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Abstract The ARTMAP-FD neural network performs both identification (placing test pat-
terns in classes encountered during training) and familiarity discrimination (judging whether a

.test pattern belongs to any of the classes encountered during training). ARTMAP-FD quanti-

fies the familiarity of a test pattern by compuling a measure of the degree to which the pattern’s
components lie within the ranges of values of training patterns grouped in the same cluster.
This familiarity measure is compared to a threshold which can be varied to generate a receiver
operating characteristic (ROC) curve. Methods for selecting optimal values for the threshold
are evaluated. The performance of validation-set methods is compared with that of methods
which track the development of the network’s discrimination capability during training. The
techniques are applied to databases of simulated radar range profiles.

1 Introduction

The recognition process involves both identification and familiarity discrimination. Consider,
for example, a neural network designed to identify aircraft based on their radar reflections and
trained on sample reflections from ten types of aircraft A...J. After training, the network
should correctly classify radar reflections belonging to the familiar classes 4 ... J, but it should
also abstain from making a meaningless guess when presented with a radar reflection from an
object belonging to a different, unfamiliar class. Many neural networks carry out pattern recog-
nition, but most perform identification without estimating whether a test set input belongs to
a class that became familiar during training [1].

This paper describes ARTMAP-FD, an extension of fuzzy ARTMAP that performs famil-
iarity discrimination. ARTMAP-FD capabilities are demonstrated on data sets of simulated
radar range profiles from aircraft targets, with performance evaluated using receiver operating
characteristic (ROC) curves. In these simulations, multiwavelength input vectors can have as
many as 2400 components, so the application uses the ARTMAP properties of scalability and
fast learning in an essential way.

2 Fuzzy ARTMAP

Fuzzy ARTMAP [2] is a self-organizing neural network for learning, recognition, and prediction
(Figure 1). Each input a learns to predict an output class K. During training, the network
creates internal recognition categories, with the number of categories determined on-line by
predictive success. Components of the vector a are scaled so that each a; € [0,1] (i =1...M).
Complement coding [3] doubles the number of components in the input vector, which becomes
A = (a,a®), where the i** component of a® is af = (1 — a;). With fast learning, the weight
vector w; records the largest and smallest component values of input vectors placed in the
j** category. The 2M-dimensional vector w; may be visualized as the hyperbox R; that just
encloses all the vectors a that selected category j during training.

Activation of the coding field F» is determined by the Weber law choice function T;(A) =
| AAWw; |/(a+ | w; |), where (P A Q); = min(P;,Q;) and | P |= E?fl | P; |. With winner-
take-all coding, the F3 node J that receives the largest F; — Fs input T; becomes active. Node
J remains active if it satisfies the matching criterion: | AAw; |/ |A|=|AAwW; | /M > p,
where p € [0,1] is the dimensionless vigilance parameter. Otherwise, the network resets the
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Figure 1: A fuzzy ARTMAP network for classification.

active Fy node and searches until J satisfies the matching criterion. If node J then makes
an incorrect class prediction, a match tracking signal raises vigilance just enough to induce a
search, which continues until either some Fs node becomes active for the first time, in which
case J learns the correct output class label k(J) = K’; or a node J that has previously learned
to predict K becomes active. During testing, a pattern a that activates node J is predicted
to belong to the class K = k(J).

3 Familiarity discrimination with ARTMAP-FD

3.1 Familiarity measure

During testing, an input pattern a is defined as familiar when a familiarity function ¢(A) is
greater than a decision threshold y. Once a category choice has been made by the winner-
take-all rule, fuzzy ARTMAP ignores the size of the input 7. In contrast, ARTMAP-FD uses
Ty to define familiarity, taking

Ty(A) _|[AAwy|
¢(A) = THAX = Tws ]

(1)

where TM4X =| w; | /(a+ | ws |). This maximal value of T, is attained by each input a
that lies in the hyperbox Ry, since | A A wy |=| wy | for these points. An input that chooses
category J during testing is then assigned the maximum familiarity value 1 if and only if a lies
within Rj.

Note that the choice parameter @ in equation (1) is usually taken to be small since the con-
servative limit, where o = 0%, minimizes the number of category nodes formed during training.
When a ~ 0, TM4X x~ 1, so ¢(A) ~ Ty(A). Simulations below set a = 0.0001. Then, setting
#(A) = Ty(A) produces essentially the same results as setting ¢(A) = Ty(A)/TH4X. The
former choice of ¢ is more readily computable in a neural network but the latter has a simpler
geometric interpretation.

