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Abstract
A nonparametric probability estimation procedure using the fuzzy ARTMAP neural
network is here described. Because the procedure does not make a priori assump-
tions about underlying probability distributions, it yields accurate estimates on a
wide variety of prediction tasks. Fuzzy ARTMAP is used to perform probability
estimation in two different modes. In a ‘slow-learning’ mode, input-output associa-
tions change slowly, with the strength of each association computing a conditional
probability estimate. In ‘max-nodes’ mode, a fixed number of categories are coded
during an initial fast learning interval, and weights are then tuned by slow learn-
ing. Simulations illustrate system performance on tasks in which various numbers

of clusters in the set of input vectors mapped to a given class.

Fuzzy ARTMAP for Probability Estimation

Many pattern recognition applications require an estimate of the probability that
an input belongs to a given class. In a medical database, for example, a set of
diagnostic measurements are used to estimate the probability that a patient will
require a long stay in the hospital. Here, different combinations of variables may
be associated with a single output so no single group of variables is predictive.
Fuzzy ARTMAP [4, 5] is a neural network that provides a means for automatically
selecting complex combinations of factors on which to build accurate probability
estimates for application to problems such as medical prediction [1, 7].

We here develop a procedure that uses this architecture for probability esti-
mation. Simulations demonstrate that the method is robust, performing well in
applications with widely varying input probability distributions. Unlike paramet-
ric probability estimators, fuzzy ARTMAP does not depend on a priori assump-
tions about the underlying data. Two variants of this method are described: the
‘slow-learning’ mode and the ‘max-nodes’ mode. A simulation example shows fuzzy
ARTMAP’s performance in max-nodes mode on a difficult probability estimation
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task, in which each of two classes has 97 clusters arranged in two concentric nested
spirals.
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Figure 1. Fuzzy ARTMAP architecture [4]. The ART, complement coding pre-
processor transforms the M,-vector a into the 2M,-vector A = (a,a’) at the ART,
field Fg. Vector A is the input to the ART, field F. Similarly, the input to F} is
the 2M,-vector B = (b,b°). When a prediction by ART, is disconfirmed at ART},
inhibition of map field activation induces the match tracking process. Match track-
ing raises the ART, vigilance (p,) to just above the F-to-F§ match ratio |x®|/|A].
This triggers an ART, search that leads to activation of either an ART, category
that correctly predicts b or to a previously uncommitted ART, category node.

Figure 1 shows the fuzzy ARTMAP architecture [4]. Each fuzzy ARTMAP sys-
tem includes a pair of Adaptive Resonance Theory modules (ART, and ART}) that
create stable recognition categories in response to arbitrary sequences of input pat-
terns. During supervised learning, ART, receives a stream {a(} of input patterns
and ART; also receives a stream {b(P)} of patterns, where b(®) is the correct pre-
diction given a®). These modules are linked by an associative learning network and
an internal controller that ensures autonomous system operation in real time. The
controller is designed to create the minimal number of ART, recognition categories,
or ‘hidden units,’ needed to meet accuracy criteria.

Parameter p, calibrates the minimum confidence that ART, must have in a
recognition category, or hypothesis, activated by an input a(?) in order for ART, to
accept that category, rather than search for a better one through an automatically
controlled process of hypothesis testing. Lower values of p, enable larger categories
to form. These lower p, values lead to broader generalization and a higher degree
of code compression. A predictive failure at ART} increases p, by the minimum
amount needed to trigger hypothesis testing at ART,, using a mechanism called
match tracking. Match tracking sacrifices the minimum amount of generalization



necessary to correct a predictive error. Hypothesis testing leads to the selection of a
new ART, category, which focuses attention on a new cluster of a(® input features
that is better able to predict b(). Match tracking allows a single ARTMAP system
to learn a different prediction for a rare event than for a cloud of similar frequent
events in which it is embedded.

