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ABSTRACT

A neural network which self-organizes and self-stabilizes its recognition codes
in response to arbltrary orderings of arbitrarily many and arbitrarily complex bi-
nary input patterns is here outlined. Top-down attentional and matching mech-

anisms are critical in self-stabilizing the code learning process. The architecture
embodies a parallel search scheme which updates itself adaptwely as the learning
process unfolds. After learning self-stabilizes, the search process is automatically
disengaged. Thereafter input patterns dlrectly access their recognition codes, or
categories, without any search. Thus recognition time does not grow as a func-
tion of code complexity. A novel input pattern can directly access a category if
it shares invariant properties with the set of familiar exemplars of that category.
These invariant properties emerge in the form of learned critical feature pat-
terns, or prototypes. The architecture possesses a context-sensitive self-scaling
property which enables its emergent critical feature patterns to form. They
detect and remember statistically predictive configurations of featural elements
which are derived from the set of all input patterns that are ever experienced.
Four types of attentional process—priming, gain control, vigilance, and inter-
modal competition—are mechanistically characterized. Top-down priming and
gain control are needed for code matching and self-stabilization. Attentional
vigilance determines how fine the learned categories will be. If vigilance in-
creases due to an environmental disconfirmation, then the system automatically
searches for and learns finer recognition categories. A new nonlinear matching
law (the 2/3 Rule) and new nonlinear associative laws (the Weber Law Rule,
the Associative Decay Rule, and the Template Learning Rule) are needed to
achieve these properties. All the rules describe emergent properties of parallel
network interactions. The architecture circumvents the saturation, capacity, or-
thogonality, and linear predictability constraints that limit the codes which can
be stably learned by alternative recognition models.
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SEARCH CYCLE:
INTERACTIONS BETWEEN ATTENTIONAL
AND ORIENTING SUBSYSTEMS

The neural network outlined herein is called an ART system, after the aaap—

tive resonance theory introduced by Grossberg!. More recently, ART networks
have been further characterized, and their dynamic properties have been derived

in a series of theorems?— 4. A 51ngle cycle of the search process carried out by
this ART network is depicted in Figure 1. In Figure 1a, an input pattern I gen-
erates a short termn memory (STM) activity pattern X across a field of feature
detectors F;. The input I also excites an orienting subsystem A, but pattern X
at F; inhibits A before it can generate an output signal. Activity pattern X also
€licits an output pattern S which, via:the bottom-up adaptive filter, instates an
STM activity pattern Y across a category representation field, F,. In Figure
1b, pattern Y reads a top-down template pattern V into F;. Template V mis-
matches input I, thereby s1gn1ﬁcant1y inhibiting STM activity across F;. The
amount by which activity in X is attenuated to generate X* depends upon how
much of the input pattern I is encoded within the template pattern V.

When a mismatch attenuates STM activity across F;, the total size of the
inhibitory signal from F; to A is also attenuated. If the attenuation is sufficiently
great, inhibition from F; to A can no longer prevent the arousal source A from
firing. Figure 1lc depicts how disinhibition of A releases an arousal burst to F,
which equally, or nonspecifically, excites all the Fy cells. The cell populations of
Fg9 react to such an arousal signal in a state-dependent fashion. In the special
case that F, chooses a single population for STM storage, the arousal burst
selectively inhibits, or resets, the active population in Fo. This inhibition is long-
lasting. Omne physiological design for F, processing which has these properties
is a gated dipole field>®. A gated dipole field consists of opponent processing
channels which are gated, or multiplied, by habituating chemical transmitters.
A nonspecific arousal burst induces selective and enduring 1nh1b1t10n of active
populations within a gated dipole field. ;

In Figure 1c, inhibition of Y leads to removal of the top-down template V,
and thereby terminates the mismatch between I and V. Input pattern I can thus\
reinstate the original activity pattern X across F;, which again generates the
output pattern S from F; and the input pattern T to Fy. Due to the enduring
inhibition at F,, the input pattern T can no longer activate the original pattern
Y at F;. A new pattern Y* is thus generated at Fy by I (Figure 1d). '

The new activity pattern Y* reads-out a new top-down template pattern
V*. If a mismatch again occurs at F;, the orienting subsystem is again engaged,
thereby leading to another arousal-mediated reset of STM at F,. In this way, a
rapid series of STM matching and reset events may occur. Such an STM match-
ing and reset series controls the system’s search of long term memory (LTM)
by sequentially engaging the novelty sensitive orienting subsystem. Although
STM is reset sequentially in time via this mismatch-mediated, self-terminating
LTM search process, the mechanisms which control the LTM search are all par-
allel network interactions, rather than serial algorithms. Such a parallel search
scheme continuously adjusts itself to the system’s evolving LTM codes. In gen-
eral, the spatial configuration of LTM codes depends upon both the system’s
initial configuration and its unique learning history, and hence cannot be pre-
dicted a priori by a pre-wired search algorithm. Instead, the mismatch-mediated
engagement of the orienting subsystem realizes a self-adjusting search.