3.2 Familiarity discrimination algorithm

ARTMAP-FD is identical to fuzzy ARTMAP during training. During testing, ¢(A) is com-
puted after fuzzy ARTMAP has yielded a winning node J and a predicted class K = k(J).
If ¢(A) > v, ARTMAP-FD predicts class K for the input a. If ¢(A) < v, a is regarded as
belonging to an unfamiliar class and the network makes no prediction.

Note that fuzzy ARTMAP can also abstain from classification, when the baseline vigilance
parameter p is greater than zero during testing. Typically p = 0 during training, to maximize
code compression. In radar range profile simulations such as those described below, fuzzy
ARTMAP can perform familiarity discrimination when p > 0 during both training and test-
ing. However, accurate discrimination requires that g be close to 1, which causes category
proliferation during training.
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Range profile simulations have also set g = 0 during both training and testing, but with
the familiarity measure set equal to the fuzzy ARTMAP match function:

sa)= 22w @

This approach is essentially equivalent to taking p§ = 0 during training and p > 0 during
testing, with p = 4. However, for a test set input a € Ry, the function defined by (2) sets
#(A) =| wy | /M, which may be large or small although a is familiar. Thus this function
does not provide as good familiarity discrimination as the one defined by (1), which always
sets #(A) =1 when a € R;. All the simulations below employ the function (1), with 5 = 0.

3.3 Familiarity discrimination with sequential evidence accumula-
tion

ART-EMAP (Stage 3) [4] identifies a test set object’s class after exposure to a sequence of
input patterns, such as differing views, all identified with that one object. Training is identical
to that of fuzzy ARTMAP, with winner-take-all coding at F5. ART-EMAP generally employs
distributed F» coding during testing. With winner-take-all coding during testing as well as
training, ART-EMAP predicts the object’s class to be the one selected by the largest number
of inputs in the sequence. Extending this approach, ARTMAP-FD accumulates familiarity
measures for each predicted class K as the test set sequence is presented. Once the winning
class is determined, the object’s familiarity is defined as the average accumulated familiarity
measure of the predicted class during the test sequence.

4 Familiarity discrimination simulations

Since familiarity discrimination involves placing an input into one of two sets, familiar and
unfamiliar, the receiver operating characteristic (ROC) formalism [10,11] can be used to eval-
uate the effectiveness of ARTMAP-FD on this task. The h¢t rate H is the fraction of familiar
targets the network correctly identifies as familiar and the false alarm rate F is the fraction
of unfamiliar targets the network incorrectly identifies as familiar. Each of these quantities
depends upon the decision threshold ¥ (Section 3.1). An ROC curve is a plot of H vs. F,
parameterized by 4. The area under the ROC curve is the c-index, a measure of predictive
accuracy that is independent of both the fraction of positive (familiar) cases in the test set and
the positive-case decision threshold .

An ARTMAP-FD network was trained on 18 targets from a 36-target set (Figure 2a).
Simulations tested sequential evidence accumulation performance for 1, 3, and 100 observations,
corresponding to 0.05, 0.15, and 5.0 seconds of observation time (smooth curves, Figure 2b). As
in the case of identification [9], a combination of multiwavelength range profiles and sequential
evidence accumulation produces good familiarity discrimination, with the c-index approaching
1 as the number of sequential observations grows.

Figure 2b also demonstrates the importance of the proper choice of familiarity measure.
The jagged ROC curve was produced by a familiarity discrimination simulation identical to
that which resulted in the 100-sequential-view smooth curve, but using the match function (2)
instead of ¢ as given by (1).

5 Familiarity threshold selection

The c-index and the shape of the ROC curve indicate a network’s potential ability to discrim-
inate between familiar and unfamiliar targets. However, when a system is placed in operation,
one particular decision threshold ¥ = I' must be chosen. In a given application, selection of T'
depends upon the relative cost of errors due to missed targets and false alarms. The optimal
I’ corresponds to a point on the parameterized ROC curve that is typically close to the upper
left-hand corner of the unit square [10,11], to maximize correct selection of familiar targets
(H) while minimizing incorrect selection of unfamiliar targets (F').

