the chosen category meets the vigilance
criterion:

if Fyis inactive
if the Jth F, node is chosen.

©)

I Awyl

T p; @)

that is, by (6), when the Jth category is chosen, resonance
occurs if

|z| = [T Aws| 2 plI|. ®

Learning then ensues, as defined below. Mismatch reset occurs
if
[ Awy|
—<p ©)]
7|

that is, if

lz| = [T Awy| < pl]. (10)
Then the value of the choice function T is set to O for the
duration of the input presentation to prevent the persistent
selection of the same category during search. A new index
J is then chosen, by (5). The search process continues until
the chosen J satisfies (7).

Learning: Once search ends, the weight vector wy is
updated according to the equation

(new) -

wy ﬂ(I A wE,OId)) +(1- B)w(;’ld). 1)
Fast learning corresponds to setting § = 1. The learning law
used in the EACH system of Salzberg [11]—[13] is equivalent
to (11) in the fast-learn limit with the complement coding
option described below.

Fast-Commit Slow-Recode Option: For efficient coding of
noisy input sets, it is useful to set § = 1 when J is an
uncommitted node, and then to take 3 < 1 after the category is
committed. Then w(J“ew) = I the first time category J becomes
active. Moore [21] introduced the learning law (11), with fast
commitment and slow recoding, to investigate a variety of
generalized ART 1 models. Some of these models are similar
to fuzzy ART, but none includes the complement coding
option. Moore described a category proliferation problem that
can occur in certain analog ART systems when a large number
of inputs erode the norm of weight vectors. Complement
coding solves this problem.

Input Normalization/Complement Coding Option: Prolifer-
ation of categories is avoided in fuzzy ART if inputs are
normalized; that is, for some v > 0,

=~ (12)
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for all inputs I. Normalization can be achieved by preprocess-
ing each incoming vector a, for example, setting
a

I=—. (13)
la|
Complement coding is a normalization rule that preserves
amplitude information. Complement coding represents both
the on-response and the off-response to an input vector a
(Fig. 1). To define this operation in its simplest form, let a
itself represent the on-response. The complement of a, denoted
by a°, represents the off-response, where

14

The complement coded input I to the field F; is the 2M-
dimensional vector

1—a;.

ai =

I = (a’ac) = (ah"'aanaiv'“’a’?\l)‘ (15)
Note that
11| = |(a,a°)]
M M
= Zai-}- (M—Za,—)
i=1 =1
= M, (16)

so inputs preprocessed into complement coding form are
automatically normalized. Where complement coding is used,
the initial condition (1) is replaced by

wj(0) = -+ amn

= ’u)j,gM(O) =1.

III. Fuzzy ART SYSTEM DYNAMICS

In fast-learn ART 1, if the choice parameter o in (2) is
chosen close to 0, then the first category chosen by (5) will
always be the category whose weight vector w; is the largest
coded subset of the input vector I, if such a category exists
[2]. As shown below, the choice function 7T} in (2) can then
be interpreted as a fuzzy membership of the input I in the jth
category. Then w; is chosen if wy; = 0 where I; = 0, and
if it has the maximal number of 1’s (wy; = 1) at indices i
where I; = 1, among all weight vectors w;. Moreover, when
wy is a subset of I during resonance, w; is unchanged, or
conserved, during learning. The limit o — 0 is called the
conservative limit because small values of a tend to minimize
recoding during learning. Note that in simulations, o must be
large enough to affect the values of the choice function Tj in
(2) after round-off. In all simulations described in this article,
a > 0.001.

For analog vectors, the degree to which g is a fuzzy subset
of p is given by the term

lp A gl
lal
[6]. In the conservative limit of fuzzy ART, the choice function
T; in (2) primarily reflects the degree to which the weight
vector wy is a fuzzy subset of the input vector I. If
I Aw;| _
|w;|

(18)

1, 19)
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then w; is a fuzzy subset of I [7] and category j is said
to be a fuzzy subset choice for input I. When a fuzzy subset
category choice exists, it is always selected over other choices.
In this case, by (11), no recoding occurs if j is selected
since I A w; = wj. If more than one category is a fuzzy
subset choice, the small but positive parameter a breaks the
tie by choosing J that maximizes |w;| among the fuzzy subset
choices.

Resonance depends on the degree to which I is a fuzzy
subset of wy, by (7) and (9). The close linkage between
fuzzy subsethood and ART choice/resonance/learning forms
the foundation of the computational properties of fuzzy ART.
In particular, if category j is a fuzzy subset choice, then the
match function value is given by

|I/\‘Il)_7'| _ llj_'
| 1|

(20)

Thus, choosing J to maximize |w;| among fuzzy subset
choices also maximizes the opportunity for resonance in (7). If
reset occurs for the node that maximizes |w;], then reset will
also occur for all other subset choices. In the conservative limit
(o = 0) with fast learning (4 = 1) and normalized inputs, one-
shot stable learning occurs; that is, no weight change or search
occurs in a fuzzy ART system after each item of an input set is
presented just once, although some inputs may select different
categories on future trials [5]. The one-shot learning property
holds for fuzzy ART modules with constant vigilance. In fuzzy
ARTMAP, where vigilance can vary when predictive errors are
made, repeated input presentations can lead to new learning,
so one-shot learning does not necessarily occur.

A geometric interpretation of fuzzy ART with complement
coding will now be outlined. For definiteness, let the input
set consist of two-dimensional vectors a preprocessed into the
four-dimensional complement coding form. Thus

I = (a,a°) = 21
In this case, each category j has a geometric representation as
a rectangle R;, as follows. Following (21), the weight vector
w; can be written in complement coding form:

w; = (u;,v5), (22)

where u; and v; are two-dimensional vectors. Let vector u;
define one corner of a rectangle R; and let v; define another
comner of R; (Fig. 3(a)). The size of R; is defined to be

(a1,a2,1 —a1,1 — az).

|R;| = lv; —u (23)
which is equal to the height plus the width of R; in Fig. 3(a).

