Fuzzy ART Choice Functions
Gail A. Carpenter and Marin N. Gjaja

Center for Adaptive Systems and Department of Cognitive and Neural Systems
Boston University, 111 Cummington Street, Boston, Massachusetts 02215 USA

Abstract

Adaptive Resonance Theory (ART) models are real-time neural networks for category
learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy
ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity
between the computations of fuzzy subsethood and the dynamics of ART category choice,
search, and learning. Fuzzy ART self-organizes stable recognition categories in response to
arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model,
replacing the set-theoretic intersection (N) with the fuzzy intersection (A), or component-wise
minimum. A normalization procedure called complement coding leads to a symmetric theory
in which the fuzzy intersection and the fuzzy union (V), or component-wise maximum, play
complementary roles. A geometric interpretation of fuzzy ART represents each category as
a box that increases in size as weights decrease. This paper analyzes fuzzy ART models
that employ various choice functions for category selection. One such function minimizes
total weight change during learning. Benchmark simulations compare performance of fuzzy
ARTMAP systems that use different choice functions.

ART and ARTMAP

Adaptive Resonance Theory (ART) was introduced as a theory of human cognitive infor-
mation processing (Grossberg, 1976). The theory has led to an evolving series of real-time
neural network models for unsupervised and supervised category learning and pattern recog-
nition. These ART ‘models form stable recognition categories in response to arbitrary input
sequences with either fast or slow learning. Unsupervised ART networks include ART 1 (Car-
penter and Grossberg, 1987a), which stably learns to categorize binary input patterns presented
in an arbitrary order; ART 2 (Carpenter and Grossberg, 1987b), which stably learns to categorize
either analog or binary input patterns presented in an arbitrary order; and ART 3 (Carpenter and
Grossberg, 1990), which carries out parallel search, or hypothesis testing, of distributed recog-
nition codes in a multi-level network hierarchy. Many of the ART papers are collected in the
anthology Pattern Recognition by Self-Organizing Neural Networks (Carpenter and Grossberg,
1991).

A supervised network architecture, called ARTMAP, self-organizes categorical mappings
between m-dimensional input vectors and n-dimensional output vectors. ARTMAP’s internal
control mechanisms create stable recognition categories of optimal size by maximizing code
compression while minimizing predictive error in an on-line setting. Binary ART | compu-
tations are the foundation of the first ARTMAP network (Carpenter, Grossberg, and Reynolds,
1991), which therefore learns binary maps. Fuzzy ART (Carpenter, Grossberg, and Rosen, 1991)
generalizes ART 1 to learn stable recognition categories in response to analog and binary input
patterns (Figure 1). The domain of fuzzy ART is thus the same as that of ART 2, but fuzzy ART
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Figure 1: Fuzzy ART module.

measures pattern similarity by the city-block metric, while ART 2 is based on the Euclidean
metric. When fuzzy ART replaces ART 1 in an ARTMAP system, the resulting fuzzy ARTMAP
architecture (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992) self-organizes cate-
gorical mappings between analog or binary input and output vectors that are stable with fast or
slow learning (Figure 2). ‘

This article analyzes fuzzy ART systems that employ various choice functions for category
selection. One such network is shown to be optimal in the sense that it minimizes total weight
change during learning. Simulations of supervised ARTMAP networks illustrate computational
properties of the different fuzzy ART choice functions. The following section outlines the
fuzzy ART algorithm with complement coding preprocessing. The limiting case of conservative
choice is then examined, along with several alternative choice functions for bottom-up category
selection. The function that minimizés the total weight change during learning is more truly
conservative than other choice functions. A geometric interpretation of fuzzy ART represents
categories as boxes that grow as weights shrink during learning. Benchmark simulations show

- that alternative choice functions minimally affect system performance. Various choice functions

may therefore be selected for their individual computational properties while maintaining the
demonstrated utility of ART 1, fuzzy ART, and ARTMAP networks. These studies indicate
that when alternative choice functions are selected for reasons such as computational ease or
generalizability, the basic ART and ARTMAP dynamics are retained.

