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INTRODUCTION

This paper continues the discussion of singular perturbation solutions of nerve
impulse equations begun in [1]. Phase space analysis is used to study a general
model of a biological process (e.g., nerve impulse, heartbeat, muscle contraction)
consisting of a differential equation coupled with / "slow" and m "fast" equations
(Eq. 4.1). The slow [fast] equations correspond to subprocesses whose rates are
slow [fast] relative to the rate of the primary phenomenon.

We develop a method of studying the principal, slow, and fast equations
separately; piecing together the resulting solutions; and showing that these
singular solutions correspond to true solutions of the system for certain parameter
values.

The Hodgkin-Huxley [9] equations of nerve impulse transmission consist
of a nonlinear diffusion equation coupled with one fast and two slow equations:

8Vf~j f V

(0.1, HH)

~

when- x is the distance from the stimulus and s is the time since the stimulus.
I ' I '(.v, s) represents the displacement from rest of the potential difference
(in m l ' ) across the axon membrane. By Ohm's law, 1 / R(82V '/ 8x2) is the total
current across the membrane, where R is the resistance of the axoplasm. This
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current consists of capacitance (C(8VI8sJ) and ionic (g(V, m, n, h)) currents.
The tendency for the membrane to conduct ions is represented by m (Na+
activation, inward), n (K+ activation, outward), and h (Na+ inactivation). In the
original Hodgkin-Huxley model of impulses in the giant squid axon,
g(V, m, n, h) = gNam

3h(V - FNa) + gKn\V - FK) + gL(V - VL), where
£Na . VNa ,gK,VK,gL,VL are constants, and ym ,mm,yn,n<a, yh , h^ are
experimentally determined. We embed this particular model in a large class of
models which may be used to represent nerve transmission of various species,
as well as other processes, depending upon the choice of functions. Hypothesis
(3.1, CUBIC, H) on (0.1, HH) is general and qualitative, containing assump-
tions such as:

(D) 8gj8n(V, mjy\ n, h) > 0 and 8gldh(V, mx(V), n,h)<Q if VK <
V < FNa and 0 < n, h < 1;

(F) nx' > 0 and /?«,'< 0; and

(G) ym , y» , yft > 0.

We do not assume, for example, that g is linear in V or that Na+ and K+ act
independently. (See [10, Sections 33-34; 14, Chap. 10] for discussions of this
model.)

Since an impulse proceeds along the axon in a wave-like manner, we consider
traveling wave solutions of (0.1, HH) (Section 2 and Eq. (4.3, HH)). A single
pulse or multiple wave train impulse corresponds to a homoclinic solution of
(4.3, HH), that is, a solution which goes to the unique rest point as t—> ±00.
A self-sustaining oscillatory impulse corresponds to a periodic solution of
(4.3, HH). In [1] we give general conditions for the existence of homoclinic and
finite wave train solutions of (4.1). In addition we show that periodic solutions
exist provided I = 1 (i.e., there is only a slow variable). These results also apply
to the case 1^2 (e.g., the Hodgkin-Huxley equations) if one slow variable is
much slower than the other (e.g., if yM/yft <^ 1). Periodic solutions then oscillate
between two plateaus [7, 15]. In this paper we show that the notion of an
/-dimensional singular solution allows us to prove existence of periodic solutions
with / ̂  2.

In Section 1 the results are presented abstractly, in terms of isolating blocks
[4, 16] for an autonomous system. The principal property of a block is that the
map which sends a point u in the block to the first point of u • [0, oo) in its exit
set is continuous where defined (Fig. 1). Hypothesis (1.3, PER) gives a sufficient
condition for the existence of a periodic solution of an arbitrary autonomous
system.

In Section 2 we examine traveling wave solutions of a nonlinear diffusion
equation coupled with /slow equations (2.2). Hypothesis (2.1, CUBIC) requires
l i c i t (!(!', y ) l>c a "cubic" funct ion of I ' for fixed y (Fig. 4); and (2.3, PER, 0)
i v < | i i i i c s l l i c existence of ;in /-dimensional s ingular solution of (2.2, 0, e). These
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two hypotheses imply the existence of a periodic solution of (2.2, S, e) for small
£ > 0 .