In a fast-learn fuzzy ART system, with § = 1 in (11),

(Jnew) = I = (a,a®) when J is an uncommitted node. The
corners of R(J"ew) are then given by a and (a°)° = a. Hence
R(J"ew) is just the point @. Learning increases the size of each
R;. In fact the size of R; grows as the size of w; shrinks
during learning, and the maximum size of R; is determined by
the vigilance parameter p, as shown below. During each fast-
learning trial, R; expands to R; @ a, the minimum rectangle
containing Ry and a (Fig. 3(b)). The corners of R; & a are

0 1
(b)
Fig. 3. Fuzzy ART weight representation. (a) In complement coding form
with M = 2, each weight vector w; has a geometric interpretation as a
rectangle R; with comners (u;,v;). (b) During fast learning, R; expands
to R; @ a, the smallest rectangle that includes R; and a, provided that
IR; @ a| < 2(1-p).

given by @ Au; and a ¥ v, where the fuzzy AND operator, A,
is defined by (3); and the fuzzy OR operator, V, is defined by

(pVq); = max(pi,¢) @4
[7]. Hence, by (23), the size of R; @ a is given by
|R;@al = |(aVvy)—(aruy)l (25)

However, teset leads to another category choice if |R; @ al is
too large. In summary, with fast learning, each R; equals the
smallest rectangle that encloses all vectors a that have chosen
category j, under the constraint that |R;| < 2(1 — p).

In general, if @ has dimension M, the hyperrectangle
R; includes the two vertices Aja and Vja, where the ¢th
component of each vector is defined by the equations

(Aja), = min{a; : a has been coded by category i} (26)
and
(Vja); = max{a; : ahas been coded by category it @7

(Fig. 4). The size of R; is given by

[Rj| = |[Vja—Aja (28)
and the weight w; is given by
w; = (/\ja, (Vja)c), 29)

as in (22) and (23). Thus

|w;| = Z (Aj@); + Z[l - (V;a);] = M — |V a — Ajal,
£ 1 (30)
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0 w 1 al

Fig. 4. With fuzzy ART fast learning and complement coding, the jth
category rectangle R; includes all those vectors @ in the unit square which
have activated category j without reset. The weight vector w; equals
(Aja, (Vja)).

and the size of the hyperrectangle R; is therefore

|R;| = M — |w,]. (1)
By (8), (11), and (16),
fu,| > pM. (2)
By (31) and (32),
|R;| < (1-p)M. (33)

Thus high vigilance (p & 1) leads to small R; while low
vigilance (p = 0) permits large R;. If j is an uncommitted
node, |w;] = 2M, by (17), and so |R;| = —M, by
(31). These observations may be combined into the following
theorem [5].

Theorem: Fuzzy ART Stable Category Learning: A fuzzy
ART system with complement coding, fast learning, and con-
stant vigilance forms hyperrectangular categories that converge
to limits in response to an arbitrary sequence of analog or
binary input vectors. Hyperrectangles grow monotonically in
all dimensions. The size |R;| of a hyperrectangle equals
M — |wj|, where w; is the corresponding weight vector. The
size |R;| is bounded above by M (1 — p). In the conservative
limit, one-pass learning obtains such that no reset or additional
learning occurs on subsequent presentations of any input.
Moreover, if 0 < p < 1, the number of categories is
bounded, even if the number of exemplars in the training
set is unbounded. Similar properties hold for the fast-learn,
slow-recode case, except that repeated presentations of each
input may be needed before stabilization occurs, even in the
conservative limit.

IV. A COMPARISON OF Fuzzy ARTMAP, NGE, AND FMMC

The geometry of the hyperrectangles R; resembles parts of
the nested generalized exemplar (NGE) system [11]-[13] and
the fuzzy min—max classifier FMMC) system [14]. Both NGE
and FMMC, as well as fuzzy ARTMAP, use hyperrectangles to
represent category weights in a supervised learning paradigm.
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All three systems use some version of the learning law (11) to
update weights when an input correctly predicts the output.
The three algorithms differ significantly, however, in their
responses to incorrect predictions. In particular, because NGE
and FMMC do not have components that play the role of
the ART vigilance parameter, these algorithms do not have
the property of internal control of hyperrectangle size. NGE
does include a type of search process, but its rules differ from
those of fuzzy ARTMAP. For example, when NGE makes
a predictive error, it searches at most two categories before
creating a new one. NGE allows hyperrectangles to shrink as
well as to grow, so the fuzzy ART stability properties do not
obtain. For the NGE system, only the greedy version, a leader
algorithm that learns only the first exemplar of each category,
is necessarily stable. Using stability and match tracking, fuzzy
ARTMAP automatically constructs as many categories as are
needed to learn any consistent training set to 100% accuracy.
Both ARTMAP and NGE rely on multilayer structures to
effect their learning strategies. In contrast, the FMMC is a
two-layer, feedforward system. In particular, each output class
is associated with only one category box. It can therefore
learn only a very limited set of possible category structures.
In contrast, fuzzy ARTMAP can learn to associate multiplc
categories with the same output, as would be needed to name
capital letters, script letters, and other letter fonts with the ¢1me
letter name or, more generally, multiple disconnected clusters
of features with the same output classification.

V. Fuzzy ARTMAP ALGORITHM

The fuzzy ARTMAP system incorporates two fuzzy ART
modules, ART, and ART}, that are linked together via an
inter-ART module, F%b, called a map field. The map field is
used to form predictive associations between categories and to
realize the match tracking rule, whereby the vigilance parame-
ter of ART,, increases in response to a predictive mismatch at
ART;. Match tracking reorganizes category structure so that
predictive error is not repeated on subsequent presentations
of the input. A circuit realization of the match tracking rule
that uses only local real-time operations is provided in [1].
The interactions mediated by the map field Feb may be
operationally characterized as follows.

ART, and ART,: Inputs to ART, and ART, are in the
complement code form: for ART,, I = A = (a,a°); and
for ART;, I = B = (b,b°) (Fig. 1). Variables in ART,
or ART}, are designated by subscripts or superscripts a and
b. For ART,, let z* = (z¢---z3,,, ) denote the FY output
vector; let y* = (y§ - - - Y%, ) denote the F output vector; and
let w? = (wfy, why, ++, wj2n,) denote the jth ART, weight
vector. For ART), let = (a8 - - - a4, ) denote the F? output
vector; let y* = (3} - -y%, ) denote the F3 output vector; and
let wl = (why,why, -, W) 4y, ) denote the kth ART, weight
vector. For the map field, let 2% = (2¢°,---, 2%} ) denote the
F,; output vector, and let -w?" = (w}‘{’, . ,w;}’vb) denote the
weight vector from the jth F§ node to F°. Vectors z¢, y*,
z%, y®, and z® are set to O between input presentations.

