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Abstraa 

A model to implement search in neural network hierarchies is 
outlined. The system models elementary properties of the chemical 
synapse, such as transmitter accumulation, depletion, and 
modulation. The search mechanism is embedded in an Adaptive 
Resonance Theory (ART) architecture. 

Introduction: ART 

This paper outlines new search mechanisms for Adaptive 
Resonance Theory (ART) neural network architectures. These 
mechanisms were designed to implement the computational needs of 
ART systems embedded in neural network hierarchies, where there 
can, in general, be either fast or slow learning; and distributed, as 
well as very compressed, code representations [3]. 

Let us first review some of the main elements of Adaptive 
Resonance Theory. ART architectures are neural networks that carry 
out stable self-organization of recognition codes for arbitrary 
sequences of input patterns. Adaptive Resonance Theory was 
introduced by Stephen Grossberg [4]. More recent work has led to 
the development of two classes of ART neural ne twork  
architectures, specified as systems of differential equations [ 1,2]. 
The first class, ART 1, has been shown to be capable of self- 
organizing recognition categories for arbitrary sequences of binary 
input patterns [ 11 

ART 1 

The main elements of a minimal ART 1 module are 
illustrated in Figure 1. F1 and F2 are the two principal fields of 

ork nodes in the system. An input is initially represented as a 
pattern of activity across the field F1, while the pattern of activity 

ss F2 corresponds to the category representation. The two fields 
inked both bottom-up and top-down by adaptive filters. There is 

also an auxiliary subsystem, called the Orienting Subsystem, that 
becomes active during search. It is this search process that is the 
subject of the present article. 
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MINIMAL A R T 2  MODULE HOMOLOGOUS LEVELS 

READ BU 

2. Minimal ART 2 neural network module, with three-layer F1 level 
121. 

ART Hierarchies: Homolonv of levels 

We will now consider the problem of embedding this 
minimal ART module in a neural network hierarchy. We first 
observe that it is no longer possible to make a sharp distinction 
between the characteristics of the input representation level F1 and 
the category representation level Fz. As much as possible, the basic 
structures of all the network fields in a hierarchical ART system 
should be homologous (Figure 3). This constraint is, in fact, 
satisfied if all levels FL of the hierarchy are endowed with the F 1 

structure of the minimal ART 2 module. This design is appropriate 
for the F2 level as well as the F1 level because the principal property 
required of a category representation field, namely that input patterns 
be contrast-enhanced, is an inherent property of this three-layer field 
Structure. 
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3. Homology of levels FL in an ART hierarchy. 

ART Search Chemical S w s e  Model 

We now turn to the problem of implementing search in a 
hierarchical ART system. Assume that a mismatch has occurred 
somewhere in the system. How can a search signal reset the 
hierarchy in such a way that a new category can be selected? The 
schematic search systems for ART 1 and ART 2 imply a manifest 
asymmetry between F1 and F2. The ART search model resolves that 
asymmetry. A key observation pointing to a general solution of the 
search problem is that a global reset signal can reach the entire 
hierarchy by acting between the levels FL (Figure 4). Locating the 
site of action of the reset signal between the levels allows each 
individual level to carry out its pattern processing function without 
having the reset signal introduce pattern bias into its internal 
feedback loops. The interfield locality of the mismatchheset signal 
action is determined by a functional analysis of the signalling 
properties of the hierarchical ART system. We now outline a neural 
network model that implements such a system. The mechanism 
employs familiar properties of the chemical synapse [SI, embedded 
in a particular class of models. The ART search model incorporates 
the dynamics of production and release of a chemical transmitter 
substance; the removal of transmitter from the extracellular space: 
and the modulation of these processes via nonspecific external 
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signals. The net effect of these transmitter processes is to alter the 
ionic permeability at the postsynaptic membrane site, thus effecting 
excitation or inhibition of the postsynaptic cell. 

GLOBAL MISMATCH / RESET SIGNAL 

FL+ 1 

FL  

5- 1 

4. Interlevel global mismatch/reset signal in an ART hierarchy. 

Eauations 

The notation of the ART chemical synapse search model is 
illustrated in Figure 5, for a synapse between the presynaptic IZh 

node to the postsynaptic j h  node. The presynaptic signal (action 
potential) Si arrives at a synapse whose weight is denoted zij. In the 

T search model, the path weight zij is identified with the 
maximum amount of available transmitter. When the transmitter at 
this synapse is fully accumulated, the amount of transmitter Uij 

available for release is equal to the path weight zij. When a signal Si 
arrives, transmitter is typically released. The variable yj denotes the 
amount of transmitter in the extracellular space. Finally, xj denotes 
the activity, or membrane potential, of the postsynaptic membrane. 

