ABSOLUTELY STABLE LEARNING OF RECOGNITION CODES BY A SELF-ORGANIZING NEURAL NETWORK Gail A. Carpenter† Department of Mathematics, Northeastern University, Boston, MA 02115, and Center for Adaptive Systems, Boston University, Boston, MA 02215 Stephen Grossberg‡ Center for Adaptive Systems, Boston University, Boston, MA 02215 ### ABSTRACT A neural network which self-organizes and self-stabilizes its recognition codes in response to arbitrary orderings of arbitrarily many and arbitrarily complex binary input patterns is here outlined. Top-down attentional and matching mechanisms are critical in self-stabilizing the code learning process. The architecture embodies a parallel search scheme which updates itself adaptively as the learning process unfolds. After learning self-stabilizes, the search process is automatically disengaged. Thereafter input patterns directly access their recognition codes, or categories, without any search. Thus recognition time does not grow as a function of code complexity. A novel input pattern can directly access a category if it shares invariant properties with the set of familiar exemplars of that category. These invariant properties emerge in the form of learned critical feature patterns, or prototypes. The architecture possesses a context-sensitive self-scaling property which enables its emergent critical feature patterns to form. detect and remember statistically predictive configurations of featural elements which are derived from the set of all input patterns that are ever experienced. Four types of attentional process-priming, gain control, vigilance, and intermodal competition—are mechanistically characterized. Top-down priming and gain control are needed for code matching and self-stabilization. Attentional vigilance determines how fine the learned categories will be. If vigilance increases due to an environmental disconfirmation, then the system automatically searches for and learns finer recognition categories. A new nonlinear matching law (the 2/3 Rule) and new nonlinear associative laws (the Weber Law Rule, the Associative Decay Rule, and the Template Learning Rule) are needed to achieve these properties. All the rules describe emergent properties of parallel network interactions. The architecture circumvents the saturation, capacity, orthogonality, and linear predictability constraints that limit the codes which can be stably learned by alternative recognition models. [†] Supported in part by the Air Force Office of Scientific Research (AFOSR 85-0149 and AFOSR F49620-86-C-0037) and the National Science Foundation (NSF DMS-84-13119). [‡] Supported in part by the Air Force Office of Scientific Research (AFOSR 85-0149 and AFOSR F49620-86-C-0037), the Army Research Office (ARO DAAG-29-85-K0095), and the National Science Foundation (NSF IST-84-17756). Acknowledgement: We wish to thank Carol Yanakakis for her valuable assistance in the preparation of the manuscript. # SEARCH CYCLE: INTERACTIONS BETWEEN ATTENTIONAL AND ORIENTING SUBSYSTEMS The neural network outlined herein is called an ART system, after the adaptive resonance theory introduced by Grossberg¹. More recently, ART networks have been further characterized, and their dynamic properties have been derived in a series of theorems²⁻⁴. A single cycle of the search process carried out by this ART network is depicted in Figure 1. In Figure 1a, an input pattern I generates a short term memory (STM) activity pattern X across a field of feature detectors F_1 . The input I also excites an orienting subsystem A, but pattern X at F_1 inhibits A before it can generate an output signal. Activity pattern X also elicits an output pattern S which, via the bottom-up adaptive filter, instates an STM activity pattern Y across a category representation field, F_2 . In Figure 1b, pattern Y reads a top-down template pattern V into F_1 . Template V mismatches input I, thereby significantly inhibiting STM activity across F_1 . The amount by which activity in X is attenuated to generate X* depends upon how much of the input pattern I is encoded within the template pattern V. When a mismatch attenuates STM activity across F_1 , the total size of the inhibitory signal from F_1 to A is also attenuated. If the attenuation is sufficiently great, inhibition from F_1 to A can no longer prevent the arousal source A from firing. Figure 1c depicts how disinhibition of A releases an arousal burst to F_2 which