Map Field Activation: The map field Fab s activated
whenever one of the ART, or ART, categories is active.
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If node J of F§ is chosen, then its weights wY activate

Fab_ If node K in F? is active, then the node K in F*
is activated by 1-to-1 pathways between F and F*°. If both
ART, and ART,; are active, then F’ ab hecomes active only
if ART, predicts the same category as ART, via the weights
w®. The F** output vector z** obeys

zab —
y* Aw? if the Jth F§ node is active and F3 is active
w? if the Jth F2 node is active and F} is inactive
¥ if Fg is inactive and FY is active
0 if F¢ is inactive and Fy is inactive.

(34

By (34), z% = 0 if the prediction ¢’ is disconfirmed by 3.
Such a mismatch event triggers an ART, search for a better
category, as follows.

Match Tracking: At the start of each input presentation the
ART, vigilance parameter p, equals a baseline vigilance, pq.
The map field vigilance parameter is pas. If

'xab| < pablybla (35)
then p, is increased until it is slightly larger than
|A Aw?||A|”", where A is the input to F, in complement
coding form. Then

|z°| = |AAwS| < palAl, (36)

where J is the index of the active F§ node, as in (10). When
this occurs, ART, search leads either to activation of another
Fg node J with

|z°| = |AAw| > palAl G7)

and -
|z = |y AwP| > pab|y’ s (38)

or, if no such node exists, to the shutdown of F§ for the
remainder of the input presentation.

Map Field Learning: Learning rules determine how the map
field weights wj,l; change through time, as follows. Weights
wip in F§ — Feb paths initially satisfy

wih(0) = L. (39)
During resonance with the ART, category J active, w‘}b
approaches the map field vector b, With fast learning, once
J learns to predict the ART; category K, that association is
permanent; i.e., w’}l}( = 1 for all time.

VI. SIMULATION: CIRCLE-IN-THE-SQUARE

The circle-in-the-square problem requires a system to iden-
tify which points of a square lie inside and which lie outside
a circle whose area equals half that of the square. This task
was specified as a benchmark problem for system performance
evaluation in the DARPA artificial neural network technology
(ANNT) program [15]. Wilensky examined the performance of
2—n—1 back-propagation systems on this problem. He studied
systems where the number (n) of hidden units ranged from 5

to 100, and the corresponding number of weights ranged from
21 to 401. Training sets ranged in size from 150 to 14 000.
To avoid overfitting, training was stopped when accuracy on
the training set reached 90%. This criterion level was reached
most quickly (5000 epochs) in systems with 20 to 40 hidden
units. In this condition, approximately 90% of test set points,
as well as training set points, were correctly classified.

Fuzzy ARTMAP performance on this task after one training
epoch is illustrated in Figs. 5 and 6. As training set size
increased from 100 exemplars (Fig. 5(a)) to 100 000 exemplars
(Fig. 5(d)) the rate of correct test set predictions increased
from 88.6% to 98.0% while the number of ART, category
nodes increased from 12 to 121. Each category node j required
four learned weights w§ in ART, plus one map field weight
w; to record whether category j predicts that a point lies
inside or outside the circle. Thus, for example, one-epoch
training on 100 exemplars used 60 weights to achieve 88.6%
test set accuracy. Fig. 6 shows the ART, category rectangles
Rj established in each simulation of Fig. 5. Initially, large R}
estimated large areas as belonging to one or the other category
(Fig. 6(a)). Additional R}’s improved accuracy, especially
near the boundary of the circle (Fig. 6(d)). The map can
be made arbitrarily accurate provided the number of ART,
nodes is allowed to increase as needed. As in Fig. 3 each
rectangle R} corresponds to the four dimensional weight
vector w} = (uj, (v2)%), where u$ and v§ are plotted as the
lower-left and upper-right corners of R, respectively.

Fig. 7 depicts the response patterns of fuzzy ARTMAP on
another series of circle-in-the-square simulations that use the
same training sets as in Fig. 5. However, each input set was
presented for as many epochs as were needed to achieve
100% predictive accuracy on the training set, whereas in
Fig. 5 each training set was presented for only one epoch.
In each case, test set predictive accuracy increased, as did the
number of ART, category nodes. For example, with 10 000
exemplars, one epoch training used 50 ART, nodes to give
96.7% test set accuracy (Fig. 5(c)). The same training set,
after six epochs, used 89 ART, nodes to give 98.3% test
set accuracy (Fig. 7(c)).

Fig. 5 shows how a test set error rate is reduced from 11.4%
to 2.0% as training set size increases from 100 to 100000
in one epoch simulations. Fig. 7 shows how a test set error
rate can be further reduced if exemplars are presented for
as many epochs as necessary to reach 100% accuracy on
the training set. The ARTMAP voting strategy provides a
third way to eliminate test set errors. Recall that the voting
strategy assumes a fixed set of training exemplars. Before
each individual simulation the input ordering is randomly
assembled. After cach simulation the prediction of each test set
item is recorded. Voting selects the outcome predicted by the
largest number of individual simulations. In case of a tie, one
outcome is selected at random. The number of votes cast for a
given outcome provides a measure of predictive confidence at
each test set point. Given a limited training set, voting across
a few simulations can improve predictive accuracy by a factor
that is comparable to the improvement that could be attained
by an order of magnitude more training set inputs, as shown
in the following example.
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(a)

100 exemplars
99.0% training set
88.6% test set
12 ART, categories

(b)

1,000 exemplars
95.5% training set
92.5% test set
21 ART, categories

(d)

| D[

—=

(a)

100 exemplars

(b)
1,000 exemplars
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10,000 exemplars 100,000 exemplars
97.7% training set 98.8% training set
96.7% test set 98.0% test set
50 ART, categories 121 ART, categories

Fig. 5. Circle-in-the-square test set response patterns after one epoch of
fuzzy ARTMAP training on (a) 100, (b) 1000, (c) 10000, and (d) 100000
randomly chosen training set points. Test set points in white areas are predicted
to lie inside the circle and points in black areas are predicted to lie outside
the circle. The test set error rate decreases, approximately inversely to the
number of ART, categories, as the training set size increases.

