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1. Introduction

This.paper announces a new neural network architecture, called ARTMAP [1], that
autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition
categories based on predictive success:” This supervised learning system is built up from
a pair of Adaptive Resonance Theory [2-5] modules (ART, and ART},) that are capable
of self-organizing stable recognition categories in response to arbitrary sequences of input
patterns (Figure 1). During training, the ART, module receives a stream {a(?)} of input
patterns, and ART} receives a stream {b(®)} of input patterns, where b(?) is the correct
prediction given a(P). These ART modules are linked by an associative learning network and
an internal controller that ensures autonomous system operation in real time. During test
trials, the remaining patterns a(P) are presented without b(P), and their predictions at ART,
are compared with b(®),

Tested on a benchmark machine learning database in both on-line and off-line simula-
tions, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accu-
rately than alternative algorithms, and achieves 100% accuracy after training on less than
half the input patterns in the database. It achieves these properties by using an internal
controller that conjointly maximizes predictive generalization and minimizes predictive er-
ror by linking predictive success to category size on a trial-by-trial basis, using only local
operations. This computation increases the vigilance parameter p, of ART, by the minimal
amount needed to correct a predictive error at ART}. Parameter p, calibrates the minimum
confidence that ART, must have in a category, or hypothesis, activated by an input a(?)
in order for ART, to accept that category, rather than search for a better one through an
automatically controlled process of hypothesis testing. Parameter p, is compared with the
degree of match between a(P) and the top-down learned expectation, or prototype, that is
read-out subsequent to activation of an ART, category. Search occurs if the degree of match
is less than p.. ARTMAP is hereby a type of self-organizing expert system that calibrates
the selectivity of its hypotheses based upon predictive success. As a result, rare but im-
portant events can be quickly and sharply distinguished even if they are similar to frequent
events with different consequences. Between input trials p, relaxes t6 a baseline vigilance
Pa. When p; is large, the system runs in a conservative mode, wherein predictions are made
only if the system is confident of the outcome. Very few false-alarm errors then occur at any
stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP’
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Figure 1. A Predictive ART, or ARTMAP, system includes two ART modules linked by
an inter-ART associative memory. Internal control structures actively regulate learning and
information flow. Back Propagation and Predictive ART both carry out supervised learning,
but the two systems differ in many respects, as indicated.

learning is self-stabilizing, it can continue learning one or more databases, without degrading
its corpus of memories, until its full memory capacity is utilized.

2. The ARTMAP System

The main elements of an ARTMAP system are shown in Figure 2. Two modules, ART,
and ART,, read vector inputs a and b. If ART, and ART), were disconnected, each mod-
ule would self-organize category groupings for the separate input sets. In the application
described below, ART,; and ART, are fast-learn ART 1 [2] modules coding binary input "
vectors. ART, and ART, are here connected by an inter-ART module that in many ways
resembles ART 1. This inter-ART module includes a Map Field that controls the learning of
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Figure 2..Block diagram of an ARTMAP system. Modules ART, and ART) self-organize
categories for vector sets a and b. ART, and ART, are connected by an inter-ART module
that consists of the Map Field and the control nodes called Map Field gain control and Map
Field orienting subsystem. Inhibitory paths are denoted by a minus sign; other paths are
excitatory.

an associative map from ART, recognition categories to ART} recognition categories. This
map does not directly associate exemplars a and b, but rather associates the compressed
and symbolic representations of families of exemplars a and b. The Map Field also controls
match tracking of the ART, vigilance parameter. A mismatch at the Map Field between
the ART, category activated by an input a and the ART, category activated by the input b
increases ART, vigilance by the minimum amount needed for the system to search for and,
if necessary, learn a new ART, category whose prediction matches the ART, category.

This inter-ART vigilance resetting signal is a form of “back propagation” of information,
but one that differs from the back propagation that occurs in the Back Propagation network
(Figure 1). For example, the search initiated by inter-ART reset can shift attention to a
novel cluster of visual features that can be incorporated through learning into a new ART,
recognition category. This process is analogous to learning a category for “green bananas”
based on “taste” feedback. However, these events do not_“back propagate” taste features into
the visual representation of the bananas, as can occur using the Back Propagation network.
Rather, match tracking reorganizes the way in which visual features are grouped, attended
learned and recognized for purposes of predicting an expected taste.