Fuzzy ART Algorithm
Normalization by complement coding: Complement coding is a preprocessing step that
normalizes fuzzy ART input while preserving amplitude information. When a = (a,...,ap) is
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Figure 2: Fuzzy ARTMAP architecture. The ART, complement coding preprocessor transforms
the M,-vector a into the 2M,-vector A = (a,a) at the ART, field F§. A is the input to the ART,
field F¢. Similarly, the input to F} is the 2M,-vector (b,b°). When ART, disconfirms a predic-
tion of ART,, map field inhibition induces the match tracking process. Match tracking raises the
ART, vigilance p, to just above the F7-to-F§ match ratio |x¢|/|A|. This triggers an ART, search
which leads to activation of either an ART, category that correctly predicts b or to a previously
uncommitted ART, category node. '

the network input, with a; € [0, 1], the complement coded input I is the 2M-dimensional vector
I=(a,a%) = (ai,...,am,ay,...,ay), (1)

where
a=1-aq (2)

(Figure 1). Complement coding implies that |I| = M, with the city-block norm | - | defined by:
M o
=1

ART field activity vectors: Each ART system includes a field £, of nodes that represent a
current input vector and a field F; that receives both bottom-up input from F, and top-down
input from a field F, that represents the active code, or category. With complement coding, I
= (I,..., ILn) denotes Fy activity, X = (z1, . .., z2p) denotes F) activity, andy = (y1, ..., ¥2m)
denotes F3 activity. The number of nodes in each field can be arbitrarily large. -

Weight vector: Associated with each F; category node j (7 = 1,...,N) is a vector w, =
(wj1, ..., wj2nm) of adaptive weights, or long-term memory (LTM) traces. Initially each category
is uncommitted. After a category codes its first input it becomes committed. Each component




wj; can decrease but never increase during learning. Thus each weight vector w;(¢) converges
to a limit. The fuzzy ART weight, or prototype, vector w; subsumes both the bottom-up and
top-down weight vectors of ART 1.

Initial values: With complement coding, initial values of the weights are:

Parameters: A choice parameter o > 0, a learning rate parameter 3 € [0, 1], and a vigilance
parameter p € [0, 1] determine fuzzy ART dynamics.

Category choice: The system makes a category choice when at most one F, node can
become active at a given time. A choice function T;(I) determines the selected category. The
index J denotes the chosen category, with:

Ty =max{T;:j=1...N}. (5)

If more than one 7T, is maximal, the category with the smallest j index is chosen, so nodes
become committed in order j = 1,2,3,... . When the J category is chosen, y; = 1 and
y; = 0 for 7 # J. In a choice system, the F activity vector x obeys the equation:

« = {I if F is inactive ’ (6)
“ LIAw, ifthe J* F, node is chosen,

where the fuzzy intersection A (Zadeh, 1965) is defined by:
(P A Q)i = min(p;, ¢;). (7)

Weber law choice function: ART | (Carpenter and Grossberg, 1987a) and fuzzy ART
(Carpenter, Grossberg, and Rosen, 1991) employ a Weber law choice function defined by:

Weber law choice
[ IAw

TJ_‘(I) T et W (8)

for each F, node j.
Resonance or reset: Resonance occurs if the chosen category meets the vigilance criterion:

x| =[ITAw,;| > plI]. )
Learning then ensues, as defined below. Mismatch reset occurs if:
x| = [TA wy| < plI]. (10)

Then the value of the choice function 7 is set to O for the duration of the input presentation to
prevent the persistent selection of the same category during search. A new index J represents
the active category, selected again by (5) and (8). The search process continues until the chosen
J satisfies the matching criterion (9). ‘ :

Learning: Once search ends, the weight vector w; learns according to the equation:

wi = I A wPY) + (1 = B)ywh. (11)




Fast learning corresponds to setting 8 = L.

Conservative Choice
The linkage between fuzzy subsethood and ART choice/search/learning forms the foundation
of the computational properties of fuzzy ART. Vector wj is a fuzzy subset of I if:

I/\WjZWj (12)

(Zadeh, 1965), i.e., wj; < I; fori = 1,...,2M. When the choice parameter « = 0%, the Weber
law choice function T}(I) (8) measures the degree to which w; is a fuzzy subset of I (Kosko,
1986). When « = 0%, T;(I) is maximized by vectors w; that are fuzzy subsets of I, since then
T;(I) = 1=. A category J for which w; is a fuzzy subset of I will therefore be selected first,
if such a category exists. Specifically, the fuzzy subset category .J that maximizes |w;| will be
chosen since then:

;) = ——, : (13)
which is an increasing function of |w;|. If w, is a fuzzy subset of I, learning does not change
weights, since then:

W'(]new) — ,Bw'(]()ld) + (l _ ﬂ)WSOId) — W'(jold)' (14)

Because, when o = 0%, the chosen category J conserves weight values whenever possible, this
parameter range is called the fuzzy ART conservative limit. .