Fuzzy ARTMAP can perform probability estimation in two modes. In slow-
learning mode, the system grows incrementally until it achieves a good fit to the
underlying probability density function. In max-nodes mode, the user specifies an
upper bound on network size. After it has reached this size the network stops
growing, but additional training data can still be incorporated into the ex1st1ng
network to improve its probability estimates.

Slow-Learning Mode

In slow-learning mode, fuzzy ARTMAP slowly updates its weights to estimate the
probability that an input belongs to a given output class. In particular, when
an input activates an ART, category, the size of the weight from F§ to a map
field category node (Figure 1) constitutes an estimate of the probability that the
input belongs to that category. During supervised learning, the strength of the
weight projecting from the selected ART, category to the selected ART), category is
increased, while the strengths of the weights to other ART}, categories are decreased.
A system vigilance parameter, pq, calibrates the degree of surprise, or predictive
mismatch, necessary to trigger the search for a different ART, category. If the
weight projecting from the active ART, category to the active ART, category is
smaller than pg, i.e., if the system is ‘surprised’ by an unexpected outcome, match
tracking triggers a search at ART,.

Once an ART, category (J) is chosen whose prediction of the actual ART,
category is strong enough, match tracking is disengaged, and resonance occurs at
ART,. During resonance, learning occurs at ART, according to the fuzzy ART fast
learning equations [6] but slow learning occurs at the map field. Map field learning
obeys the equation:
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where b is the activity of the k** map field node and w%, is the map field weight
projecting to map field node k from the active ART, node J The map field learning
parameter (,; determines the rate of change of the map field weights. Small values
of B cause the system to base its probability estimate on a long-term average of
its experience, while values of 3, near 1 allow adaptation to a rapidly changing
environment.

Max-nodes Mode

ARTMAP can also operate in a ‘max-nodes’ mode, in which the user specifies the
maximum number of F§ category nodes. Here, map field vigilance p,s is set to




1 during early training then lowered to 0 when the maximum number of ART,
categories has been reached. With p,;, = 0, match tracking never occurs in response
to a predictive mismatch. With p,; = 1, match tracking will be triggered whenever
a predictive error occurs. The initial ‘critical period’, when p,;, = 1, establishes a
tessellation of the input space associating regions with one output class each. After
pab is lowered to 0, weights slowly adjust their estimates of the probability that a
member of a given ART, category belongs to a given ART, class. With p,;=0, the
rapid partition established with p,, = 1 is fine tuned via slow learning.
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Figure 2. Fuzzy ARTMAP estimated conditional probabilities and decision bound-
ary for a 194-gaussians problem. (a) Actual conditional probabilities. Points falling
in lighter areas are more likely to belong to class 1; darker areas, class 2. (b) Actual
training data. (c) Fuzzy ARTMAP estimated conditional probability. (d) Fuzzy
ARTMAP decision boundary.




Simulation: Noisy nested spirals

Figure 2 shows the performance of the system on a difficult learning problem, in
which patterns are drawn from 194 gaussians whose means fall along two nested
spirals. Figure 2a shows the actual probability that a pattern falling at each point
in the unit square will belong to each of the two classes. Patterns falling in lighter
regions are more likely to belong to class 1, while those in darker regions are more
likely to belong to class 2. These probabilities represent the best possible estimate
calculated using bayes’ rule. Figure 2b shows the actual training data, which were
drawn from the two distributions with equal probability. White points belong to
class 1 and black points belong to class 2. Twenty patterns were drawn from each
gaussian, for a total of 1940 patterns belonging to each class. Figure 2c shows the
average probability estimate of the ARTMAP model in max-nodes mode, averaged
over 10 independent orderings of the training data. On average, the system created
75 ART, categories. It correctly extracts the shape of the underlying spirals and
assigns darker color to the upper left region and lighter color to the lower right.
Figure 2d shows decision boundary which results from assigning regions to the class
with the higher estimated a posterior: probability.
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