The following sections describe ARTMAP simulations using a machine learning bench-
mark database. For a full specification of the ARTMAP system, and analysis of network
dynamics, see Carpenter, Grossberg, and Reynolds [1].
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3. ARTMAP Simulations: Distinguishing Edible and Poisonous Mushrooms

The ARTMAP system was tested on a benchmark machine learning database that parti-
tions a set of vectors a into two classes. Each vector a characterizes observable features of a
mushroom as a binary vector, and each mushroom is classified as edible or poisonous [6]. The
database represents the 11 species of genus Agaricus and the 12 species of the genus Lepiota
described in The Audubon Society Field Guide to North American Mushrooms
[7]. These two genera constitute most of the mushrooms described in the Field Guide
from the familiy Agaricaceae (order Agaricales, class Hymenomycetes, subdivision Basid-
iomycetes, division Eumycota). All the mushrooms represented in the database are similar
to one another: “These mushrooms are placed in a single family on the basis of a correlation
of characteristics that include microscopic and and chemical features...” [7, p. 500]. The
Field Guide warns that poisonous and edible species can be difficult to distinguish on the
basis of their observable features. For example, the poisonous species Agaricus californicus
is described as a “dead ringer” (p. 504) for the Meadow Mushroom, Agaricus campestris,
that “may be known better and gathered more than any other wild mushroom in North
America” (p. 505). This database thus provides a test of how ARTMAP and other machine
learning systems distinguish rare but important events from frequently occurring collections
of similar events that lead to different consequences.

The database of 8124 exemplars describes each of 22 observable features of a mushroom,
along with its classification as poisonous (48.2%) or edible (51.8%). The 8124 “hypothetical

"examples” represent ranges of characteristics within each species; for example, both Agaricus

californicus and Agaricus campestris are described as having a “white to brownish cap,” so
in the database each species has corresponding sets of exemplar vectors representing their
range of cap colors. There are 126 different values of the 22 different observable features.
For example, the observable feature of “cap-shape” has six possible values. Consequently,
the vector inputs to ART, are 126-element binary vectors, each vector having 22 1’s and 104
0’s, to denote the values of an exemplar’s 22 observable features. The ART} input vectors
are (1,0) for poisonous exemplars and (0,1) for edible exemplars. .

The ARTMAP system learned to classify test vectors rapidly and accurately, and system
performance compares favorably with results of other machine lea,rmng algorithms applied
to the same database. The STAGGER algorithm reached its maximum performance level of
95% accuracy after exposure to 1000 training inputs [8]. The HILLARY algorithm achieved
similar results [9). The ARTMAP system consistently achieved over 99% accuracy with
1000 exemplars, even counting “I don’t know” responses as errors. Accuracy of 95% was
usually achieved with on-line training on 300-400 exemplars and with off-line training on
100-200 exemplars. In this sense, ARTMAP was an order of magnitude more efficient than
the alternative systems. In addltlon with continued training, ARTMAP predlctlve accuracy
always improved to 100%. These results are elaborated below.

Almost every ARTMAP simulation was completed in under 2 minutes on an IRIS 4D
computer, with total time ranging from about 1 minute for small training sets to 2 minutes
for large training sets. This is comparable to 2-5 minutes on a SUN 4 computer. Each timed
simulation included a total of 8124 training and test samples, run on a time-sharing system
with non-optimized code. Each 1-2 minute computation included data read-in and read-out,
training, testing, and calculation of multiple simulation indices. -

On-line learning simulations were carried out to imitate the conditions of a human or
machine operating in a natural environment. An input a arrives, possibly leading to a pre-
diction. If made, the prediction may or may not be confirmed. Learning ensues, depending
on the accuracy of the prediction. Information about past inputs is available only through
the present state of the system. Simulations of on-line learning by the ARTMAP system
use each sample pair (a, b) as both a test item and a training item. Input a first makes a
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TABLE 1: On-Line Learning