Periodic traveling wave solutions of the Hodgkin-Huxley equations (0.1, HH)
are discussed in Sections 3 and 4. Hypothesis (3.1, CUBIC, H) implies (2.1,
CUBIC) with G(V, n, h) = g(V, mJV), n, h). When Z = 2 a weak assumption,
requiring only piecewise continuity of certain maps, replaces the continuity
assumption of (2.3, PER, 0~). The piecewise continuity assumption is satisfied,
for example, if the system is analytic. In this case, the Hodgkin-Huxley equations
with m = mj(y) admit periodic solutions if e is small and m = m^V).

In Section 4, we show that results of Sections 2 and 3 are valid for a system
with fast variables whenever an associated system (setting 8 -- 0) satisfies the
appropriate hypotheses and 8 is small. In particular results of Section 3 hold for
the full Hodgkin-Huxley equations if 8 is small.

Proofs are contained in Section 5.
The FitzHugh-Nagumo model [6, 11] of nerve impulse transmission consists

of a nonlinear diffusion equation with a "cubic" term coupled with one slow
equation (/ = 1). Periodic solutions of this system are studied in [1, 3, 8, 12].

I wish to thank Professor Charles Conley for his supervision of the thesis
research which directly preceded the work presented here.

Notation

R" = Euclidean w-space,

n
u: v ̂  Y, uivi (tne usual inner product on K") where u = <MJ • • • wn>,

f)A boundary of A,

d(A) closure of A,

int(/l) interior of A,

dom( /) domain of/,

f A f restricted to A.

I. PKKIODIC, SOLUTIONS OF AN AUTONOMOUS SYSTEM

In this section we- state a sufficient condition for the existence of a periodic
solut ion of l i l t - system:

« <-'(«)- (1-1)

win- i t - ( ! < ('' :itul ; / • .(.M M".
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Definitions

Let u • t denote a solution of (1.1) for t e J, a subinterval of R. If K C J, let
u • K = {u • t: t 6 K}; and let U • J be the trajectory containing u. u • R is a
periodic solution if u = u • t for some t ̂  0. u • K is a positive (negative) half
solution if K = [0, oo) [K = (—00, 0)].

wis a. rest point of (1.1) if G(u) = 0. If u is a rest point whose eigenvalues have/
positive and (n — j) negative real parts, U(u) = {u e Q: u • t —> u as t —>• —00}
is a /-manifold (the unstable manifold of u); and S(u) = {u e Q: u • t —»• u as
t -> 00} is an (n — 7)-manifold (the stable manifold of u) [3, Chap. 13].

B is a block for (1.1) if there exist C1 functions/, -"/A,: R" -* R such that
B = n<liArl([°. °°)) is homeomorphic to [0, l]n and /4 = V/f: G ̂  0 on SB.
6+ (the entrance set) = {M e 8B:ft(u) = 0 and/^w) > 0 for some z'}. 6~ (the e*z<
iei) = u 6 SB-.f^u) = 0 and /J(M) < 0 for some z'}.

This definition of block is more limited than usual [4]; the C1 isolating-block-
with-corners of [16] could be used instead. Defined in this way, a block B for
(1.1) has the property that if G — G is small, then B is a block for the system:

« = G(u)

with b± remaining invariant.

EXAMPLE 1.1. A saddle point

= W,
(1.2)

Assume F <= C1 and 0 > 0. Suppose F(F0) = 0 and *"(F0) > 0. If c> 0 is
small, Be = {(V, W): \ W ± (0 + \)(V - K0)| < (0 + l)c} is a block for
(1.2, 0). Moreover, 6C± = {(V, W"y e B,
and u e S«F0 , 0» if u • [0, oo) C Bc.

I'm. I. /f r is :i block for (1.2, 0) i f f is small.
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T^u) (the time needed for u to reach 6±) =

0, if ueb1,

snp{t > 0: M • (0, t) n 6± = <f>}, if u $ b±.

ft(tt) = M • T±(tt) if 0 < r±(w) < oo. <£±(«) is the first point of M • [0, oo)
ini±.

Z>± = {w: 0 < T±(M) < oo and <£±(«) £ b*}. D± contains the set on which <£±
is defined and continuous. If u e D±, u crosses { /J(M) = 0} transversely at
<£±(w) for some i.

LEMMA 1.2. Continuity of maps defined by a block.

// B is a block, T± and <^± are continuous on D±.

HYPOTHESIS (1.3, PER). There exist Bl, Bz , disjoint blocks for (1.1), with
properties (A)-(C).

(A) No positive half solution is contained in B^ or B2.

