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1. Introduction
A neural network architecture is described which can

(1) stably self-organize an invariant pattern recognition code in response to a se-
quence of analog or digital input patterns;

(2) be attentionally primed to ignore all but a designated category of input patterns;

(3) automatically shift its prime as it satisfies internal criteria in response to the
occurrence of a previously primed category of input patterns;

( ) learn to generate an arbitrary spatiotemporal output pattern in response to any
input pattern exemplar of an activated recognition category.

This architecture (Figure 1) exploits properties of the ART 1 and ART 2 adaptive
resonance theory architectures which have been developed in Carpenter and Gross-
berg (1985, 1987a, 1987b, this volume); the Boundary Contour System for boundary
segmentation and the Feature Contour System for figural filling-in which have been
developed in Cohen and Grossberg (1984), Grossberg (1987a, 1987b), Grossberg and
Mingolla (1985a, 1985b, 1987a, this volume), and Grossberg and Todorovi¢ (1987a,
this volume); theorems on associative pattern learning and associative map learning
(Grossberg, 1969, 1970, 1982); and circuit designs to focus attention on desired goal
objects by using learned feedback interactions between external sensory events and in-
ternal homeostatic events (Grossberg, 1972, 1982, 1987¢; Grossberg and Levine, 1987a,
this volume; Grossberg and Schmajuk, 1987a, this volume). The overall circuit de-
sign embodies, in a primitive way, an intentional learning machine in which distinct
cognitive, homeostatic, and motor representations are self-organized in a coordinated
fashion.

2. Outline of the Architecture

The ART 2 architecture stably self-organizes disjoint recognition categories in re-
sponse to temporal sequences of analog or digital input patterns. A vigilance parameter
can be set to determine the coarseness of this classification. thereby compensating for
source of variability, including noise, in the input exemplars of the emergent recognition
categories. These input patterns may be the output patterns of a preprocessor stage;
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in particular, the preprocessor outputs may represent invariant spectra computed by
one or more prior stages of input filtering (Figure 2). The capacity of ART 2 to be
activated by any number of arbitrarily chosen analog or digital input patterns with-
out destabilizing its emergent classification provides great freedom in designing such
preprocessors for specialized applications.

In the present application, the preprocessor has been designed by using available
techniques to present ART 2 with spectra that are invariant under 2-D spatial trans-
lation, dilation, and rotation (Casasent and Psaltis, 1976; Cavanagh, 1978, 1984; Szu,
1986). Using an invariant input filter such as a Fourier-Mellon filter is a familiar
and direct approach to achieving 2-D spatial invariance in pattern recognition. Alter-
native approaches use several hierarchically organized processing stages to gradually
free image processing from its spatial coordinates (Fukushima, 1980; Fukushima and
Miyake, 1984; Grossberg, 1978, Section 19; reprinted in Grossberg, 1982); higher-order
threshold logic units (Maxwell, Giles, and Chen, 1986); or match-gated associative
mechanisms (Grossberg, 1987d; Grossberg and Kuperstein, 1986, Chapter 6).

Before the input pattern is processed by the invariant filter, the image figure to be
recognized must be detached form the image background. This can be accomplished, for
example, by using a range detector focussed at the distance of the figure, and detaching
the figure from contiguous ground by spatially intersecting the range pattern with a
pattern from another detector that is capable of differentiating figure from ground. A
doppler image can be intersected when the figure is moving. The intensity of laser return
can be intersected when the figure is stationary (Gschwendtner, Harney, and Hull,
1983; Harney, 1980, 1981; Harney and Hull, 1980; Hull and Marcus, 1980; Kolodzy,
this volume; Sullivan, 1980, Sullivan, 1980, 1981; Sullivan, Harney, and Martin, 1979).

If the figure derived in this way is noisy and irregular, the vigilance parameter
may be set at a value that adjusts for the expected level of noise fluctuations gener-
ated by the imaging devices. In addition, as in Figure 2, the figure boundary may
be extracted, completed, and regularized using the emergent boundary segmentation
process of a Boundary Contour System (Grossberg and Mingolla, 1985a, 1985b, 1987a,
this volume; Grossberg, 1987a, 1987b). Or some portion of the Boundary Contour Sys-
temn can be used, such as its second competitive stage, which can choose the maximally
activated oriented filter at each spatial location and inhibit responses from statistically
unoriented regions. This completed boundary can then serve as the input pattern to
ART 2 (Figure 3). The figure interior within the emergent segmentation may also be
smoothly completed using the filling-in process of a Feature Contour System (Cohen
and Grossberg, 1984; Grossberg and Todorovié, 1987a, this volume), and this filled-
in representation used as an input source to ART 2. Combinations of the completed
boundary and filled-in figural representations may also be chosen as the inputs to
ART 2, thereby fully exploiting the architecture’s self-scaling properties.