NODE i - NODE 

5. ART chemical synapse m 
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Equation (2) says that intracellular transmitter becomes 
extracellular transmitter once it is released, and that this extracellular 
transmitter is removed from the extracellular space at some rate. 

Equation (3) for the postsynaptic activity xj is a shunting 
membrane equation, with the excitatory inputs driving 5 up toward 
a maximum, or depolarized, level equal to A; with the inhibitory 
inputs driving xj down toward a minimum, or hyperpolarized, level 
equal to -B; and with activity decaying to a resting level (0) in the 
absence of inputs. Moreover, the net effect of extracellular 
transmitter from all the synapses converging on the jth node is 
assumed to be excitatory, via the term 

v.. . (4) 
1J 

i 

Internal feedback from within the target level FL (Figure 2) can 
have both excitatory and inhibitory effects on Xj. 

ART Search Hwotheses 

The ART search model is specified by the transmitter 
production, release, and removal rates in Equations (1) and (2). 
These implement the three ART Search Hypotheses listed below 

ART SEARCH HYPOTHESIS 1: Intracellular transmitter 
uij is released at a rate jointly proportional to the presynaptic 
signal Si and a function of the postsynaptic activity xj. 

The function f(Xj) is assumed to have the qualitative 
properties illustrated in Figure 6. Equation (2) and the ART Search 
Hypothesis 1 imply that the amount of transmitter in the 
extracellular space is determined by the equation 

dv.. 
'J= u i j  Si f ( x j )  - v i j a  
dt 

where a is a small constant. 

ART SEARCH HYPOTHESIS 
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6. The ART Search Hypothesis 1 specifies transmitter release rate. 

~ 
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ART SEARCH HYPOTHESIS 2: The nonspecific 
mismatchheset signal quickly removes transmitter vu from 
the extracellular space (Figure 7a). 

An elementary implementation of the mismatchheset signal 
in the ART Search Hypothesis 2 can be constructed by assigning a 
transient large value to the vij removal rate (Equation (2)) 
(Figure 7). This implementation is then analogous to the dynamic of 
neuromodulators. 

( a ) MISMATCH / RESET REMOVES 
EXTRACELLULAR TRANSMITTER 

f 
zii 4 I - si 

PRE INTRA POST 

v \  
( b ) EXTRACELLULAR TRANSMITTER 

dv.. [ REMOVAL ] ,i [ RELEASE __ 'I = - Vii RATE + U. RATE ] 
dt 

MI s MATC H 

= NEUROMODULATORS 

7. The ART Search Hypothesis 2 specifies rate of extracellular 
transmitter removal following a mismatch/ reset signal. 

ART SEARCH HYPOTHESIS 3: Offset of an input leads to 
a nonspecific signal that restores intracellular transmitter ~j 

up to its maximal level zij. 

The ART Search Hypothesis 3 allows the system to restore 
itself to its original, resting stated upon offset of the input 
(Figure 8). 
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8. The ART Search Hypothesis 3 specifies rates to effect system 
restoration upon offset of an input. 

ART Search Svstem Dvnamics 

Figure 9 summarizes system dynamics of this ART search 
model during a single input presentation. Initially the transmitted 

1 pattern S u j ,  as well as the postsynaptic activity Xj, are 
proportional to the linear filter's weighted signal pattern S-zj. The 
postsynaptic activity pattern is then contrast-enhanced, due to the 
internal competitive dynamics of the target field FL. The ART 

Hypothesis 1 implies that release of extracellular transmitter 
tly amplified in proportion to the level of postsynaptic 

activity. A subsequent mismatchheset signal selectively removes 
transmitter from those pathways that caused the error. Following the 
reset wave, the new signal S-uj is then no longer proportional to 
S.Zj but is, rather, biased against the prior category representation, 
due to removal of some of the available transmitter. A series of 

atchheset events may ensue, until an adequate match is found. 
Learning occurs on a time scale that is long relative to that of the 
search process. Finally, offset of the input restores the system to its 
unbiased state and, in particular, restores the level of internal 
transmitter uij to its target level zij. 

9. ART Search Hypotheses 1-3 imp1 
out search in an ART system. 
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