(B) There exist F C b^~ O D2+, A C b2~ n Dj+ such that (b^ — T) consists
of two components, a0 and o^; and (bz~ — A) consists of two components, j80 and ̂  .
In addition, if -yt = ̂  n cl(P) and 8{ = ft n cl(/l), then fa- o fa+(y-) C int(^i)
anrf^r o^j+^S,.) C int(a,-) (i = 0, 1).

I n ; . . ' . / ( , , /(. , M i i l i - i l ' v l l v p u l l i i - s i H ( l . ( , I ' l ' .K) , w i t h /), front, hack, and bottom;

, l n . n l . l»» I' M I > C | lop.

and
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(C) There exist homeomorphisms hf. bj~-*• [0, 1]"~2 x [—1,2] such that

h^F) = [0, 1]»-2 X (0, 1);

*i(y*) = [0, i]"-2 x {*};
h2(A) = [0, I]-2 X (0, 1);

W = to. i]"-2 x {«}.

THEOREM 1.4. Periodic solutions of (1.1). Hypothesis (1.3, PER) implies
that (1.1) admits a periodic solution.

The proof of (1.4) appears in [1]. It involves the fact that a map/ (essentially
<j>!~~ ° <£]+ ° <f>2~ ° <£2

+) from F into b^- has nonzero degree [5, 13] and hence a fixed
point. This fixed point is contained in a periodic solution of (1.1).

Fie. 3. deg(/ — 7, r, 0) = ±1, so/has a fixed point.

2. PERIODIC TRAVELING WAVE SOLUTIONS OF A
NONLINEAR DIFFUSION EQUATION

In this section we apply the abstract results of Section 1 to find traveling wave
solutions of a nonlinear diffusion equation coupled with / "slow" equations:

(2.1)

win-IT I ' i ( / ' „ , I '„) ( K; v< !>iv
( R1', > • 0, mid Qy is homcomorphic to

I'M I ' -

= 8V18s + G(V,y),

8yjc)s =
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A traveling wave solution of (2.1) (with speed 0) consists of a solution
<y(x, s),y(x,s)y of (2.1) such that V(x, s) = V(t), y(x, s) y(t) where
t = (x -\- ds). An application of the chain rule gives traveling wave solutions of
(2.1) as solutions (V, W, y) of the (2 + /) equations:

V = W,
W = eW + G(V, y),

y = €

(2.2)

Hypothesis (2.1, CUBIC) will provide the principal restriction on G, namely,
that G be a "cubic" function of V for fixed y (Fig. 4).

HYPOTHESIS (2.1, CUBIC). (A) Va < 0 < VB, and G(Vx,y) <0< G(VB,y)
for every y.

(B) For every y there exist at most three V such that G(V, y) -- 0;/or somey,
there exist exactly three. Moreover, 8^GJ8V2(V, y) --£ 0 if G(V,y) =
i)GI'dV(V,y) = 0. "

(C) 8G/8yk > Qfor some k.

o(v,y)

v,(y)

FIG. 4. "Cubic" G.

Drjinitiom , Xi •' t, A(y, 6))

Let x {<^ W,yy-.W = G(F,;y) = 0 and SGj8V(V,y) > 0}. Hypothesis
(2 .1 , CUBIC) then implies that x has two components, Xi and X2 > witn V < V
when I ', 0, y> t x\ and < P7', 0, ̂ > e x2 • For t = 1, 2, let /I; be the image of Xi
under the map <(7, W, y~) —*• y. By the implicit function theorem, there exists
I ' , = '/, ' ( I ', , I7,)) such that (V, 0, j>> 6 Xi iff y 6 77f and F = V^y). Note that
!',( v) • l',(v) when yenrnn2; SVJSy, =- -8GI8yJl8G/8V; and sgn

(«) I • , / < • > • , ) sgn(r)G7^v;/).
l''m \' i / / , , (2.2) defines a system on 77;:

v' (23),

(Sec | ' ' JK. I V w h c i c / 2.) I ,cl t' • ' / denote a solution of (2.3),: .
I'm T V C I V l" / / , M // , : i i u l tf< l l J t , !',( v), 0, V> is a rest point of (2.2, | 0 , 0)

x v i l l i • j i n M l i v r .Mid one nc |^ i l iv r c i ^ e n v i i l i i r . I I I t 0 le t A ( v , 0 ) he tha t
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branch of U^V^y), 0, jy» with a negative half solution contained in {W > 0};
and let A(y, —9) be that branch of U((Vz(y), 0, j» with a negative half solution
contained in {W < 0} (Fig. 5).

Lemma 2.2 shows that for fixed yeni!^IIz A(y, 6) or A(y; —0) runs
between Xi and Xz in (2.2, 0, 0) for some 0^0 .

