16

SUPERVISED LEARNING BY ADAPTIVE RESONANCE
NEURAL NETWORKS

Gail A. Carpentert, Stephen Grossbergt, Natalya Markuzon§,
John H. Reynoldsy, and David B. Rosen§

Center for Adaptive Systems and Umvmﬁmﬂmﬁ .om
Cognitive and Neural Systems, Boston University,
111 Cummington Street, Boston, Massachusetts 02215 USA

1. Introduction

ARTMAP is a class of neural network mHoESSE.mm that wm&ﬁ%
incremental supervised learning of recognition categories mbm. multidi-
mensional maps in response 0 input vectors presented in E@%@QHM?
der. The firsst ARTMAP system (Carpenter, ﬂHOmm.vam, mbmw Reynolds,
1991) was used to classify binary vectors. .H,Ew.maaam describes a Bmw.m
general ARTMAP system that learns to classify analog as eozwwm i-
nary vectors (Carpenter, Grossberg, ZHM.EENoP wo%boﬁmu and .Pmem.mum.
1992). This generalization is accomplished by HoEmmoEm ﬂwymwengw
modules (Carpenter and Grossberg, 1987) of the binary 0
system with Fuzzy ART modules AOmﬁwmﬂmﬁ. Grossberg, and OmMH.r
1991). Where ART 1 dynamics are ammondwm in .gan of set-theore Mo
operations, Fuzzy ART dynamics are described in terms of @NN% mww m
theoretic operations (Zadeh, 1965). Hence the new mwmﬁ.ﬁb is calle
Fuzzy ARTMAP. Also introduced is an ARTMAP voting strategy.
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This voting strategy is based on the observation that ARTMAP fast
learning typically leads to different adaptive weights and recognition
categories for different orderings of a given training set, even when
overall predictive accuracy of all simulations is similar. The different
category structures cause the set of test set items where errors occur
to vary from one simulation to the next. The voting strategy uses
an ARTMAP system that is trained several times on input sets with
different orderings. The final prediction for a given test set item is
the one made by the largest number of simulations. Since the set of
items making erroneous predictions varies from one simulation to the
next, voting cancels many of the errors. Further, the voting strategy
-can be used to assign probability estimates to competing predictions
given small, noisy, or incomplete training sets.

Simulations illustrate Fuzzy ARTMAP performance as compared
to benchmark back propagation and genetic algorithm systems. In all
cases, Fuzzy ARTMAP simulations lead to favorable levels of learned
predictive accuracy, speed, and code compression in both on-line and
off-line settings. Two simulations are described below. Fuzzy ART-
MAP is also easy to use. It has a small number of parameters, requires
no problem-specific system crafting or choice of initial weight values,
and does not get trapped-in local minima.

Each ARTMAP system includes a pair of Adaptive Resonance
Theory modules (ART, and ART};) that create stable recognition cat-
egories in response to arbitrary sequences of input patterns (Figure
1). During supervised learning, the ART, module receives a stream
{a(P)} of input patterns and ART, receives a stream {b(?)} of input pat-
terns, where b(P) is the correct prediction given a(P). These modules
are linked by an associative learning network and an internal controller
that ensures autonomous system operation in real time. The controller
is designed to create the minimal number of ART, recognition cate-
gories, or “hidden units,” needed to meet accuracy criteria. It does
this by realizing a Minimax Learning Rule that enables an ARTMAP
system to learn quickly, efficiently, and accurately as it conjointly min-
imizes predictive error and mazimizes predictive generalization. This
scheme automatically links predictive success to category size on a
trial-by-trial basis using only local operations. It works by increasing
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set theory can be incorporated naturally into ART systems. For ex-
ample, the intersection (n) operator that describes ART 1 dynamics
is replaced by the AND operator (A) of fuzzy set theory (Zadeh, 1965)
in the choice, search, and learning laws of ART 1 (Figure 2). Es-
pecially noteworthy is the close relationship between the computation
that defines fuzzy subsethood (Kosko, 1986) and the computation that
defines category choice in ART 1. Replacing operation n by operation
A leads to a more powerful version of ART 1. Whereas ART 1 can
learn stable categories only in response to binary input vectors, Fuzzy
ART can learn stable categories in response to either analog or binary
input vectors. Moreover, Fuzzy ART reduces to ART 1 in response to
binary input vectors.

In Fuzzy ART, learning always converges because all adaptive
weights are monotone nonincreasing. Without additional processing,
this useful stability property could lead to the unattractive property
of category proliferation as too many adaptive weights converge to
zero. A preprocessing step, called complement coding, uses on-cell
and off-cell responses to prevent category proliferation. Complement
coding normalizes input vectors while preserving the amplitudes of
individual feature activations. Without complement coding, an ART
category memory encodes the degree to which critical features are
consistently present in the training exemplars of that category. With
complement coding, both the degree of absence and the degree of pres-
ence of features are represented by the category weight vector. The
corresponding computations employ fuzzy OR (v, maximum) opera-
tors, as well as fuzzy AND (A, minimum) operators.