While fuzzy ART choice depends on the degree to which w; is a fuzzy subset of I, resonance
depends on the degree to which Iisa fuzzy subset of w,, by (9) and (10). When J is a fuzzy
subset choice, then the match function value is:

TAwy| _ |wy|

T (13)

Choosing .J to maximize |w,| among fuzzy subset choices thus maximizes the opportunity for
resonance in (9). If reset occurs for the node that maximizes |w ;| among fuzzy subset choices,
then reset will also occur for all other subset choices.

Fuzzy ART Choice Functions

The choice function T;(TI) in (8) describes a Weber law form factor that scales the degree of
match between the input I and a weight vector w; (|I A w;|) relative to the size, or degree of
specificity, of w;. The choice parameter o« modulates the scaling process. In the conservative
limit, where o = 0%, the rule:.

Choice-by-ratio

T,(I) = ==l (16)

determines .J, with the largest subset category chosen by (13) when such a category exists. At
the opposite extreme, as o« — 00, the rule:
Choice-by-intersection
Ti(I) = |IA w,y| (17)

determines .J. Since IA w; = I for any uncommitted node j, by (4), choice-by-intersection will
always select an uncommitted node, unless I = w; for some .J. Thus, at this parameter limit,



the system’s memory consists of exact copies of all input exemplars. As « moves from 0 to
00, the network becomes progressively more biased in favor of selecting an uncommitted node
rather than a coded node with a low match ratio (16). The effect of parametrically raising the
choice parameter « from 0 to oo is hereby similar to raising the vigilance parameter p from 0
to 1.

An alternative to the choice-by-ratio rule (16) minimizes the function:

T = (fw;] = LA wj)). (18)

This function is related to the membership function used by Simpson (1992). However, Simp-
son’s fuzzy min-max classifier does not permit overlapping categories and so does not require a
factor, such as (13), to differentiate fuzzy subset categories.

An extension of the rule (18) that is analogous to the Weber law rule (8) minimizes the
function 7;(I) defined by:

Choice-by-difference

T;(D) = (w;| = TAw;]) + e (TV w;| = |w;]) . (19)

In (19), V denotes the fuzzy union, or component-wise maximum (Zadeh, 1965).

Parameter ¢ in (19) is analogous to the fuzzy ART choice parameter o. When ¢ = 0%, the
category J is chosen to minimize the function (18), unless some w; is a fuzzy subset of I. Then,
the first term in (19) equals 0, so:

(M) = e (IIV w;| = |w;]) = e (JT[ = |w;]) . (20)

The function T;(I) is therefore minimized by the largest subset category .J, if such a category
exists. Thus, as in (14), the choice rule approaches a conservative limit as ¢ — 0F.
Compared to the Weber law rule (8) with o = 07, the choice-by-difference rule (19) with
e = 0% holds a superior claim to the label conservative. Both rules make a fuzzy subset choice
when possible, so both conserve weights if the fuzzy subset choice J satisfies the vigilance
criterion (9). In addition, however, the choice-by-difference rule with ¢ = 0+ selects the category
that minimizes total weight change during learning, whether or not w is a fuzzy subset of I, as
follows.. : :
Suppose that w; is not a fuzzy subset of I. Then choice-by-difference minimizes the function:
T;(I) = (lw;| = [TAw;]) + e (TV w;| —w;)

(W] = [TA w;]) > 0 1)

e

when ¢ = 0. Suppose that the chosen category J satisfies the vigilance criterion (9). Then the
learning law (11) implies that the total weight change during learning is:

AW_} = lWSOId) _ WSnew)l

=B (Iw§' = LA w§9)) .

Thus selecting J to minimize the choice-by-difference function leads to minimal weight change
among all categories that satisfy the vigilance criterion, and to no weight change if w is a fuzzy
subset of L.