LEMMA 2.2. Jump Sets Exist. Assume Hypothesis (2.1, CUBIC).

(A) There exists a continuous function 0(y): 11^ O 7I2 — > IR
, 6(y)) is a solution of (2.2, \ 6(y)\, 0)from <F1(y), 0, ;y> to <7s(y)

or/rom , 0, j> to

(B) 0(j) decreases as yk increases, where SGfSy^ > 0.

(C) {y e n: r\ nz: 0(y) = S} is an (I — l)-manifold. IfS^O, (0(y) = 8}
is the jump set from 11^ to U2; if§ ^. 0 it is the jump set from /72 to TTj (Fig. 12).

FIG. 5. / = 1 and G(V, y) = —f(V)
= -8(y") > 0.

= f (V) ,W = 0

(the FitzHugh-Nagumo equations).

We now fix d > 0 and give a sufficient condition for the existence of a periodic
solution of (2.2, 8, e) for all small e > 0.

IT v ( //, , let F,(y) be the first point (if any) on y -1 [0, oo) n [0(y) = S}.
I f v < II.. , let /'',(r) he the first point (if any) on y -2 [0, oo) n (0(y) -= — §}.
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FIG. 6. and F2 with / = 2.

Note that Fi is continuous in a neighborhood of y if ^(F^y)) =/- 0. Let T((y)
(the time for j> to reach (8(y) = 9} or (0(j>) = — 8}) be the smallest t > 0 (if any)
such that:

Our theorems remain true if F1 ,F2 are replaced by the more general jFj ,F2 ,
where I1i(y) is the first point (if any) on y -1 [0, oo) n {y : d(y) — 9 or
('(•/'"'X^iO')' J7) = 0}'> and F2(>>) 's the nrst point (if any) on yA [0, oo) O
{ r : 0(j) = _0 or 8GI8V(V2(y), y) = 0}. In this case, (0(y) = 0} is defined to
be (v G TTj n /72 : 6(y) = 6} V {y E 87^ : Lim^,, 0(y) > 0}. {%) = -5} is
defined analogously.

Hypothesis (2.3, PER, 9) implies the existence of an l-dimensional singular
solution of (2.2, 9). The set M is contained in the jump set from IJ1 to 7T2 . Let
M V, V\(y)> 0, y): y e M}. M jumps from Xi to xz when 0 = $, e = 0. It then
moves along X" (m tne flow (2.3)2) until it reaches the jump set from ^2 to Xi »
v i n I lie map/1'., . M jumps back to Xi an<i returns interior to itself (by (C)) via the
map /•', ( I ' ig- 7). Note thatFj °F2 has a fixed point in M. (See Fig. 5 for the case
/ I.) Hypothesis (2.3) (D) simplifies the proof.

7. A 7
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HYPOTHESIS (2.3, PER, 0). There exists M C (6(y) = 0} such that:

161

(A) M is homeomorphic to [0, I]'"1;

(B) Fg is defined and continuous on M and Fx is defined and continuous on

(C) F

(D) 61 > 0 on {6(y) = —$} and 02 < 0 on (0(y) = 9}.

THEOREM 2.4. Periodic solutions of (2.2, 0, e). Assume hypotheses (2.1,
CUBIC) and (2.3, PER, 0"). Then (2.2, 9, e) admits a periodic solution for all
small e > 0.

Remarks. I = 1 vs / > 2. 1. Hypothesis (2.3, PER, 0) (C) implies that /> 2.
In [1] we show that (2.2, 0, e) admits a periodic solution when / = 1 if
H(Vi(y), y) < 0 < H(Vz(y), y) whenever 6(y) e [-0, 0"] (Fig. 5). In particular,
the FitzHugh-Nagumo equations [7, 11] satisfy this condition. If / = 1, the
hypothesis cannot be satisfied if H^V-^y),^) = 0 (i.e., ^V-^y), O.J') is a rest
point of (2.2, 0, e)) and 0 > @(y), contrasting with the fact that Hypothesis
(2.2, PER, (?) could be satisfied if / > 2 and 0 > 6(y).

FIG. 8. Hypothesis (2.3, PER, S) with 6 > 6(y), I = 2.

2. The proof of Theorem 2.4 implies that Hypothesis (2.2, PER, 0) (B)
and (C) could be replaced by:

(B)' F2 is defined and continuous on (Ft o F2)'(M) and jF\ is defined and
continuous on F2 o (Ft oF2)'(M) (;' — 0 ••• (/{ — 1) for some k > 1).