equally, or nonspecifically, excites all the F_2 cells. The cell populations of F_2 react to such an arousal signal in a state-dependent fashion. In the special case that F_2 chooses a single population for STM storage, the arousal burst selectively inhibits, or resets, the active population in F_2 . This inhibition is long-lasting. One physiological design for F_2 processing which has these properties is a gated dipole field^{5,6}. A gated dipole field consists of opponent processing channels which are gated, or multiplied, by habituating chemical transmitters. A nonspecific arousal burst induces selective and enduring inhibition of active populations within a gated dipole field. In Figure 1c, inhibition of Y leads to removal of the top-down template V, and thereby terminates the mismatch between I and V. Input pattern I can thus reinstate the original activity pattern X across F_1 , which again generates the output pattern S from F_1 and the input pattern T to F_2 . Due to the enduring inhibition at F_2 , the input pattern T can no longer activate the original pattern Y at F_2 . A new pattern Y* is thus generated at F_2 by I (Figure 1d). The new activity pattern Y^* reads-out a new top-down template pattern V^* . If a mismatch again occurs at F_1 , the orienting subsystem is again engaged, thereby leading to another arousal-mediated reset of STM at F_2 . In this way, a rapid series of STM matching and reset events may occur. Such an STM matching and reset series controls the system's search of long term memory (LTM) by sequentially engaging the novelty-sensitive orienting subsystem. Although STM is reset sequentially in time via this mismatch-mediated, self-terminating LTM search process, the mechanisms which control the LTM search are all parallel network interactions, rather than serial algorithms. Such a parallel search scheme continuously adjusts itself to the system's evolving LTM codes. In general, the spatial configuration of LTM codes depends upon both the system's initial configuration and its unique learning history, and hence cannot be predicted a priori by a pre-wired search algorithm. Instead, the mismatch-mediated engagement of the orienting subsystem realizes a self-adjusting search. The mismatch-mediated search of LTM ends when an STM pattern across F₂ reads-out a top-down template which matches I, to the degree of accuracy required by the level of attentional vigilance (equation (23)), or which has not yet undergone any prior learning. In the latter case, a new recognition category is then established as a bottom-up code and top-down template are learned. # ATTENTIONAL GAIN CONTROL AND PATTERN MATCHING: THE 2/3 RULE The STM reset and search process described above makes a paradoxical demand upon the processing dynamics of F₁: the addition of new excitatory top-down signals in the pattern V to the bottom-up signals in the pattern I causes a decrease in overall F₁ activity (Figures 1a and 1b). This property is due to the attentional gain control mechanism, which is distinct from attentional priming by the top-down template V. While F_2 is active, the attentional priming mechanism delivers excitatory specific learned template patterns to F₁. Top-down attentional gain control has an inhibitory nonspecific unlearned effect on the sensitivity with which F_1 responds to the template pattern, as well as to other patterns received by F₁. The attentional gain control process enables F₁ to tell the difference between bottom-up and top-down signals. In Figure 1a, during bottom-up processing, a suprathreshold node in F_1 is one which receives both a specific input from the input pattern I and a nonspecific attentional gain control input. In Figure 1b, during the matching of simultaneous bottom-up and top-down patterns, attentional gain control signals to F_1 are inhibited by the top-down channel. Nodes of F₁ must then receive sufficiently large inputs from both the bottom-up and the top-down signal patterns to generate suprathreshold activities. Nodes which receive a bottom-up input or a top-down input, but not both, cannot become suprathreshold: mismatched inputs cannot generate suprathreshold activities. Attentional gain control thus leads to a matching process whereby the addition of top-down excitatory inputs to F₁ can lead to an overall decrease in F₁'s STM activity. Since, in each case, an F₁ node becomes active only if it receives large signals from two