A fixed set of 1000 randomly chosen exemplars was pre-
sented to a fuzzy ARTMAP system on five independent one-
epoch circle-in-the-square simulations. After each simulation,
inside/outside predictions were recorded on a 1000-item test
set. Accuracy on individual simulations ranged from 85.9% to
93.4%, averaging 90.5%, and the system used from 15 to 23
ART, nodes. Voting by the five simulations improved test set
accuracy to 93.9% (Fig. 8(c)). In other words, test set errors
were reduced from an average individual rate of 9.5% to a
voting rate of 6.1%. Fig. 8(d) indicates the number of votes
cast for each test set point, and hence reflects variations in
predictive confidence across different regions. Voting by more
than five simulations maintained an error rate between 5.8%
and 6.1%. This limit on further improvement by voting appears
to be due to random gaps in the fixed 1000-item training set.
By comparison, a tenfold increase in the size of the training
set reduced the error by an amount similar to that achieved by
five-simulation voting. For example, in Fig. 5(b), one-epoch
training on 1000 items yielded at test set error rate of 7.5%,
while increasing the size of the training set to 10000 reduced
the test set error rate to 3.3% (Fig. 5(c)).

99.0% training set 95.5% training set
88.6% test set 92.5% test set
12 ART, categories 21 ART, categories

[ . |
= ]

‘ [
i
e
L]

I

(c) (d)

10,000 exemplars 100,000 exemplars
97.7% training set 98.8% training set
96.7% test set 98.0% test set
50 ART, categories 121 ART, categories

Fig. 6. Fuzzy ARTMAP category rectangles R} for the circle-in-the-square
simulations of Fig. 5. Small rectangles are created near the map discontinuities
as the error rate drops toward 0.

In the circle-in-the-square simulations, M, = 2, and ART,
inputs @ were randomly chosen points in the unit square. Each
F}{ input. A had the form

A = (a1,(l2,1—a171_a2), (40)
and |A| = 2. For ART,, M, = 1. The ART; input b was
given by

_ [ (1) if ais inside the circle

b= { (0) otherwise. 1)
In complement coding form, the F¢ — F{ input B is given
by
_ J(1,0) if ais inside the circle
B= { (0,1) otherwise. (42)

The fuzzy ARTMAP simulations used fast learning, defined
by (11) with 8 = 1; the choice parameter o = 0 in the
conservative limit for both ART, and ART}; and the baseline
vigilance parameter p, = 0. The vigilance parametets pq, and
Py can be set to any value between 0 and 1 without affecting
fast-learn results. In each simulation, the system was trained
on the specified number of exemplars, then tested on 1000 or
more points.
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(a) (b)

100 exemplars 1,000 exemplars
2 epochs 3 epochs
89.0% test set 95.0% test set
12 ART, categories 27 ART, categories

(c) (d)

10,000 exemplars 100,000 exemplars
6 epochs 13 epochs
98.3% test set 99.5% test set
89 ART, categories 254 ART, categories

Fig. 7. Circle-in-the-square test set response patterns with exemplars re-
peatedly presented until the system achieved 100% correct prediction on (a)
100, (b) 1000 (c) 10000, and (d) 100000 training set points. Training sets
were the same as those used for Figs. 5 and 6. Training to 100% accuracy
required (a) two epochs, (b) three epochs, (c) six epochs, and (d) 13 epochs.
Additional training epochs decreased test set error rates created additional
ART, categories, compared with the one epoch simulation in Fig. 5.

VII. SIMULATION: LEARNING TO TELL TWO SPIRALS APART

Learning to tell two spirals apart is a neural network
benchmark task proposed by A.P. Wieland [16]. The two
spirals of the benchmark task each make three complete turns
in the plane, with 32 points per turn plus an endpoint, totaling
97. During one epoch, the outermost white point is presented
first, then the outermost black point, and so on, working
in to the center of each spiral. Specifically, the training set
exemplar sequence (a),5(1), (a®,6®) .-, with a® =

(a(lt),ag)) € M2 and b = (b®) € M, is given by the

following equations. For n = 1,2, - ,97,
oV =1 -0 = rysina, +0.5 (43)
a7V =1 — o™ = rpcosan +0.5 (44)
where
15 —n
= 04 =—— 4
rm = 0 4( 0 ), (45)

b))
17 ART, categories
92.4% test set

(@
15 ART, categories
85.9% test set

(d)

Number of votes

. (©)
Voting on 5 runs
93.9% test set

Fig. 8. Circle-in-the-square response patierns for a fixed 1000-item training
set. (a) Test set responses after training on inputs presented in random order.
After one epoch that used 15 ART o nodes, test set prediction rate was 85.9%,
the worst of five runs. (b) Test set responses after training on inputs presented
in a different random order. After one epoch that used 17 ART, nodes, test set
prediction rate was 92.4%, the best of five runs. (c) Voting strategy applied to
five individual simulations. Test set prediction rate was 93.9%. (d) Cumulative
test set response pattern of five one-epoch simulations. Gray scale intensity
increases with the number of votes cast for a point’s being outside the circle.

_ e
an = 16 ’ (46)
p22=1) = 1 [white], “7)
and
B3 = 0 [black]. )

Lang and Witbrock [16] constructed a back-propagation
system that learned to distinguish points on the two intertwined
spirals. They reported being unable to accomplish this task
using a standard back-propagation system, with connections
from one layer to the next. They then crafted a special
2-5-5-5-1 system with shortcut connections, each node
being connected to all nodes in all subsequent layers. With
one additional bias weight for each node, therefore, the system
had 138 trainable weights.

Lang and Witbrock considered the task to be complete when
each of the 194 points in the training set responded to within
0.4 of its target output value, equal to 0 on the black spiral, 1
on the white spiral. Training time was measured in epochs,
the number of times the entire training set was presented.