In the simulations below, three types of hit and false alarm rates are calculated. First, an
ROC curve (F(¥), H(¥)) is calculated from the training data. The predicted threshold ¥ = I'p
is then chosen, either by a validation set procedure that seeks to minimize [F(y) — H(v)]
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Figure 2: (a) 36 simulation targets with 6 wing positions and 6 wing lengths, and 100 scattering
centers per target. Boxes indicate randomly selected familiar targets. (b) ROC curves from
ARTMAP-FD simulations, with multiwavelength range profiles having 40 center frequencies.
Sequential evidence accumulation for 1, 3 and 100 views uses familiarity measure (1) (smooth
curves); and for 100 views uses the match function (2) (jagged curve). (c¢) Training and test
curves of miss rate M = (1 — H) and false alarm rate F' vs threshold v, for 36 targets and
one view. Training curves intersect at the point where vy = I'p (predicted); and test curves
intersect near the point where ¥ = I'p (optimal). The training curves are based on data from
the first training epoch, the test curves on data from 3 training epochs.

(Section 5.1); or by an on-line procedure that takes y = I'p to be the point where F(y)+H(y) =
1 (Section 5.2). With a miss rate defined as M(y) = 1 — H(y), F(y) + H(y) = 1 at the
point where the miss rate curve, which increases with v, intersects the false alarm rate curve,
which decreases with v (Figure 2c). Thus for on-line simulations, the predicted miss rate
Mp = M(Tp) equals the predicted hit rate Hp = H(T'p).

A new ROC curve (F(v), H(7)) is calculated for the test set data. Test set discrimination
is performed using the threshold I'p calculated during training. The actual hit rate during
testing is then H4 = H(T'p); the actual false alarm rate is F4 = F(T'p); and the actual miss
rate is My =1 — Hy (Figure 2c).

Finally, the actual hit and false alarm rates can be compared with optimal values Hp and
Fo, which are obtained from a posteriori calculation of an optimal threshold T'p for the test
set data. The optimal (F(T'g), H(T0)) is, by definition, a point on the test set ROC curve that
minimizes [F(y) — H(7)]. This point is typically close to the point where F(y) — H(y) = 1,
where the false alarm rate curve intersects the miss rate false alarm curve (Figure 2c).

5.1 Validation set methods

One way to determine a predicted threshold I'p is by a procedure that partitions the training
data into a training subset and a validation subset [11]. The network is trained on the training
subset; then the ROC curve (F(7), H(y)) calculated for the validation subset takes I'p to be
a point on the curve that minimizes [F(y) — H(y)]. For a familiarity discrimination task the
validation set must include examples of classes not present in the training set. The value of
the predicted threshold I'p is then employed for familiarity discrimination on the test set.

Table 1 shows results of this validation-without-retraining method applied to simulated
range profile data. Predicted values of the hit and false alarm rates (Hp, Fp) are close to
the actual rates (H4, F4), and these actual rates are in turn close to the optimal rates (Hop,
Fp). Note that a network ideally should be trained on all available data before being used
in the field. So, once I'p is determined, the training subset and validation subset should be
recombined and the network retrained on the complete training set.

5.2 On-line threshold determination

The fuzzy ARTMAP network is capable of continuous learning during real-time operation,
without a separation into training and testing phases. Although ARTMAP-FD with a prede-
termined threshold can also operate in a real-time mode, the validation-set method for deter-
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3x3 6x6 6x6*
predicted | actual | optimal || predicted | actual | optimal || predicted | actual | optimal
H 0.89 0.88 0.86 0.84 0.84 0.78 0.98 0.98 0.99
F 0.14 0.19 0.17 0.35 0.33 0.26 0.03 0.03 0.04
accuracy | 0.94 1.00 - 0.92 1.00 - 1.00 1.00

Table 1: Predicted, actual, and optimal hit and false alarm rates, using threshold prediction by
the validation-without-retraining method. Data sets are radar range profile simulations using
40 center frequencies for wp x wl simulated targets, where wp = number of wing positions
and wl = number of wing lengths. The set of results for the 6x6* data set involves sequential
evidence accumulation, with 100 observations per test target. Accuracy equals the fraction of
correctly-classified targets out of familiar targets selected by the network as familiar. Training
on half the target classes, validation on another quarter of the target classes, testing on all
classes not present in the validation set.

mining the threshold is not compatible with real-time operation. Here we illustrate a method
that determines I'p during a single epoch of training and that updates the value on-line while
the network continues learning.