2. Simulation: Circle-in-the-Square

The circle-in-the square problem requires a system to identify
~ which points of a square lie inside and which lie outside a circle whose
area equals half that of the square. This task was specified as a bench-
mark problem for system performance evaluation in the DARPA Arti-
ficial Neural Network Technology (ANNT) Program (Wilensky, 1990).
Wilensky examined the performance of 2-n-1 back propagation sys-
tems on this problem. He studied systems where the number (n) of
hidden units ranged from 5 to 100, and the corresponding number.of
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weights ranged from 21 to 401. Training sets ranged in size from 150
to 14,000. To avoid over-fitting, tfaining was stopped when accuracy
on the training set reached 90%. This criterion level was reached most
quickly (5,000 epochs) in systems with 20 to 40 hidden units. In this
condition, approximately 90% of test set points, as well as training set
points, were correctly classified.

Fuzzy ARTMAP performance on this task in 1 training epoch is
illustrated in Figures 3 and 4. As training set size increased from 100
exemplars (Figure 3(a)) to 100,000 exemplars (Figure 3(d)) the rate
of correct test set predictions increased from 88.6% to 98.0% while
the number of ART, category nodes increased from 12 to 121. Each
category node j required four learned weights w$ in ART, plus one
map field weight w; to record whether category j predicts that a point
lies inside or outside the circle. Thps, for example, 1-epoch training
on 100 exemplars used 60 weights to achieve 88.6% test set accuracy.
The map can be made arbitrarily accurate provided the number of
ART, nodes is allowed to increase as needed.

Figure 3 shows how a test set error rate is reduced from 11.4%
to 2.0% as training set size increases from 100 to 100,000 in 1-epoch
simulations. Test set error rate can be further reduced if exemplars are
presented for as many epochs as necessary to reach 100% accuracy on
the training set. The ARTMAP voting strategy provides a third way
to eliminate test set errors. Recall that the voting strategy assumes
a fixed set of training exemplars. Before each individual simulation
the input ordering is randomly assembled. After each simulation the
prediction of each test set item is recorded. Voting selects the outcome
predicted by the largest number of individual simulations. In case of a
tie, one outcome is selected at random. The number of votes cast for a
given outcome provides a measure of predictive confidence at each test
set point. Given a limited training set, voting across a few simulations
can improve predictive accuracy by a factor that is comparable to the
improvement that could be attained by an order of magnitude more
training set inputs, as shown in the following example.

A fixed set of 1,000 randomly chosen exemplars was presented to
a Fuzzy ARTMAP system on five independent 1-epoch circle-in-the-
square simulations. After each simulation, inside/outside predictions
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‘igure 1. Fuzzy ARTMAP architecture. The ART, complement coding prepro-
:essor transforms the M,-vector a into the 2M,-vector A = (a,a®) at the ART,
ield F§¢. A is the input vector to the ART, field F?. Similarly, the input to F? is
he 2Mj-vector (b, b¢). When a prediction by ART, is disconfirmed at ART}, inhi-
»ition of map field activation induces the match tracking process. Match tracking
-aises the ART, vigilance (p,) to just above the F? to F¢ match ratio [x°|/|A].
This triggers an ART, search which leads to activation of either an ART, category
;hat correctly predicts b or to a previously uncommitted ART, category node.

the vigilance parameter p, of ART, by the minimal amount needed
to correct a predictive error at ART,.

Parameter p, calibrates the minimum confidence that ART, must
have in a recognition category, or hypothesis, activated by an input
a(?) in order for ART, to accept that category, rather than search for
a better one through an automatically controlled process of hypothesis
testing. Lower values of p, enable larger categories to form. These
lower p, values lead to broader generalization and higher code com-
pression. A predictive failure at ART, increases p, by the minimum
amount needed to trigger hypothesis testing at ART,, using a mech-
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Figure 2. Comparison of ART 1 and Fuzzy ART.

anism called match tracking (Carpenter, Grossberg, and Reynolds,
1991). Match tracking sacrifices the minimum amount of generaliza-
tion necessary to correct a predictive error. Hypothesis testing leads
to the selection of a new ART, category, which focuses attention on
a new cluster of a(?) input features that is better able to predict b(®).
Due to the combination of match tracking and fast learning, a single
ARTMAP system can learn a different prediction for a rare event than
for a cloud of similar frequent events in which it is embedded.