CARPENTER et al.: FUZZY ARTMAP

_(a)
po = 1.0
100.0% test set

(b)
o = 0.95
99.0% test set
194 ART, categories 78 ART, categories

(c)
po =0.9
96.4% test set
47 ART, categories

Fig. 9. Intertwined black and white spiral training points. Each spiral has 97 points and three turns. Plots show unit square response patterns after one
training cpoch. Lighter arcas predict white spiral points and darker areas predict black spiral points. The 194 training set points are shown superimposed on
the response patterns. (a) Fuzzy ARTMAP creates a nearest neighbor classifier in one epoch when po = 1. After one epoch, classification is 100% correct
on both the training set spirals (194 points) and on the test set dense spirals (770 points). (b) With 5, =0.95, 78 ART, categories are created. Accuracy is
99.0% on the dense spiral. (c) With p; = 0.9, 47 ART, categories are created. Accuracy is 96.4% on the dense spiral.

When weights were updated using vanilla back-propagation
[22], training required an average of 20000 epochs. Average
training time was decreased to 10 000 epochs using the cross-
entropy error measure and to 8000 epochs using the quickprop
algorithm [23].

Fig. 9(a) shows the two-spiral response pattern of a fuzzy
ARTMAP simulation with baseline vigilance 5, = 1.0. Points
in the light gray areas predict white, while points in the dark
gray areas predict black. In just 1 epoch, each input established
its own category, creating a nearest neighbor classifier that is
100% correct on the 194-point training set. Moreover, 100%
correct prediction is achieved on a test set consisting of two
dense spirals, each with 385 points. However, the necessary
number of stored weights is 582, two to assign each point
(agt),ag)) an ART, category index j(j =1,---,194); and
one to label that category black or white. The main goal of
both the back-propagation and fuzzy ARTMAP simulations
described below is to reduce the number of weights needed
for this task. Progress toward this goal was made by reducing
the baseline vigilance parameter p, to 0.95, which reduced
the number of ART, categories to 78 (Fig. 9(b)), less than
40% the number previously needed. On the dense spiral test
set, accuracy was still 99.0%. Note that, since p, > p,, with
Pa = 0.95 the maximum size of a category rectangle R}
was 2(1 — 7;) = 0.1, by (33). Reducing p, to 0.9 (Fig. 9(c))
allowed rectangles to grow to a maximum size of 0.2. This
reduced the number of ART, nodes to 47. Performance on the
dense spiral set also dropped to 96.4%, with the total response
pattern showing some gaps in the spiral pattern.

When p, was reduced to 0, fuzzy ARTMAP learned to
tell the two spirals apart in five epochs, using 25 ART,
categories (125 weights) compared with 138 weights in the
Lang—Witbrock system. Table I shows the number of epochs
needed to reach various intermediate stages of training for
fuzzy ARTMAP, with 5, = 0; and for the Lang—Witbrock
system, with vanilla back-propagation and quickprop training.

TABLE 1
NUMBER OF TRAINING EPOCHS IN TWO-SPIRAL SIMULATIONS

Lang—Witbrock Back- Propagation

Cases (138 weights)
Remaining Fuzzy
to ARTMAP Vanilla BP Quickprop
Learn (125 weights)
(194 total) Pa=0 A C A C
18 9000 16800 2100 6600
11 2 13000 17400 2500 6700
0 5 18900 19000 4500 6800

* The number of epochs for intermediate stages of vanilla back-
propagation and quickprop training have been estimated from Lang and
Witbrock [16, Figs. 8 and 10]. Runs A and C correspond to distinct sets of
random initial weights. On average, vanilla back-propagation required
20000 epochs and quickprop required 8000 epochs for the system to learn
to distinguish points in the training set. See Fig.10.

The first column gives the number of cases remaining to learn
out of the 194 training set items. Fuzzy ARTMAP learned
all but 18 cases in one epoch, and corrected these errors
by the fifth epoch. For the Lang—Witbrock black-propagation
simulations, runs A and C corresponded to two different sets
of initial weights. With both vanilla back-propagation and
quickprop learning rules, run A was more accurate early in
training, but needed many epochs to learn the last few cases.
Run G, in contrast, tended to have long intervals where little
improvement occurred, but converged rapidly at the end. Of
the two, run C showed better generalization. For example,
on the dense spiral test set, run A (vanilla back-propagation)
placed 90.2% of the points on the correct spiral, while run C
placed 92.8% on the correct spiral.

Fig. 10 illustrates the fuzzy ARTMAP response patterns
after one, two, and five training epochs. During the first epoch,
the system generated two intertwined square wave spirals
(Fig. 10(a)). After one epoch, correct predictions were already
made by 91% of the points on the training set, with errors
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(a)

1 epoch

requires 65 weights. (b) After two epochs, the system has established 16 ART,

(b)
2 epochs

Fig. 10. Fuzzy ARTMAP response patterns during a two-spiral simulation with pa’ = 0.0. (a) After one epoch, the system has learned correct responses for
176 training set points (90.7%). Errors are concentrated in the outer corners of the square spirals. The system has established 13 ART, categories, which

()

5 epochs

categories, giving 183 correct responses (94.3%) in the training set. (c) After

five epochs, the task is complete, with correct responses at all 194 training set points, and 25 ART. categories. See Table 1.

occurring in the corners of the outer turns of the square spirals.
Correct predictions were also made on 86% of points in the
dense spiral test set. On subsequent epochs, fuzzy ARTMAP
quickly corrected all errors in the training set (Fig. 10(c)).
The additional training did not improve prediction on the
dense spiral test set, however. Inspection of Fig. 10 suggests
that overfitting may, in fact, be occurring. Overfitting could
also occur with back-propagation if the identification criterion
were made stricter than the 0.4 tolerance used by Lang and
Witbrock. In Fuzzy ARTMARP, a similar softer criterion could
be used with slow learning in the map field weight vector w,
rather than the extreme case of fast learning in all weights.
Alternatively, a voting strategy on simulations that scramble
input order could also be used.