Average number of correct predictions on previous 100 trials

Pa=0 Pa=0 Pa=0.7 Pa=0.7
Trial no replace replace no replace replace
100 82.9 81.9 66.4 67.3
200 89.8 89.6 87.8 87.4
300 94.9 92.6 94.1 93.2
400 95.7 95.9 96.8 95.8
500 97.8 97.1 97.5 97.8
600 98.4 98.2 98.1 - 982
700 97.7 97.9 98.1 99.0
800 98.1 97.7 99.0 99.0
900 98.3 98.6 99.2 99.0
1000 98.9 98.5 99.4 99.0
1100 98.7 98.9 99.2 ©99.7
1200 99.6 99.1 99.5 99.5
1300 99.3 98.8 99.8 99.8
1400 99.7 99.4 99.5 99.8
1500 99.5 99.0 99.7 99.6
1600 99.4 99.6 99.7 99.8
1700 98.9 99.3 99.8 99.8
1800 99.5 99.2 99.8 99.9
1900 99.8 99.9 99.9 99.9
2000 99.8 99.8 99.8 99.8

Table 1: On-line learning and performance in forced choice (pa = 0) or conservative (pz =
0.7) cases, with replacement or no replacement of samples after training.

prediction that is compared with b. Learning follows as dictated by the internal rules of the
ARTMAP architecture. ’

Four types of on-line simulations were carried out, using two different baseline settingé of
the ART, vigilance parameter pa: pa = 0 (forced choice condition) and pg = 0.7 (conservative
condition); and using sample replacement or no sample replacement (Table 1). With sample
replacement, any one of the 8124 input samples was selected at random for each input
presentation. A given sample might thus be repeatedly encountered while others were still
unused. With no sample replacement, a sample was removed from the input pool after it was
first encountered. The replacement condition had the advantage that repeated encounters
tended to boost predictive accuracy. The no-replacement condition had the advantage of
having learned from a somewhat larger set of inputs at each point in the simulation. The
replacement and no-replacement conditions had similar performance indices, all other things
being equal. Each of the 4 conditions was run on 10 independent simulations. With 7 =0,
the system made a prediction in response to every input. Setting pg = 0.7 increased the
number of “I don’t know” responses, increased the number of ART, categories, and decreased
the rate of incorrect predictions to nearly 0%, even early in training. The pg = 0.7 condition
generally outperformed the pg = 0 condition, even when incorrect predictions and “I don’t
know” responses were both counted as errors. The primary exception occurred very early in
training, when a conservative system gives the large majority of its no-prediction responses.

The data were tabulated to encode the number of correct predictions over the previous
100 trials (input presentations), averaged over 10 simulations. For example, with pz = 0
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in the no-replacement condition, the system made, on the average, 94.9 correct predictions
and 5.1 incorrect predictions on trials 201-300. In all cases a 95% correct-prediction rate
was achieved before trial 400. With pg = 0, a consistent correct-prediction rate of over 99%
was achieved by trial 1400, while with pg = 0.7 the 99% consistent correct-prediction rate
was achieved earlier, by trial 800. Each simulation was continued for 8100 trials. In all four
cases, the minimum correct-prediction rate always exceeeded 99.5% by trial 1800 and always
exceeded 99.8% by trial 2800. In all cases, across the total of 40 simulations, 100% correct
prediction was achieved on the last 1300 trials of each run.

A low correct-prediction rate for pg = 0.7 was made even on the first 100 trials. In the
conservative mode, a large number of inputs initially make no prediction. With pg = 0.7
an average total of only 2 incorrect predictions were made on each run of 8100 trials. The
asymptote of 100% accuracy was achieved faster than in the forced choice condition. Off-line
learning simulations were equally successful.

4. Concluding Remarks

In summary, the ARTMAP system is designed to conjointly mazimize generalization
and minimize predictive error under fast learning conditions in real time in response to an
arbitrary ordering of input patterns. Remarkably, the network can achieve 100% test set
accuracy on a machine learning benchmark database, as described above. Each ARTMAP
system learns to make accurate predictions quickly, in the sense of using relatively little
computer time; efficiently, in the sense of using relatively few training trials; and flexibly, in
the sense that its stable learning permits continuous new learning, on one or more databases,
without eroding prior knowledge, until the full memory capacity of the network is exhausted.
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