The mismatch-mediated search of LTM ends when an STM pattern across
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F; reads-out a top-down template which matches I, to the degree of accuracy
required by the level of attentional vigilance (equatlon (23)), or which has not
yet undergone any prior learning. In the latter case, a new recognition category
is then established as a bottom-up code and top- down template are learned.

ATTENTIONAL GAIN CONTROL AND PATTERN
MATCHING: THE 2/3 RULE

The STM reset and search process described above makes a paradoxical
demand upon the processing dynamics of F;: the addition of new excitatory
top-down signals in the pattern V to the bottom-up signals in the pattern I
causes a decrease in overall F; activity (Figures la and 1b). This property is
due to the attentional gain control mechanism, which is distinct from. atten-
tional priming by the top-down template V. While F, is active, the attentional
priming mechanism delivers ezcitatory specific learned template patterns to F;.
Top-down attentional gain control has an inhibitory nonspecific unlearned effect
on the sensitivity with which F; responds to the template pattern, as well as to
other patterns received by F;. The attentional gain control process enables F,
to tell the difference between bottom-up and top-down signals. In Figure 1la,
during bottom-up processing, a suprathreshold node in F; is one which receives
both a specific input from the input pattern I and a nonspecific attentional gain
control input. In Figure 1b, during the matching of simultaneous bottom-up and
top-down patterns, attentional gain control signals to F; are inhibited by the
top-down channel. Nodes of F; must then receive sufficiently large inputs from
both the bottom-up and the top-down signal patterns to generate suprathresh-
old activities. Nodes which receive a bottom-up input or a top-down input, but
not both, cannot become suprathreshold mismatched inputs cannot generate
suprathreshold activities. Attentional gain control thus leads to a matching pro-
cess whereby the addition of top-down excitatory inputs to F; can lead to an
overall decrease in Fl s STM activity. Since, in each case, an F; node becomes
active only if it receives large signals from two of the three input sources, this
matching process is called the 2/3 Rule. Simple input env ronments exist in
which code learnlng is unstable if the 2/3 Rule is violated®*. Below are sum-
marized the equations for the simplest ART network, whlch is called ART 1.
Mathematical properties of ART 1 are also summarlzed

NETWORK EQUATIONS: INTERACTIONS BETWEEN
SHORT TERM MEMORY i
AND LONG TERM MEMORY PATTERNS

The STM equations for F; and F; and LTM equations for the bottom-up
and top-down adaptive filters will now be described in dimensionless form;where
the number of parameters is reduced to a minimum.

A. STM Equations

The STM activity z; of any node v in F; or Fj obeys a membrane equation
of the form

4

d

€Tk = —Tk + (1 — A:z:k)J,;F — (B + Cxy)d,, (1)

where J,j is the total excitatory input to bk, Jy is the total inhibitory input to
vk, and all the parameters are nonnegative.

Nodes in F; are denoted by v;, where ¢« = 1,2,..., M. Nodes in F; are
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where h(z;) is the signal emitted by the F; node v; and z;; is the LTM trace in
the pathway from v, to vJ Thus

I =g(z;) + T;. ﬁ (10)
Input J,; adds up negative feedback signals g(zy) from all the other nodes in

F2:'~ .
;=2 9(zx). (11)
k#3 _
Taken together, the positive feedback signal g(z;) in (10) and the negative feed-
back signal J; in (11) define an on-center off-surround feedback interaction

which contrast—enhances the STM activity pattern Y of F, in response to the

input pattern T. -
The parameters of Fy can be chosen so that this contrast-enhancement pro-

cess enables Fj to choose for STM activation only the node v; which receives the

largest input Tj 7. Then when parameter € is small, F, behaves approximately
like a blnary sw1tch1ng, or choice, circuit: g

flzg) = { 1 if Ty = max{Ty} (12)

otherwise.
In the choice case, the top-down template in (4) obeys

~_ | Dyz;; if the F3 node v; is active
Vi= {0 if F, is inactive. (13)

In the choice case, then, when I is active and the F; node v; is active,

dz; :
57;. =—z;+ (1 — Ayz;)(I; + Dyzj3) — (B1 + Cyxy)

= (I; + D125 — By) — zi(1 + Ay (I; + Dy 2z55) + Cy).