VIII. SIMULATION: INCREMENTAL APPROXIMATION
OF A PIECEWISE-CONTINUOUS FUNCTION

The spiral and circle-in-the square tasks require a system
to learn a piecewise-continuous map from %R? to R!. This
is a special case of the task of learning to approximate a
piecewise-continuous function from M™ to R™. In this section
we illustrate how fuzzy ARTMAP builds an approximate
representation of a continuous sinusoidal function from $R!
to KR!, namely

b = f(a) = (sin2ma)’ (49)
for 0 < a < 1. The approximation is improved incrementally
as each new data point is added. The asymptotic accuracy
of the approximation is determined by the ART), vigilance
parameter, py. For pp close to 1, the approximation reaches an
arbitrary degree of accuracy, given sufficiently many ART,
and ART, category nodes.

Fig. 11 shows how the function approximation evolves as
data points are received. Since the dimension (M,) of ART,
inputs and the dimension (M) of ART), inputs are both equal
to 1, fuzzy ARTMAP establishes category intervals R and
R during learning. Fig. 11 indicates the evolution of these
category intervals as the number of training inputs increased

from (a) 10 to (b) 25 to (c) 50. The ART, vigilance parameter
pp was set equal to 0.9. By (33), therefore, the maximum length
of an RY interval was 0.1 = (1 — ps)-

To interpret the geometry of Fig. 11, consider the following
example. If an input @ = (a) chooses a committed ART,
category J, and if a lies in the interval RY, then fuzzy
ARTMAP predicts that b lies in the interval RY, for some
K.If bis in RI;{: no new learning occurs. If b does not lie
in R®., but the size of the expanded interval RS @b is less
than 0.1, then R’k will expand to include the new point b. If,
on the other hand, the size of Rt,’{ ® b exceeds the maximum
length (0.1) established by py, then another ART} node (K')
is selected. Inter-ART reset and match tracking then lead to the
selection of another (possibly uncommitted) ART, category.
The ARTMAP search process continues until a selected ART,
category node J” correctly predicts the ART) category K, or
until an uncommitted ART, node becomes active. In the latter
case, an ART, point interval RS, = [a, a] learns to predict the
ART, interval R%., and a new ART, category is established.
In either case, during learning, components of the map field
weight vector w?® ; approach the asymptotes: w‘jl,’ x = 1land
w3, = 0 for k # K'. In general, intervals RS and/or RY%
expand to R ® a and R’;{ @ b; or remain as before; or new
ART, and/or ART, categories are established.

Each graph in Fig. 11 shows, for each test set point a, the
interval RY, predicted by the ART, category J selected by
a. Recall that the maximum length of each interval RY is
0.1, which constitutes the asymptotic approximation criterion,
or confidence interval, once the training set has grown to a
sufficiently large size.

Table II lists the number of ART, and ART, categories
established in the simulations graphed in Fig. 11. Test set
performance rate was determined by randomly selecting points
a € [0,1]. Each point chose some ART, category J, which
in turn predicted an ART, category K. If the length of
the interval R% @ (f(a)) was less than (1 — pp), that point
was said to have met the matching criterion, or degree of
approximation accuracy, determined by py. By Table 11, the
proportion of test set points that met this criterion grew from
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1b‘]u\\ 1b/ 1b/
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(a)

10 exemplars

(b)

25 exemplars

(c)

50 exemplars

Fig. 11. Incremental approximation of a sinusoidal function as the number of training set exemplars increased from (a) 10 to (b) 25 to (c) 50. The simulation
used fuzzy ARTMAP with complement coding, the conservative limit (o 2¢ 0), fast learning (8 = 1), and vigilance parameters 5, = 0,0 <pap < 1,

and pp =
interval is (1 —pp) = 0.1. See Table I

TABLE II
INCREMENTAL FUNCTION APPROXIMATION

No. Training No. ART, No. ART, % Test Set Meeting
Exemplars Categories Categories Matching Criterion
10 8 7 31.9%
25 15 10 47.8%
50 26 11 72.3%

*ART) vigilance (pp = 0.9) sets the matching criterion. After
training on 50 exemplars, 72.3% of points a € [0, 1] choose an ART}
node K such that |[R% & b] < 1— p, = 0.1, where b = (f(a)). See
Fig. 11.

31.9%, after training on ten exemplar pairs (a, b) = (a, f(a)),
to 72.3% after training on 50 exemplar pairs.

Fig. 12 shows the confidence intervals R? of three function
approximations, each with 1000 training set exemplars. In
Fig. 11(a), ART, vigilance p, = 0.6, which implies that
the maximum length of each confidence interval is 0.4. By
Table III, ten ART, nodes and three ART; nodes were used
to establish this rough approximation. For 100% of the points
a in the test set, f(a) met the matching criterion. Thus learning
had nearly reached its asymptote. If training were to continue
indefinitely, some intervals R¢ and R}, might expand slightly,
but it is unlikely that new category nodes would be needed.

Parts (b) and (c) of Fig. 12 show how the function ap-
proximation improves as p; is increased to 0.75 and to 0.9,
respectively. With p, = 0.9, the maximum length of each
confidence interval R} is 0.1. The stricter ART, matching
criterion leads this system to establish more ART, and ART),
categories than for the coarser approximations. In addition,
1.3% of test set points do not yet meet the matching criterion,
which implies that a few more categories would be established
before the system approached its asymptotic performance.
Note that, in both (a) through (c) of Fig. 11 and (c) of
Fig. 12, p, = 0.9. Improvement from a 72.3% test set rate

0.9. Training set points (a) and test st ART, confidence intervals are shown on each graph. The maximum length of each confidence

after 50 inputs (Fig. 11(c)) to a 98.7% rate after 1000 inputs
(Fig. 12(c)) required 34 additional ART, categories but only
two additional ART), categories.