(C)' (/•', "F

( I t ) ' :m<l ((')' :MC weaker l l i a n (2.3, I ' I ' .R, fl) (li) :nul ((') i lF / 3.
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FIG. 9. (B1) and (C') with / = 3 and k = 2.

3. PERIODIC SOLUTIONS OF THE HODGKIN-HUXLEY EQUATIONS
WITH m = mx(V)

In this section we consider the system:

W = BW + G(V, n, h),
(3.1, H)

I ,rt »„,(())• n() , hjp) = h0 .
Hypothesis (3.1, CUBIC, H) will imply Hypothesis (2.1, CUBIC). Since

/ 2, Hypothesis (2.3, PER, 8) may be replaced by the weaker hypothesis
(.1.2, I ' I ' U , ii, II).

H Y I - O T I I K S I S (3.1, CUBIC, H). There exist VK < 0 < FNa such that for

n<rrv I ' i [ I/K . ^Nn] and n, h e [0, 1]:

(A) <V( I ' K , », //) < 0 <: <7(FNtt , n, A) «wrf G e C2.

( I t ) 77/m- rv/.v/ «/ most three t / c(F K , KNa) M/C/Z that G(V,n,h) = 0.
m.w/, // r,'(l ', ;;, //) M1IP\'(V\ n, //) 0, <)2GI8V2(V, n, h) =-/= 0.

(( ') i ' ( ; j i ' l ' ( i ) , IIH, /;„) 0, inn! Ilirrr i:\isls i'., • 0 such llial (!(\'.,, «„,/'„) 0
' ' ' f . ' ( l ' . //,, , / /„) ' /! ' 0.
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(D) 2G/Sw > 0 and 8Gj8h < 0.

(E) G(V, n^(V), hx(V)) = 0 # F = 0.

(F) 0 < Wco , ̂  < 1; nx , hx e C1; «„' > 0; and hj < 0.

(G) y n , y f t > 0 .

G(V,n0,ho)

(B) (O

FIG. 10. (A) "Cubic" G(V, na , ha). (B) n = ««,(F). (C) A =

(3.1, CUBIC, H) implies that <0, 0, w0 , hoy is the unique rest point of (3.1, H).
For z = 1,2, there exist functions V((n, h) defined on Ug C [0, I]2 with

G(Vf(n, h), n, h) = 0 and SG/dV^n, h), n, h) > 0. Let (H)4 be the system:

h)) - n),

i, h)) - A),
(3.2, H),

where <w, A) 6 cl(J7j.).
By Jump Set Lemma (2.2), there exists a function 6(n, h): nt (~\ 772 —>

(—oo, oo) such that (7/, ] 6(w, h)\, 0) admits a solution from (Vi(n, h), 0, n, /?)> to
<F2(n, A), 0, n, hy if 6>(n, A) > 0 or from <F2(w, A), 0, w, /z> to <F1(«, A), 0, n, /z>
if 6»(w, A) < 0. Moreover 86/8*1 < 0 and Se/Sh > 0.

HYPOTHESIS (3.2, PER, 9, H). (A) 61 > 0 on {6>(w, A) = -5} «ntf fc < 0 o«
{«(«, //) 5}.

(H) /'\. /.v t/i'/ini'il titul fiiri'dfisi'-conlinuous on {0(n, h) •--- 6} andF^ is defined
tlllll [>il'lftt'isi' llllllilllKIII^ III! l''.,(\0(ll, It) ill).
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TT.'TT,

8(n,h) = -6

1

FIG. 11. Jump sets of (3.1, H).

TT

|.',«i. 12. I lypothesis (3.2, PER, B, H). F, is discontinuous at ft; Fl ° F2 is discontinuous
I I I ' V I l l l t l f t .