(14)

In the dimensionless equations 0 < z; < 1. The 2/3 Rule requires that v;
remain active when \I; = 1 and z;; = 1, but become inactive when either I; = 0
or z;; = 0. By (14), z; remains positive 1ffI +D;z; > B;. Thus implementation

of the 2/3 Rule when F, is active places constraint (15) on the strength of the
patterned input signals:

o

ma.x{l,Dl} <B;<1 + D,. (15)

The 2/3 Rule implies that if the top-down LTM trace z;;, becomes smaller than
some critical valve Z, then when v; is active, v; will be inactive even if I; = 1.
That is, the feature represented by the F; node v; will drop out of the critical
feature pattern coded by v;. By (14) and (15),

B; —1

D, ¢ (16)

z =



B. LTM Equations
- The LTM trace of the bottom-up pathway from v; to v; obeys a learning
equation of the form

N

d .
E Klf(:c])[ Ez]zzg + h(xz)] (17)
where L o
: _ 11 z; >
h{z:) = {0 if z; < O. (18)

In (17), term f(mj) is a postsynaptic sampling, or learning, signal because
f(z;) = O implies a?z,-j = 0. Term f(z,) is also the output signal of v; to
pathways from v; to F;, as in (4).

The LTM trace of the top-down pathway from v; to v; also obeys a learning
equation of the form

5

%Zji = KZf(zj)['—'Ej,'Zji -+ h(.’ti)]. (]_g)

In the present model, the simplest ¢hoice of K, and E;; was made for the top-

down LTM traces:
i | Ky = E;; = 1. (20)
A more complex choice of E;; was made for the bottom-up LTM traces in
order to generate the Weber Law Rule, which is needed to achieve direct access
to codes for arbitrary input environments after learning self-stabilizes. The
Weber Law Rule requires that the positive bottom-up LTM traces learned during
the encoding of an F; pattern X with a smaller number | X | of active nodes
be larger than the LTM traces learned during the encoding of an F; pattern
with a larger number of .active nodes, other things being equal. This inverse
relationship between pattern complexity and bottom-up LTM trace strength can
be realized by allowing the bottom-up LTM traces at each node v; to compete
among themselves for synaptic sites. The Weber Law Rule can also be generated
by the STM dynamics of F; when competitive interactions are assumed to occur
among the nodes of F;.
Competition among the LTM traces which abut the node v; is modelled by

defining
E;j = h(z;) + L' D h(zk) : (21)
k#i
and letting K; = constant. It is convenient to write K; in the form K; = KL. A
physical interpretation of this choice can be seen by rewriting (17) in the form

4 s = K 7(2)[(1 — 2) Lh(z:) — 2y > hal (22)

By (22), when a postsynaptic signal f(z;) is positive, a positive presynaptic
signal from the F; node v; can commit receptor sites to the LTM process z;; at a
rate (1 — z;;) Lh(z;) K f(z;). In other words, uncommitted sites—which number




(1 — z;;) out of the total population size 1-—are committed by the joint action of
signals Lh(z;) and K f(z;). Simultaneously signals h(zx), k£ # ¢, which reach v,
at different patches of the v; membrane, compete for the sites which are already
committed to z;; via the mass action competitive terms —z;;h(zx) K f(z;). In
other words, sites which are committed to z;; lose their commitment at a rate
—2ij Do kti h(:z:k)Kf(:c]) which is proportional to the number of committed sites
z;;, the total competitive input — >"x; h(zk), and the postsynaptic gating signal

K f(z;)-
C. STM Reset System

A simple type of mismatch-mediated activation of A and STM reset of Fy
by A were implemented for binary inputs. Each active input pathway sends
an excitatory signal of size P to the orienting subsystem A. Potentials z; of F;
which exceed zero generate an inhibitory signal of size @Q to A. These constraints
lead to the following Reset Rule. .