IX. SIMULATION: LETTER IMAGE RECOGNITION

Frey and Slate recently developed a benchmark machine
learning task that they describe as a “difficult categorization
problem” [17, p. 161]. The task requires a system to identify
an input exemplar as one of 26 capital letters A-Z. The
database was derived from 20000 unique black-and-white
pixel images. The difficulty of the task is due to the wide
variety of letter types represented: the 20 “fonts represent five
different stroke styles (simplex, duplex, complex, and Gothic)
and six different letter styles (block, script, italic, English,
Italian, and German)” [17, p. 162]. In addition each image was
randomly distorted, leaving many of the characters misshapen.
Sixteen numerical feature attributes were then obtained from
each character image, and each attribute value was scaled to
a range of 0 to 15. Thus the task is to learn to map from R16
to 226, The resulting letter image recognition file is archived
in the UCI Repository of Machine Learning Databases and
Domain Theories, maintained by D. Aha and P. Murphy
(ml_repository@ics.uci.edu).

Frey and Slate used this database to test performance of
a family of classifiers based on Holland’s genetic algorithms
[18]-[20]. The training set consisted of 16 000 exemplars, with
the remaining 4000 exemplars used for testing. Genetic algo-
rithm classifiers having different input representations, weight
update and rule creation schemes, and system parameters were
systematically compared. Training was carried out for five
epochs, plus a sixth “verification” pass during which no new
rules were created but a large number of unsatisfactory rules
were discarded. In Frey and Slate’s comparative study, these
systems had correct prediction rates that ranged from 24.5% to
80.8% on the 4000-item test set. The best performance (80.8%)
was obtained using an integer input representation, a reward
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(a)
pp = 0.6

Fig. 12.

simulation the fuzzy ARTMAP system was trained on 1000 randomly chosen points @ €

(b)
Py = 0.75

Incremental approximation of a sinusoidal function for ART, vigilance parameters, with pp equal to (a) 0.6, (b) 0.75, and (c) 0.9. In each

Py = 0.9

[0,1]. Each graph shows the test set confidence intervals

R’;< selected by the test set points. The maximum lengths of these intervals are (a) 04, (b) 0.25, and (c) 0.1. Graph (c), with pp = 0.9, is close to

the asymptotic state of the three graphs in Fig. 11. See Table IIL

TABLE III
FUNCTION APPROXIMATIONS, EACH WITH 1000 TRAINING EXEMPLARS
ART,
Vigilance No. ART, No. ART} % Test Set Meeting

Pb Categories Categories Matching Criterion
-0.60 10 3 100.0%

0.75 17 5 99.9%

0.90 60 13 98.7%

*Stricter ART, matching criteria (larger pp) cause the system to
create more ART, and ART}, categories. (See Fig.12.)

sharing weight update, an exemplar method of rule creation,
and a parameter setting that allowed an unused or erroneous
rule to stay in the system for a long time before being
discarded. After training, the optimal case, which had 80.8%
performance rate, ended with 1302 rules and eight attributes
per rule, plus over 35000 more rules that were discarded
during verification. (For purposes of comparison, a rule is
somewhat analogous to an ART, category in ARTMAP, and
the number of attributes per rule is analogous to the size Iwﬂ
of ART, category weight vectors.) Building on the results of
their comparative study, Frey and Slate investigated two types
of alternative algorithms, namely an accuracy-utility bidding
system, which had slightly improved performance (81.6%) in
the best case, and an exemplar/hybrid rule creation scheme
that further improved performance, to a maximum of 82.7%,
but that required the creation of over 100000 rules prior to
the verification step.

Fuzzy ARTMAP had an error rate on the letter recognition
task that was consistently less than one third that of the
three best Frey—Slate genetic algorithm classifiers described
above. Of the 28 Fuzzy ARTMAP simulations summarized
in Table IV, the one with the best performance had a 94.7%
correct prediction rate on the 4000-item test set, after five
training epochs that created 1029 ART, categories. Thus the
error rate (5.3%) was less than one-third that of the best
simulation in the Frey—Slate comparative study (19.2%), or

TABLE IV
Fuzzy ARTMAP SIMULATIONS OF THE FREY-SLATE [17]
CHARACTER RECOGNITION TASK

% Correct Test No. ART.
Set Predictions Categories No. Epochs
(a) @ = 0.001
8 simulations
Average 89.6% 799 6.00
Range 89.1% -90.8% 731-827 5-9
(b)a=0.1
4 simulations
Average 90.1% 825 6.25
Range 89.1%-91.1% 803—849 5-8
©a=10
16 simulations
Average 94.0% 1,023 5
Range 93.5-94.7% 988-1070 5

* The choice parameter a is equal to (a) 0.001, (b) 0.1, and (c) 1.0.
Prediction rates are given for the 4000 item test set, after training on 16 000
exemplars.

the lowest rates (18.4% and 17.3%) obtained with their alter-
native schemes. Moreover fuzzy ARTMAP simulations each
created fewer than 1070 ART,, categories, compared with the
1040-1302 final rules of the three genetic classifiers with the
best performance rates. With voting, fuzzy ARTMAP reduced
the error rate to 4.0% (Table V). Both the fuzzy ARTMAP
simulation and the three genetic algorithm simulations with
minimal error rates used five training epochs, as did the Fuzzy
ARTMAP simulations in Table IV (c) and Table V (b,d, ).
Most fuzzy ARTMAP learning occurred on the first epoch,
with test set performance on systems trained for one epoch
typically over 97% that of systems exposed to inputs for the
five epochs (Table V).

Table IV summarizes test set prediction rates on 28 fuzzy
ARTMAP simulations, along with the number of ART, cat-
egories created and the number of epochs needed to reach
asymptotic training set performance. Each simulation had a
different, randomly chosen presentation order for the 16000
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. TABLE V
VOTING STRATEGY APPLIED TO SETS OF THREE AND FIVE Fuzzy ARTMAP
SIMULATIONS OF THE FREY—SLATE CHARACTER RECOGNITION TASK

% Correct Test No. ART,
Set Predictions Categories No. Epochs
(@a=0.1
3 simulations
Average 87.5% 637 1
Range 87.0%-88.0% 619-661 1
Voting 91.2%
(b)a=0.1
3 simulations
Average 89.7% 741 5
Range 89.3%-90.3% 726-757 5
Voting 92.2%
©a=10
3 simulations
Average 92.1% 788 1
Range 91.8%-92.3% 762-807 1
Voting 94.8%
(d)a=1.0
3 simulations
Average 94.0% 1,016 5
Range 93.8%-94.3% 988-1,055 5
Voting 95.5%
e)a=10
5 simulations
Average 91.8% 786 1
Range 91.2%-92.6% 763805 1
Voting 95.3%
(Ha=10
5 simulations
Average 93.9% 1,101 5
Range 93.4%-94.6% 990-1,070 5
Voting 96.0%