of the three input sources, this matching process is called the 2/3 Rule. Simple input environments exist in which code learning is unstable if the 2/3 Rule is violated3,4. Below are summarized the equations for the simplest ART network, which is called ART 1. Mathematical properties of ART 1 are also summarized. ## NETWORK EQUATIONS: INTERACTIONS BETWEEN SHORT TERM MEMORY AND LONG TERM MEMORY PATTERNS The STM equations for F_1 and F_2 and LTM equations for the bottom-up and top-down adaptive filters will now be described in dimensionless form, where the number of parameters is reduced to a minimum. # A. STM Equations The STM activity x_k of any node v_k in F_1 or F_2 obeys a membrane equation of the form $$\epsilon \frac{d}{dt} x_k = -x_k + (1 - Ax_k) J_k^+ - (B + Cx_k) J_k^-,$$ (1) where J_k^+ is the total excitatory input to v_k , J_k^- is the total inhibitory input to v_k , and all the parameters are nonnegative. Nodes in F_1 are denoted by v_i , where i = 1, 2, ..., M. Nodes in F_2 are denoted by v_j , where $j=M+1,M+2,\ldots,N$. Thus by (1), $$\epsilon \frac{d}{dt} x_i = -x_i + (1 - A_1 x_i) J_i^+ - (B_1 + C_1 x_i) J_i^-$$ (2) and $$\epsilon \frac{d}{dt}x_{j} = -x_{j} + (1 - A_{2}x_{j})J_{j}^{+} - (B_{2} + C_{2}x_{j})J_{j}^{-}. \tag{3}$$ The excitatory input J_i^+ to the *i*th node v_i of \mathbb{F}_1 in equation (2) is a sum of the bottom-up input I_i , the top-down template input V_i , and the nonspecific gain control input G. The top-down template input is the sum of all signals from \mathbb{F}_2 nodes, via the adaptive filter: $$V_i = D_1 \sum_{i} f(x_i) z_{ji}, \qquad (4)$$ where $f(x_j)$ is the signal generated by activity x_j of node v_j and z_{ji} is the LTM trace in the top-down pathway from v_j to v_i . Each gain control input is given by: $$G = \left\{ egin{array}{ll} G_1 & ext{if I is active and F_2 is inactive} \ & ext{otherwise.} \end{array} ight.$$ Setting $$J_{i}^{-}=1,$$ embodies the assumption that when no inputs are being processed $(\mathbf{J}_i^+=0)$, \mathbf{F}_1 nodes are maintained at a tonic subthreshold level; that is, $x_i < 0$. When I becomes active while \mathbf{F}_2 is inactive, $$\chi \frac{dx_i}{dt} = -x_i + (1 - A_1 x_i)(I_i + G_1) - (B_1 + G_1 x_i)$$ (7) $$= (I_i + G_1 - B_1) - x_i(1 + A_1(I_i + G_1) + G_1).$$ In the dimensionless equations, $0 \le I_i \le 1$. The 2/3 Rule requires that v_i become active when $I_i = 1$ but remain inactive when $I_i = 0$. The output threshold of each F_1 node v_i equals 0. Thus by (7), v_i becomes active iff $I_i + G_1 > B_1$. Therefore implementation of the 2/3 Rule when F_2 is inactive places constraints (8) on the strength of the gain control signal: $$G_1 < B_1 < 1 + G_1. \tag{8}$$ At \mathbb{F}_{2} , the excitatory input J_{j}^{+} in equation (3) is the sum of a positive fleedback signal $g(x_{j})$ from v_{j} to itself and the bottom-up adaptive filter input \mathbb{T}_{j} . The bottom-up input is the sum: $$(6) \sum_{i} p(x_i) z_{i,j},$$ where $h(x_i)$ is the signal emitted by the F_1 node v_i and z_{ij} is the LTM trace in the pathway from v_i to v_j . Thus $$J_j^+ = g(x_j) + T_j. (10)$$ Input J_j^- adds up negative feedback signals $g(x_k)$ from all the other nodes in F_2 : $$J_j^- = \sum_{k \neq j} g(x_k). \tag{11}$$ Taken together, the positive feedback signal $g(x_j)$ in (10) and the negative feedback signal J_j^- in (11) define an on-center off-surround feedback interaction which contrast-enhances the STM activity pattern Y of F_2 in response to the input pattern T. The parameters of F_2 can be chosen so that this contrast-enhancement process enables F_2 to choose for STM activation only the node v_j which receives the largest input T_j^7 . Then when parameter ϵ is small, F_2 behaves approximately like a binary switching, or choice, circuit: $$f(x_j) = \begin{cases} 1 & \text{if } T_j = \max\{T_k\} \\ 0 & \text{otherwise.} \end{cases}$$ (12) In the choice case, the top-down template in (4) obeys $$V_i = \begin{cases} D_1 z_{ji} & \text{if the } F_2 \text{ node } v_j \text{ is active} \\ 0 & \text{if } F_2 \text{ is inactive.} \end{cases}$$ (13) In the choice case, then, when I is active and the F_2 node v_j is active, $$\epsilon \frac{dx_i}{dt} = -x_i + (1 - A_1 x_i)(I_i + D_1 z_{ji}) - (B_1 + C_1 x_i) = (I_i + D_1 z_{ji} - B_1) - x_i(1 + A_1(I_i + D_1 z_{ji}) + C_1).