Population A generates a nonspecific reset wave to F, whenever

Il <p=% | (23)

where I is the current input pattern, | X | is the number of nodes across F; such
that z; > 0, and p is called the vigilance parameter. The nonspecific reset wave
successwely shuts off active F; nodes until the search ends or the input pattern
I shuts off. Thus (12) must be modified as follows to maintain inhibition of 'all
F; nodes which have been reset by A during the presentation of I:

flzy) = {(1) if T; = max{Ty : k € J} (24)

otherwise

where J is the set of indices of F3 nodes which have not yet been reset on the
present learning trial. At the beginning of each new learning trial, J is reset at
{M + 1...N}. As a learning trial proceeds, J loses one index at a time until
the mismatch-mediated search for F, nodes terminates.

THEOREMS WHICH CHARACTERIZE THE GLOBAL
DYNAMICS OF THE ART 1 SYSTEM

A series of theorems*? analyze the global dynamics of the ART system. The
theorems are proved for the case that the input patterns are binary and that
“fast learning” occurs, i.e., that the LTM traces approach their equilibrium
values on each trial. With these hypotheses, the learning process is shown to
self-stabilize. That is, after a finite number of trials, the learned critical feature
pattern associated w1th each F; node remains constant Thereafter, each input
directly accesses that category whose critica.l feature pattern ma.tches it best.
This self-stabilization property does not require the assumption that plasticity
is turned off, i.e., that K; in (17) and K, in (19) approach O after some finite
interval. The length of time needed for the code to self-stabilize depends only
upon the complexity of the set of input patterns, and is not set externally or a
priort.

The theorems further spec1fy details of system dynamics. For example, each
LTM strength 2,;(t) and z;;(¢) is shown to oscillate at most once as learning pro-

ceeds. This occurs despite the fact that, in a complex input environment, many




searches and category recodings may occur before the system self-stabilizes.
Thus the learning process is remarkably stable. Also, given an-arbitrary learn-
ing history, the order of search elicited by any input is characterized. The order
of search is determined by bottom-up F; inputs T;. Note, however, that the sum
< T; depends upon both the pattern of STM activity across F; and the strengths
“of all the bottom-up LTM traces 2;;. Fluctuations which occur in these STM
. and LTM values could, in principle, destabilize the system as follows. First,
“ the initial choice of an F; node depends only upon the F; (STM) activity pat-

"+ tern generated by I and the system’s prior learning (LTM) history (Figure 1a).

- However, once F3 becomes active, read-out of its template alters F; activity
o '(Figure 1b). This read-out can dramatically alter the distribution of T; values.
"~ However, the theorems guarantee that the original F, choice is confirmed by
.~ template read-out, so search proceeds as in Figure 1. Once search ends, how-
. ever, learning alters both the pattern of F; STM activity, via changes in the
- top-down LTM traces, and the Fj input function T}, via the bottom-up LTM
. traces. The theorems als6 guarantee that the F; choice is confirmed by learning.
In sum, Fg reset can occur only via the orienting subsystem, which is activated
" by.a mismatch between the input pattern and the critical feature pattern of an
active F5, node. While the order of search depends upon the entire coding his-
tory of the network, the decision to end the search depends upon the matching
criterion as determined by the vigilance parameter p.

The size of p determines how coarse the learned recognition code will be. A

.. small value of p leads to coarse recognition categories, whereas a large value of p

leads to fine recognition categories. Environmental disconfirmation can increase
p, thereby enabling the network to learn finer distinctions than it previously
could. Using such a scheme, an alphabet of 26 letters can be classified in no
more than 3 learning trials, at any level of vigilance.

REFERENCES

1. S. Grossberg, Biol. Cyb. 28, 187-202 (1976).

2. G.A. Carpenter and S. Grossberg, Proc. of the Third Army Conf. on Ap-
plied Math. and Comp., ARO Report 86-1, 37-56 (1985).

3. G.A. Carpenter S. Grossberg. In J. Davis, R. Newburgh, and E. Wegman

(Eds.), Brain structure, learning, and memory. AAAS Symposium
Series (1986). -

4. (G.A.)Carpeni;er and S. Grossberg, Comp. Vis., Graphics, and Img. Proc.
1986). - .,

5. S. Grossberg, Psych. Rev. 87, 1-51 (1980).

6. S. Grossberg. In R. Karrer, J. Cohen, and P. Tueting (Eds.), Brain and
information: Event related potentials (New York Academy of Scien-

| .. ces, N.Y., 1984). '

. 7. S. Grossberg, Stud. Appl. Math. 52, 217-257 (1973).