During ARTMAP-FD training, category nodes compete for new patterns as they are pre-
sented. When a node J wins the competition, learning expands the category hyperbox R
enough to enclose the training pattern a. The familiarity measure ¢ for each training set input
then becomes equal to 1. However, before this learning takes place, ¢ can be less than 1, and
the degree to which this initial value of ¢ is less than 1 reflects the distance from the training
pattern to Ry. An event of this type—a training pattern successfully coded by a category
node—is taken to be representative of familiar test-set patterns. The corresponding initial
values of ¢ are thus used to generate a training hit rate curve, where H(7y) equals the fraction
of training inputs with ¢ > ¥.

What about false alarms? By definition, all patterns presented during training are familiar.
However, a reset event during training (Section 2) resembles the arrival of an unfamiliar pattern
during testing. Recall that a reset occurs when a category node that predicts class K wins
the competition for a pattern that actually belongs to a different class k. The corresponding
values of ¢ for these events can thus be used to generate a training false-alarm rate curve,
where F(v) equals the fraction of match-tracking inputs with initial ¢ > ~.

One way to improve predictive accuracy further is to use a reduced set of ¢ values in the
training-set ROC curve construction process. Namely, training patterns that fall inside Ry,
where ¢ = 1, are not used because these exemplars tend to distort the miss rate curve. In
addition, the first response to a training input is the best predictor of the network’s response
to a testing input, since sequential search will not be available during testing.

Finally, giving more weight to events occurring later in the training process improves ac-
curacy. This can be accomplished by first computing training curves M(y) and F(v) and a
preliminary predicted threshold I'p using the reduced training set; then recomputing the curves
and Ip from data presented only after the system had activated the final category node of
the training process (Figure 1c). The final predicted threshold ['p averages these values. This
calculation can still be made on-line, by taking the “final” node to be the last one activated.

Table 2 shows that applying on-line threshold determination to simulated radar range
profile data gives good predictions for the actual hit and false alarm rates, H4 and F4. Most
significantly, the threshold I'p predicted by this method gives H4 and F4 that are close to
optimal, particularly when the ROC curve has a c-index close to one. The method is effective
even when testing involves sequential evidence accumulation, despite the fact that the training
curves use only single views of each target.

6 Discussion

ARTMAP-FD is seen to be capable of a high level of performance in both identification and
familiarity discrimination in application to simulated multiwavelength radar range profiles of
as many as 36 targets, especially when sequential evidence accumulation is employed. An
on-line threshold prediction method can be used in place of off-line validation-set methods to



3x3 6x6 6x6*
predicted | actual | optimal || predicted | actual | optimal || predicted | actual | optimal
H 0.75 0.81 0.86 0.79 0.77 0.77 0.79 0.99 0.98
F 0.25 0.11 0.14 0.21 0.24 0.23 0.21 0.06 0.02
accuracy ] 0.95 1.00 - 0.93 1.00 - 1.00 1.00

Table 2: Predicted, actual, and optimal hit and false alarm rates, using on-line threshold
prediction. Data sets as in Table 1. Training on half the target classes, testing on all target
classes.

determine the optimal value of the familiarity threshold.

The on-line method for threshold determination requires storage of the familiarity measure
¢ for each training pattern used in constructing the training miss rate and false alarm rate
curves. In a dynamic environment in which the optimal threshold is changing, older training
samples can be discounted with a weighting factor that decays with time. With many training
patterns, on-line storage requirements for these calculations might be reduced by recording a
histogram of ¢ values grouped into bins of 4 ranges.
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Appendix: Radar range profiles

A radar range profile is a one-dimensional representation of a target, produced from a recording of
a radar pulse reflection at high temporal resolution [5]-[7]. Several range profiles, constructed from
the same view of the target but using pulses of different center frequencies, can be concatenated to
form a multiwavelength radar range profile [8,9]. Simulations [1,9] use multiwavelength range profiles
with center frequencies evenly spaced between 18GHz and 22GHz. The range-bin size is 2/3 m and
the range profile covers 40m, so the number of components in a profile equals the number of center
frequencies times 60.
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