Remark*. P., is always denned on (0(n, h) > 0} and^ is always defined on the
iniiW <,f P., if 0K , ha) > 8. Thus (B) may be weakened as remarked previously
H ~>) (A) says that all solutions of (H):, (H)2 cross {0(n, h) = -B}, {0(n, h) - 0}

in „„, direction. Since fr M' + ̂  W is satisfied if * 5 ° and ** < ° °Q
f

M«. /i) 0',; and «« - • 0 and # < 0 on {6(n, h) = 8}, independent of

r"sim-,-l' 'i |/ '<-I isaisc.,inini.o.is at /», /i> only if ̂ i(«. *)) = °' ̂ (^"' *» = °]'
(3.?., I M - U . /))"(») is siHislii-d if !>'«, /i>: rf'(n, A) 0 and 9(n, h) = 0} and {<«, A>:

/)•'•(/; /;) ( ) ; i n i l ^ ( « , //) #! aiv l ini l i ' .
1,, | , : l l | i ru l : i r . ( I I ) is su l i s l i . - . l i l n i l funct ions of (3.1, H) are real analytic and

'' "(»„ , /'„)
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THEOREM 3.3. Periodic solutions of the Hodgkin-Huxley equations with
m == mjy\ Assume Hypothesis (3.1, CUBIC, H) and (3.2, PER, 8, H). Then
(3.1, H, 8, e) admits aperiodic solution for all small e > 0.

In the proof of 3.3 we verify hypothesis (2.3, PER, S) using Lemmas 3.4 and 3.5.

LEMMA 3.4. Analysis of (H)j and (H)2. Assume Hypothesis (3.1, CUBIC, H).

(H)j: (A) <w0 , hoy is the unique rest point of (H^ . Both its eigenvalues are
negative.

(B) There exist increasing C1 functions ha , hb such that in cl^):

and
^n, h))=n iff h = ha(n),

^n, h)) = h iff h = hb(n).

Moreover, dom(ha) C (0, 1); ha(ri) = 0 /or some w; range(^6) C (0, 1);
1 e dom(A6).

(C) <n, hy e S(<ri0 , A0» if <n, A> -1 i w rfe/zncrf /or «// i ̂  0. ^/
too solutions approach <w0 , A0> in {nl > 0, A1 > 0} U {w1 < 0, /z1 < 0}.

(H)2 . (D) V2(n, h) > Of or (n, h> e 7Tg.

(E) 772 contains no rest points of (H)2 .

(F) There exist increasing C1 functions hc, hd such that in cl(772):

and
h))=n iff h=hc(n);

hx(Vz(n, h)) = h iff h= hd(n).

(M
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In addition, there exist 0 < nd < nc < nc' < 1, with nc > re0 , such that
dom^) = [0, nd]; dom(/zc) = [nc , nc']; A^) < V, and hc(nc') = 1.

(G) for ewcry <«, /i> 6 /72 i/zere exists t > 0 SMC/Z £/zai

<n, /z> * « e {<«, £>: 8G/8F (F2(w, A), n, /*) = 0}.

LEMMA 3.5. Existence of M. Let f : [0, 1] —*• (0, I) be a piecewise-continuous,
order-preserving function. Then there exists M, a closed subinterval of [0, 1], such
that f is continuous on M andf(M) C int(M).

4. FAST VARIABLES: PERIODIC SOLUTIONS OF THE
HODGKIN-HUXLEY EQUATIONS

In this section we consider the system:

(4.1)

where F e [F» , Fs] C R; 3; e ̂ (compact) C R'; a e ̂ (compact) C R™;
0, e, 8 > 0; and g,h,qe C2.

HYPOTHESIS (4.1, FAST). (A) There exists a C1 function z(V,y): [Va, Fs] X
4-McA <Aat 5(F,^, «(F,^)) = 0.

(B) For fixed <F, ̂ )e[Fa, V8] X Qy, the m eigenvalues of q(V, y, «)
(ai a function of g) at z = %(V,y) have negative real parts.

Assume that (4.1) satisfies Hypothesis (4.1, FAST) and let (4.2) be the
associated system:

F= W,
W = eW±G(V,y\ (4.2)

where G(V, y) = g(V, y, z(v, y)) and H(V, y) = h(V, y, z(v, y)).
If 8 is small, it is reasonable to expect that a bounded solution of (4.1) would

stay close to the corresponding solution of (4.2).
This is in fact the case [1]; in particular, we have Theorem 4.2.

TIIKORKM 4.2. Periodic solutions with fast variables.
Assume that (4.1) satisfies Hypothesis (4.1, FAST) and that the associated

system (4.2) satisfies Hypotheses (2.1, CUBIC) and (2.3, PER, 0). Then (4.1, 0, e, 8)
admits a periodic solution if e, 8 > 0 are small.
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. V,W,n,h
"Ha

FIG. 14. The Hodgkin—Huxley equations with & small.