$$ (14) In the dimensionless equations, $0 \le z_{ij} \le 1$. The 2/3 Rule requires that v_i remain active when $I_i = 1$ and $z_{ji} = 1$, but become inactive when either $I_i = 0$ or $z_{ji} = 0$. By (14), x_i remains positive iff $I_i + D_1 z_{ji} > B_1$. Thus implementation of the 2/3 Rule when F_2 is active places constraint (15) on the strength of the patterned input signals: $$\max\{1, D_1\} < B_1 < 1 + D_1. \tag{15}$$ The 2/3 Rule implies that if the top-down LTM trace z_{ji} becomes smaller than some critical valve \overline{z} , then when v_j is active, v_i will be inactive even if $I_i = 1$. That is, the feature represented by the F_1 node v_i will drop out of the critical feature pattern coded by v_j . By (14) and (15), $$\overline{z} = \frac{B_1 - 1}{D_1}. (16)$$ ## **B. LTM Equations** The LTM trace of the bottom-up pathway from v_i to v_j obeys a learning equation of the form $$\frac{d}{dt}z_{ij} = K_1 f(x_j) [-E_{ij}z_{ij} + h(x_i)], \qquad (17)$$ where $$h(x_i) = \begin{cases} 1 & \text{if } x_i > 0 \\ 0 & \text{if } x_i \le 0. \end{cases}$$ (18) In (17), term $f(x_j)$ is a postsynaptic sampling, or learning, signal because $f(x_j) = 0$ implies $\frac{d}{dt}z_{ij} = 0$. Term $f(x_j)$ is also the output signal of v_j to pathways from v_j to F_1 , as in (4). The LTM trace of the top-down pathway from v_j to v_i also obeys a learning equation of the form $$\frac{d}{dt}z_{ji} = K_2 f(x_j) [-E_{ji}z_{ji} + h(x_i)].$$ (19) In the present model, the simplest choice of K_2 and E_{ji} was made for the top-down LTM traces: $$K_2 = E_{ji} = 1. (20)$$ A more complex choice of E_{ij} was made for the bottom-up LTM traces in order to generate the Weber Law Rule, which is needed to achieve direct access to codes for arbitrary input environments after learning self-stabilizes. The Weber Law Rule requires that the positive bottom-up LTM traces learned during the encoding of an F_1 pattern X with a smaller number $\mid X \mid$ of active nodes be larger than the LTM traces learned during the encoding of an F_1 pattern with a larger number of active nodes, other things being equal. This inverse relationship between pattern complexity and bottom-up LTM trace strength can be realized by allowing the bottom-up LTM traces at each node v_j to compete among themselves for synaptic sites. The Weber Law Rule can also be generated by the STM dynamics of F_1 when competitive interactions are assumed to occur among the nodes of F_1 . Competition among the LTM traces which abut the node v_j is modelled by defining $$E_{ij} = h(x_i) + L^{-1} \sum_{k \neq i} h(x_k)$$ (21) and letting $K_1 = \text{constant}$. It is convenient to write K_1 in the form $K_1 = KL$. A physical interpretation of this choice can be seen by rewriting (17) in the form $$\frac{d}{dt}z_{ij} = Kf(x_j)[(1-z_{ij})Lh(x_i) - z_{ij}\sum_{k\neq i}h(x_k)].$$ (22) By (22), when a postsynaptic signal $f(x_j)$ is positive, a positive presynaptic signal from the F_1 node v_i can commit receptor sites to the LTM process z_{ij} at a rate $(1-z_{ij})Lh(x_i)Kf(x_j)$. In other words, uncommitted sites—which number $(1-z_{ij})$ out of the total population size 1—are committed by the joint action of signals $Lh(x_i)$ and $Kf(x_j)$. Simultaneously signals $h(x_k)$, $k \neq i$, which reach v_j at different patches of the v_j membrane, compete for the sites which are already committed to z_{ij} via the mass action competitive terms $-z_{ij}h(x_k)Kf(x_j)$. In other words, sites which are committed to z_{ij} lose their commitment at a rate $-z_{ij}\sum_{k\neq i}h(x_k)Kf(x_j)$ which is proportional to the number of committed sites z_{ij} , the total competitive input $-\sum_{k\neq i}h(x_k)$, and the postsynaptic gating signal $Kf(x_i)$. ### C. STM Reset System A simple type of mismatch-mediated activation of A and STM reset of F_2 by A were implemented for binary inputs. Each active input pathway sends an excitatory signal of size P to the orienting subsystem A. Potentials x_i of F_1 which exceed zero generate an inhibitory signal of size Q to A. These constraints lead to the following Reset Rule. Population A generates a nonspecific reset wave to F_2 whenever $$\frac{\mid X\mid}{\mid I\mid} < \rho = \frac{P}{Q} \tag{23}$$ where I is the current input pattern, |X| is the number of nodes across F_1 such that $x_i > 0$, and ρ is called the *vigilance parameter*. The nonspecific reset wave successively shuts off active F_2 nodes until the search ends or the input pattern I shuts off. Thus (12) must be modified as follows to maintain inhibition of all F_2 