Whereas binary ARTMAP employs ART 1 systems for the ART,
and ART; modules, Fuzzy ARTMAP substitutes Fuzzy ART systems
for these modules. Fuzzy ART shows how computations from fuzzy
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TABLE 1
% Correct Test No. ART, No. Epochs
Set Predictions Categories
a
) Average 91.8% 786 1
Range 91.2%-92.6%  763-805 1
Voting 95.3% :
b
®) Average 93.9% 1,021 5
Range 93.4%-94.6% 990-1,070 5

Voting 96.0%

Table 1. Voting strategy applied to sets of & m,_.E.Nw ARTMAP simulations of MW@
Frey-Slate character recognition task, with training on 1 epoch (a) or § mMo.Nﬁm
(b). (a) Voting eliminated 43% of the errors, which dropped ﬁaoB 8.2% % 7%.
(b) Voting eliminated 34% of the errors, which dropped from 6.1% to 4.0%.

were recorded on a 1,000-item test set. Accuracy on individual simu-
lations ranged from 85.9% to 92.4%, averaging 90.5%; mbm ﬁzu m%md.aB
used from 15 to 23 ART, nodes. Voting by the five simulations im-
proved test set accuracy to 93.9% (Figure 4(c)). In othér words, test
set errors were reduced from an average individual rate of 9.5% to a
voting rate of 6.1%. Figure 4(d) indicates the HEB.,US of .<o.mmm cast
for each test set point, and hence reflects variations in predictive con-
fidence across different regions. Voting by more than five simulations
maintained an error rate between 5.8% and 6.1%. This limit on fur-
ther improvement by voting appears t0 be due to random m%m in a.pm
fixed 1,000-item training set. By comparison, a ten-fold Eﬁ.um.mmm in
the size of the training set reduced the error by an amount similar to
that achieved by five-simulation voting. For example, in Figure 3(b),
1-epoch training on 1,000 items yielded a test set error rate of 7.5%;
while increasing the size of the training set to 10,000 reduced the test
set error rate to 3.3% (Figure 3(c)).

3. Simulation: Letter Image Recognition
Frey and Slate (1991) recently developed a benchmark machine
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learning task that they describe as a “difficult categorization problem”
(p. 161). The task requires a system to identify an input exemplar as
one of 26 capital letters A-Z. The database was derived from 20,000
unique black-and-white pixel images. The difficulty of the task is due
to the wide variety of letter types represented: the twenty “fonts repre-
sent five different stroke styles (simplex, duplex, complex, and Gothic)
and six different letter styles (block, script, italic, English, Italian, and
German)” (p. 162). In addition each image was randomly distorted,
leaving many of the characters misshapen. Sixteen numerical feature
attributes were then obtained from each character image, and each
attribute value was scaled to a range of 0 to 15. The resulting Letter
Image Recognition file is archived in the UCI Repository of Machine
Learning Databases and Domain Theories, maintained by David Aha
and Patrick Murphy (ml_repository@ics.uci.edu).

Frey and Slate used this database to test performance of a family of
classifiers based on Holland’s genetic algorithms (Holland, 1980). The
training set consisted of 16,000 exemplars, with the remaining 4,000
exemplars used for testing. Genetic algorithm classifiers having differ-
ent input representations, weight update and rule creation schemes,
and system parameters were systematically compared. Training was
carried out for 5 epochs, plus a sixth “verification” pass during which
no new rules were created but a large number of unsatisfactory rules
were discarded. In Frey and Slate’s comparative study, these systems
had correct prediction rates that ranged from 24.5% to 80.8% on the
4,000-item test set. The best performance (80.8%) was obtained us-‘
ing an integer input representation, a reward sharing weight update,
an exemplar method of rule creation, and a parameter setting that
allowed an unused or erroneous rule to stay in the system for a long
time before being discarded. After training, the optimal case, that
had 80.8% performance rate, ended with 1,302 rules and 8 attributes
per rule, plus over 35,000 more rules that were discarded during verifi-
cation. (For purposes of\comparison, a rule is somewhat analogous to
an ART, category in ARTMAP, and the number of attributes per rule
is analogous to the size of ART, category weight vectors.) Building
on the results of their comparative study, Frey and Slate investigated
two types of alternative algorithms, namely an accuracy-utility bid-
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ding system, that had slightly improved performance (81.6%) in the
best case; and an exemplar/hybrid rule creation scheme that further
improved performance, to a maximum of 82.7%, but that required the
creation of over 100,000 rules prior to the verification step.

Fuzzy ARTMAP had an error rate on the letter recognition task
that was consistently less than one third that of the three best Frey-
Slate genetic algorithm classifiers described above. Moreover Fuzzy
ARTMAP simulations each created fewer than 1,070 ART, categories,
compared to the 1,040-1,302 final rules of the three genetic classifiers
with the best performance rates. With voting, Fuzzy ARTMAP re-
duced the error rate to 4.0% (Table 1). Most Fuzzy ARTMAP learn-
ing occurred on the first epoch, with test set performance on systems
trained for one epoch typically over 97% that of systems exposed to
inputs for the five epochs.

Table 1 shows how voting consistently improves performance. With
1 or 5 training epochs, Fuzzy ARTMAP was run for 5 independent
simulations, each with a different input order. In all these, and in all
other cases tested, voting performance was significantly better than
performance of any of the individual simulations in a given group. In
Table 1(a), for example, voting caused the error rate to drop to 4.7%,
from a 5-simulation average of 8.2%. Hence with 1 training epoch,
5-simulation voting eliminated about 43% of the test set errors. In
the 5-epoch simulations, where individual training set performance
was close to 100%, 5-simulation voting still reduced the error rate by
about 34% (Table 1(b)), where voting reduced the average error rate
of 6.1% to a voting error rate of 4.0%.
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