Figures 4-6 describe the results of preliminary computer simulations of noisy bound-
ary images by ART 2. Figure 4 describes correct classification of 40 noisy exemplars
of 4 trucks into 4 categories. Pairs of trucks were chosen to be very similar to one
another. Figures 5 and 6 describe simulations of invariant pattern recognition. Here
trucks were translated, rotated, and shrunk with respect to each of 4 prototypes, and
then subjected to noise. Figure 5 describes a consistent classification in 5% noise of 32
exemplars (8 from each prototype) into 5 consistent categories. Exemplars of one truck
type were split into two categories (3,5). Figure 6 describes a consistent classification
in 10% noise of 32 exemplars into 7 consistent categories. Exemplars of one truck type
were split into four categories (3,4,5,7). These results were defived in our initial runs
using very coarse boundary filtering techniques and preliminary choice of parameters.
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Even at this preliminary stage, the postprocessor mechanism described below can be
used to quickly learn a compression into 4 category outputs. Inspection of the last
three rows of Figure 5 and the last five rows of Figure 6 illustrates how well the archi-
tecture has managed to separate subtle differences, obscured by image transformation
and noise, of this pair of trucks.

As ART 2 self-organizes recognition categorics in response to these preprocessed
inputs, its categorical choices at the F, classifying level self-stabilize through time. In
examples wherein F, makes a choice, it can be used as the first level of an ART 1
architecture, or yet another ART 2 architecture, should one prefer. Let us call the
classifying level of this latter architecture F3. Level F; can be used as a source of
pre-wired priming inputs to F,. Alternatively, self-stabilizing choices by F; can quickly
be learned in response to the choices made at F,. Then F; can be used as a source of
self-organized priming inputs to F;, and a source of priming patterns can be associated
with each of the Fj choices via mechanisms of associative pattern learning (Grossberg,
1969, 1982). For this to work well, the normalizing property of F; is important. After
learning of these primes takes place, turning on a particular prime can activate a
learned F3 — F, top-down expectation. Then F, can be supraliminally activated only
by an input exemplar which is a member of the recognition category of the primed
F, node. The architecture ignores all but the primed set of input patterns. In other
words. the prime causes the architecture to pay attention only to expected sources
of input information. Due to the spatial invariance properties of the preprocessor, the
expected input patterns can be translated, dilated, or rotated in 2-D without damaging
recognition. Due to the similarity grouping properties of ART 2 at a fixed level of
vigilance, suitable deformations of these input patterns, including deformations due to
no more than the anticipated levels of noise, can also be recognized.

The output pathways from level F, of ART 2 to the postprocessor (Figure 1)
can learn to read out any spatial pattern or spatiotemporal pattern of outputs by
applying theorems about associative spatial pattern learning in avalanche-type circuits
(Grossberg, 1969, 1970, 1982). Thus the architecture as a whole can stably self-organize
an invariant recognition code and an associative map to an arbitrary format of output
patterns.

The model of priming patterns can be both modified and refined. The interactions
(priming — ART) and (ART — postprocessor) can be modified so that output patterns
are read-out only if the input patterns have yielded rewards in the past and if the ma-
chine’s internal needs for these rewards have not yet been satisfied (Grossberg, 1972,
1982, 1987c; Grossberg and Levine, 1987a, 1987b; Grossberg and Schmajuk, 1987a,
1987Db). In this variation of the architecture, the priming patterns supply motivational
signals for releasing outputs only if an input exemplar from a desired recognition cat-
egory is detected.
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Figure 3. The left column depicts input images, the middle column log-polar maps
of the image, and the third column Fourier transform amplitudes of the maps, which
input to ART 2. The first image in row 1 is transformed into that in row 2 by choosing
the maximally activated oriented mask at each position. The first image in row 3 is
derived in the same way from a noisy version of the original figure.

Figure 4. Classification of 40 noisy exemplars of 4 trucks by ART 2 into 4 correct cat-
egories. Noise level was 10%. (Six of the 10 exemplars in each category are displayed.)
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