nodes which have been reset by A during the presentation of I: $$f(x_j) = \begin{cases} 1 & \text{if } T_j = \max\{T_k : k \in \mathbf{J}\}\\ 0 & \text{otherwise} \end{cases}$$ (24) where **J** is the set of indices of F_2 nodes which have not yet been reset on the present learning trial. At the beginning of each new learning trial, **J** is reset at $\{M+1...N\}$. As a learning trial proceeds, **J** loses one index at a time until the mismatch-mediated search for F_2 nodes terminates. # THEOREMS WHICH CHARACTERIZE THE GLOBAL DYNAMICS OF THE ART 1 SYSTEM A series of theorems⁴ analyze the global dynamics of the ART system. The theorems are proved for the case that the input patterns are binary and that "fast learning" occurs, i.e., that the LTM traces approach their equilibrium values on each trial. With these hypotheses, the learning process is shown to self-stabilize. That is, after a finite number of trials, the learned critical feature pattern associated with each F_2 node remains constant. Thereafter, each input directly accesses that category whose critical feature pattern matches it best. This self-stabilization property does *not* require the assumption that plasticity is turned off, i.e., that K_1 in (17) and K_2 in (19) approach 0 after some finite interval. The length of time needed for the code to self-stabilize depends only upon the complexity of the set of input patterns, and is not set externally or a priori. The theorems further specify details of system dynamics. For example, each LTM strength $z_{ij}(t)$ and $z_{ji}(t)$ is shown to oscillate at most once as learning proceeds. This occurs despite the fact that, in a complex input environment, many searches and category recodings may occur before the system self-stabilizes. Thus the learning process is remarkably stable. Also, given an arbitrary learning history, the order of search elicited by any input is characterized. The order of search is determined by bottom-up F_2 inputs T_i . Note, however, that the sum T_i depends upon both the pattern of STM activity across F_1 and the strengths of all the bottom-up LTM traces z_{ij} . Fluctuations which occur in these STM and LTM values could, in principle, destabilize the system as follows. First, the initial choice of an F_2 node depends only upon the F_1 (STM) activity pattern generated by I and the system's prior learning (LTM) history (Figure 1a). However, once F₂ becomes active, read-out of its template alters F₁ activity (Figure 1b). This read-out can dramatically alter the distribution of T_i values. However, the theorems guarantee that the original F₂ choice is confirmed by template read-out, so search proceeds as in Figure 1. Once search ends, however, learning alters both the pattern of F₁ STM activity, via changes in the top-down LTM traces, and the F_2 input function T_i , via the bottom-up LTM traces. The theorems also guarantee that the F₂ choice is confirmed by learning. In sum, F₂ reset can occur only via the orienting subsystem, which is activated by a mismatch between the input pattern and the critical feature pattern of an active F₂ node. While the order of search depends upon the entire coding history of the network, the decision to end the search depends upon the matching criterion as determined by the vigilance parameter ρ . The size of ρ determines how coarse the learned recognition code will be. A small value of ρ leads to coarse recognition categories, whereas a large value of ρ leads to fine recognition categories. Environmental disconfirmation can increase ρ , thereby enabling the network to learn finer distinctions than it previously could. Using such a scheme, an alphabet of 26 letters can be classified in no more than 3 learning trials, at any level of vigilance. #### REFERENCES 1. S. Grossberg, Biol. Cyb. 23, 187-202 (1976). 2. G.A. Carpenter and S. Grossberg, Proc. of the Third Army Conf. on Ap- plied Math. and Comp., ARO Report 86-1, 37-56 (1985). 3. G.A. Carpenter S. Grossberg. In J. Davis, R. Newburgh, and E. Wegman (Eds.), Brain structure, learning, and memory. AAAS Symposium Series (1986). 4. G.A. Carpenter and S. Grossberg, Comp. Vis., Graphics, and Img. Proc. (1986). 5. S. Grossberg, Psych. Rev. 87, 1-51 (1980). 6. S. Grossberg. In R. Karrer, J. Cohen, and P. Tueting (Eds.), Brain and information: Event related potentials (New York Academy of Sciences, N.Y., 1984). 7. S. Grossberg, Stud. Appl. Math. 52, 217-257 (1973).