* The choice parameter a = 0.1 (a,b) or a = 1.0 (c~f), and with
training on one epoch (a,c, ) and five epochs (b, d, f). (a) Voting
eliminated 30% of the individual simulation test set errors, which
dropped from a three-simulation average rate of 12.5% to a voting rate
of 8.8%. (b) Voting eliminated 24% of the errors, which dropped from
10.3% to 7.8%. (c) Voting eliminated 34% of the errors, which dropped
from 7.9% to 5.2%. (d) Voting eliminated 25% of the errors, which
dropped from 6.0% to 4.5%. (e) Voting eliminated 43% of the errors,
which dropped from 8.2% to 4.7%. (f) Voting eliminated 34% of the
errors, which dropped from 6.1% to 4.0%

training set exemplars. The choice parameter a in (2) was set
near the conservative limit at value & = 0.001 in Table IV(a),
and at the higher values @ = 0.1 in Table IV(b) and oo = 1.0
in Table IV(c). For o = 0.001 and o = 0.1, inputs were
repeatedly presented in a given order until 100% training
set performance was reached, which required from five to
nine epochs. In order to make an exact comparison with the
Frey—Slate simulations, training was stopped after five epochs
for o = 1.0 in Table IV(c), leaving training set performance
below 100%. Both performance and the number of ART,
categories increased with a. All simulations used fast learning,
which creates a distinct ART, category structure for each
input ordering. The number of ART, categories ranged from
731 to 1070 across the 28 simulations. All simulations used
baseline vigilance p, = 0, which tends to minimize the
number of ART, categories compared with higher values
of pg. The remaining two vigilance parameters (p.b and py)
could be set to any number between 0 and 1, owing to the
categorical nature of the ART), input vector and fast learning.
In addition, preliminary studies had revealed that several of
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the 16 input features could be eliminated altogether without
degrading performance. Simulations were thus carried out
using a reduced ART, input vector that represented only the
last 11 of the 16 features in the original input set, resulting in
faster computation and decreased memory requirements.

Variations on the 28 simulations of Table IV gave similar
performance results. For example in ten other simulations
with @ = 0.001, the 16000 inputs were trained for exactly
five epochs instead of training each to 100% accuracy as
in Table IV. On the average, the system used 811 ART,
nodes and had a 90.6% test set prediction rate on these ten
simulations. The test set performance rate was also similar
when the system was trained on 19000 items and tested
on 1000 items. Values of o greater than 1.0 gave slightly
improved performance but required more ART, nodes and
more computation. Finally, fuzzy ARTMAP also performed
well with on-line incremental training. With inputs selected
at random, an early error rate of about 38% was achieved
with 1250 training inputs. Each time the cumulative number
of inputs doubled, the error rate was cut about in half,
reaching 0.3% by input number 160 000. After 200 000 inputs
(equivalent to about ten epochs), asymptotic performance was
reached, with 100% correct prediction on each input.

Table V shows how voting consistently improves perfor-
mance. In each group, with o = 0.1 or o = 1.0 and with
one or five training epochs, fuzzy ARTMAP was run for three
or five independent simulations, each with a different input
order. In all cases voting performance was significantly better
than performance of any of the individual simulations in a
given group. In Table V(a), for example, voting caused the
error rate to drop to 8.8%, from a three-simulation average
of 12.5%. With one training epoch, three-simulation voting
eliminated about 30-35% of the test set errors (Table V(a)
and V(c)), and five-simulation voting eliminated about 43% of
the test set errors (Table V(e)). In the five-epoch simulations,
where individual training set performance was close to 100%,
three-simulation voting still reduced the test set error rate by
about 25% (Table V(b) and V(d)) and five-simulation voting
reduced the error rate by about 34% (Table V(f)). The best
overall results were obtained with @ = 1.0 and five-epoch
training, where voting reduced the five-simulation average
error rate of 6.1% to a voting error rate of 4.0% (Table V(f)).

A final comparison between fuzzy ARTMAP and the genetic
algorithms was made between the size |w3‘| of the fuzzy
ARTMAP weight vectors and the mean rule specificity, or
number of non—wild card attributes, calculated by Frey and
Slate. In fuzzy ARTMAP, a larger weight w$, which cor-
responds to a smaller hyperrectangle R}, is less likely to
be selected by a new item than a smaller weight, all other
things being equal. Similarly, Frey and Slate estimate “that, in
general, more specific rules will participate in the action [for
category selection] less often than more general rules” [17,
p. 171]. The Frey—Slate algorithm with a test-set prediction
rate of 80.8% had a mean rule specificity of 8.02. This index
was close to the average size (10.0) of the fuzzy ARTMAP
weight vectors w? in one simulation, with a = 1.0, that used
1042 ART, nodes and had a 94.3% prediction rate. In this
simulation, the number of ART, nodes predicting a given
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letter ranged from 19 nodes predicting L to 60 nodes predicting
H, with an average of 39 nodes predicting a given letter. There
was a strong correlation between the number of ART, nodes
that, if chosen, predicted a letter and the error rate of that set
of nodes. For example, the set of nodes predicting the letter H
had an error rate of 11.2% and the set of nodes predicting the
letter L had an error rate of 2.3%. Evidently, new categories
are created as a difficult letter makes predictive errors during

training.
In summary, single-simulation fast-learn fuzzy ARTMAP
systems, with baseline vigilance p; = 0 and with choice

parameters ¢ ranging from 0.001 to 1.0, were trained on

the 16 000-item input set of the Frey—Slate letter recognition
task. After one to five epochs, individual fuzzy ARTMAP
systems had a robust prediction rate of 90% to 94% on the
4000-item test set, with best performance obtained from the
highest values of a. By pooling information across individual
simulations, voting consistently eliminated 25%—43% of the
errors, giving a robust prediction rate of 92%—-96%.
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