COROLLARY 4.3. Periodic solutions of the Hodgkin-Huxley equations.
Let (HH) be the system:

F= W,

MV = eW + g(V, m, n, h),

n = 60-V»(*TMF) - n),

h = e<h

(4.3, HH)

Assume that ym > 0 aw<f 0 < /«„ < 1 anrf <^«i ?^e associated system (3.1, H)
(m = m^F)) satisfies Hypotheses (3.1, CUBIC, H) awrf (3.2, PER, 0, H). Then
(HH, 0, e, S) admits aperiodic solution for all small e, 8 > 0 z/0 < 0 < 0(w0 , A0);

(HH, 0, e, 8) admits a periodic solution if 8 ^ #(«0 , /I0) awrf J^ zV defined on
(n, h) = 0}).

5. PROOFS

Proofs of (1.2), (1.4), (2.2), and (3.4) appear in [1].

(2.4) We shall verify Hypothesis (1 .3, PER) for the system (2.2, 0, e) with
small. Theorem 2.4 then follows from Theorem 1.4.

Step 1. Fz ^ | F2(M) are homeomorphisms.

Proof. (2.3, PER, S) (D) implies that no trajectory of (H)2 crosses (0(y) = 0}
more than once. Thus, F2 is 1-1 and hence a homeomorphism. Similarly, F^ is
1-1.

Step 1. Choose L C int(M) such that ̂  ° F2(M) C int(L) and L is homeo-
morphic to [0, I]*-1. Then there exist blocks At C TI^ n /72 for (2.3),- (i = 1, 2)
and T > 0 such that:
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(i) No set y •* [0, oo) is contained in ,4f (»' = !, 2).

(ii) «r C {y. 8(y) > S} and az~ C (3;: 0(3-) < -0}.

(iii) ^ O (Fx o F2(L) -i [-r, r]) C int(^2); AI n (F2(L) •» [-T, T]) C i
and each set is homeomorphic to [0, I]1.

Moreover,

and

F1 °F2(L) -i [-T, 0) C {0/2 < 6(y)_< 0};

FZ(L) "2 [~r, 0) £ {-0/2 > 6(y) > -0}.

IT, U

FIG. 15. ^! and AI with Z = 2, M =

Proof. Fix 3' 6 int(M). If V is a neighborhood of y in int(M), FZ(V) is a
neighborhood of .F2(3>) in F2(M). Thus there exists Ty > 0 such that F^j) -2

(0, •/•„] Off l (v) - -5}-^ (Fig. 16).
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Let U be a neighborhood of Fz(y) in F2(M) such that y •* t $ U — {Fz(y)}
for any t. Choose V such that F2(V) C U. Then C = {y - 2 1: ye V and
t £ [0, Tz(y)}} is a cylinder in /72, and 3* -2 t e C iff * e [0, r2(^)]. Thus F^) -2

(0, Tv] C {0(3-) < -0}. Clearly F2(>-) -2 [-T, , 0) C {-5/2 > 6(y) > -0} if
T., is small. Thus there exists T > 0 such that:

and
FJL) •* (0, T] C { (̂3;) < -0}

FJL) -2 [-T, 0) C {-612 > 6(y) > -0}.

Similarly, if T is small,

and
, oF2(L) -i [-T, 0) C {0/2 < 0(j) <

We now construct ^42 . If C2 = ^ '2 [— ̂  ̂ (
homeomorphism A: [0, 1] X [0, I]1"1 -> C2 such that:

+ ^]. tnere exists a

and

h({l} x [0, I]'-1) =\Jy* (T,(y) + T).

Choose o- > 0 such that^ °F2(L) C h([0, 1] x (a, 1 — a)'-1), and let

Az^ U A(,, [(1 - ,) a, 1 - (1 - ,) a]«).
se[0,l]

s t»(y) = 9}

I'lc. 17. .•/.,.
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Then A2 is a block for (2.3)2; no sety -2 [0, oo) C Az;

V = U y ? (T2(y) + T)C (6(y) < -§};
yeL

and if T < T is small, A% n (F2(L) -2 [— r, T]) is homeomorphic to [0, 1]! and
contained in int(C1), where

c1= U A-r.^oo + r].
!/eF2(l)

The construction of Al is similar with

) [— r, T]) C

no set y • [0, oo) C

«i-= U /(^OO

and Aj nJ^ oF2(L) -1 [— T, T] homeomorphic to [0,1]* and contained in
int(//2) (shrinking T if necessary).

A 2 nP 2 {L)?[ -T ,T] c

FIG. 18. Al.

.S'/<y> .1. Use //, , A., to construct blocks Bt , B., for (2.2, S, c) satisfying
hypothesis (1.1, I 'KK) .

/V(«</ . \VV s l i n l l l i i H l Cdi i s ln ic I ;i f i i i n i l v »l

, / > ' , l < n ' i d in i ' \ , < I K I S C I I . i l l < ' i /{., is o i n s l i i n I '
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For fixed y, (2.2, 0, 0) defines a system:

171

(*),

(Compare Example 1.1.)
Since C^V^y^y) = 0 and 'dG\3V(Vv(y\y) > 0, for all small c > 0 there

exists a block 5j ,, for (*)„ containing <F1(j'), 0> with the properties described
in Example 1.1.

For c > 0, choose a C1 function c(y, s): TI± n 772 x (0, 1] -> (0, c] such that

c(y, s) = c,

= sc,

if

if

< 0

Then if c, € are small, fis = «F, PF,j;>: y e A1 and <K, PF> efiJ(ViS)i!,} is a
block for (2.2, 0, e) such that no set <F, W, j-> • [0, oo) C ft and'ft± =
ft n {< F, JT, y> : u e a± or < V, Wy £ 6jf,, s) .„} (^ of Fig. 2). (Let ^As± refer to ft .)
U(<Vz(y), 0, ̂ » is carried into each ft if y e A2 n [F2(L) -2 [— T', T']] for some
T' < r.

We now construct B2 . As before, for fixed y e 772 and small c > 0 there
exists a block B2 _„ for (*)„ containing <F2(j'), 0>. Let

B2 = {<F, JT, ̂ >: y e A, and <F, Wy e B*,v}.

If T, c, e are small, _B2 i
g a block for (2.2, 9, e) such that no positive half solution

is contained in B2; ft n JB2 = 0; and 62± = B2 n «F, W,yy\ y e a^ or
<F,PF>e^±}. Moreover, if J = {<F, JT,j> e62-; W ̂  0 and ̂  eF2(L) -2

f -T', T']}, 8,,' ; Zl n (^2(L) -2 r'}, and 81 == /I nf2(L) -2 (-T'), then for every s

I ' ina l ly , wo may now clm<i!,r i \' ;ind v suc:h lh ; i t if lit ft; jT ^5
{<(/, ̂  J7 ' A, : W 0 imil r < /'', •• /' ',(/.) ' | i . / 1 ) ; y,, /'n/-', ../-;(L) -1 T;
and yi y'n/-', -/''o(/-) ' ( i ) , t l ion

and
<'•• • • " . . ' ( r , ) 1 !" "!

/(, . ind /I, now satisfy Hypothesis ( I . I , I ' K K )
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(3.3) Lemma 3.4 implies that {d(n, h) = 9} is homeomorphic to [0, 1]
and F! ° F^ is a piecewise-continuous, order-preserving map from {d(n, h) = 9}
into itself. Lemma 3.5 then implies that there exists M C {#(«, h) = 9} such
that M is homeomorphic to [0, 1]; Ft oFz is continuous on M; and/^ oF2(M) C
int(Af). Since Fl °FZ is order-preserving, F1 and F2 are each continuous. Thus
Hypothesis (2.3, PER, 0) is satisfied.

(3.5) Let 0 ^J % < ••• < XN =sj 1 be the points of discontinuity of/. If
/V 0 (i.e., / is continuous), the lemma holds with M = [0, 1]. Assume the
lemma forN^K and prove it for N = K -f- 1. Suppose that/is continuous on
[0, *,]. (The proof for other cases is similar.) If f(xj) < xl , let M = [0, x^\
(Fig. 20(A)). If /fa) > *! , choose x such that xt < x < inf{f(x): xe(xi, 1]
(Fig. 20(B)). Then/| [x, 1] has at most K discontinuities and/([», 1]) C (x, 1).
The lemma follows from the inductive hypothesis.

0 f (x1 )

(A)

FIG. 19. (A) f(Xl)

(B)

. (B) /(*,) > Xi .

(4.2) The methods of [1] imply that whenever (4.2) satisfies (2.1, CUBIC)
ami (2.3, I'FR, S) then there exist blocks Bt , B2 for (4.1) which satisfy Hypothesis
( 1 .3, 1'KR) if 8 is small. The result then follows from Theorem 1.4.

(4.3) For fixed V, — y,,,(F) < 0 is the eigenvalue of yrn(F)(»t00(F) — m)
vvl icn in m,,(V). Thus (HH) satisfies Hypothesis (4.1, FAST). The corollary
follows from 4.2 and the proof of 3.3.
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