(22)




At the other extreme, as ¢ — oo, choice-by-difference minimizes the function:
;M) = e (TV wj| = wy]) . (23)
T;(I) is minimal at uncommitted nodes or when w; = I, since then

Ti(T) =e(TVw;| = [w;)

= ¢ (jwj| = [w;]) = 0. (24)

Thus, like fuzzy ART with Weber law choice as o« — o0, choice-by-difference reduces to
exemplar memorization as € — oco. Correspondingly, as € moves from 0 to oo, the degree of
code compression generally decreases, as it does when the vigilance parameter p moves from 0
to 1.

Alternative choice functions have similar properties in the limit as ¢ — 0*. One such function
is:

T;(T) = (Iw;| = [TAw;]) + e (IT] = |w;]), ) (25)

as in (20). With complement coding, this function is equivalent to:
Ti(T) = (Iw;| = [TAw;]) + € (M = [w;]), (26)

since |I| = M. However, choice-by-difference maintains an aesthetic symmetry as well as a
form factor that is similar to the difference function that determines resonance (9) or reset (10).

Benchmark simulations will now show that fuzzy ART with the Weber law choice rule
(8) has performance characteristics similar to those of a system that is the same except for a
choice-by-difference rule (19) determining category selection.

Fuzzy ART Geometry

A geometric interpretation of fuzzy ART represents each category as a box in M-dimensional
space, where M is the number of components of input a. Consider an input set that consists of
2-dimensional vectors a. With complement coding,

I=(a,a%) = (a,az 1 —ay, 1 —ay). (27)

Each category j then has a geometric representation as a rectangle R;. Following (27), a
complement-coded weight vector w; takes the form: :

Ww; = (uj,"j), (28)

where u; and v, are 2-dimensional vectors. Vector u; defines the lower left corner of a category
rectangle R; and v, defines the upper right corner (Figure 3). The size of R; is:

|R;| = |v; —uy], (29)

which is equal to the Height plus the width of R;. In fact, for any M, |R;| = M — |w;|.

In a fast-learn fuzzy ART system, with 8 = 1 in (11), w
uncommitted node. The corners of R are then a and (a°)° = a. Hence Ry"™ is just the
point a. Learning increases the size of R;, which grows as the size of w, shrinks. Vigilance

p determines the maximum box size, with

F]new) =1 = (a’ aC) when J is an

R;| < 2(1 — p). During each fast-learning trial, R,
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Figure 3: Fuzzy ART category boxes. Simulations (a) and (c) use the Weber law choice function
(8), with o = 0%, and (b) and (d) use the choice-by-difference function (19), with ¢ = 0*. Plots (a)
and (b) show category boxes and decision boundaries at the time input 5 is presented. Plots (c)
and (d) show the system state after learning. Parameters § = 1.0 and p = 0.4.

expands to R,(Jom) ¢ a, the minimum rectangle containing Rf}"d) and a, with corners a A u(fld)

and a VvV v,(j’ld). However, before R; can expand to include a, reset chooses another category if
|Rs & a| is too large. With fast learning, R, is the smallest rectangle that encloses all vectors a
that have chosen category j without reset.

Figure 3 illustrates fuzzy ART category boxes at the start (a,b) and end (c,d) of an interval
in which input 5 is presented. Plots (a) and (c) use the Weber law choice function (8) and plots
(b) and (d) use the choice-by-difference function (19), both in the conservative limit. Vigilance
p = 0.4, so reset occurs if |R; & a| > 1.2 for a chosen category J. Each plot shows the decision
boundary between the set of points a that would first select box R, and the set of points that
would select box R,. In plots (a) and (b), the boxes are the same and the decision boundaries are
similar for the two choice functions. However, some points, including input 5, lie on different
sides of the boundary. With Weber law choice (a), input 5 chooses J = 2, expanding the size
of R, by 0.5 units during learning (c). With choice-by-difference (b), input 5 chooses J = I,
expanding the size of R; by 0.4 units during learning (d). This demonstrates the choice-by-
difference property of minimal total weight change. Plots (c) and (d) show the different category
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Figure 4: Fuzzy ARTMAP circle-in-the-square simulations for the Weber law choice function (8)
(----- ) and the choice-by-difference function (19) (——). ART, baseline vigilance g, = 0.0, 0.35,
and 0.7, in the conservative limit (@ = Ot, ¢ = 0%), with fast leaming (3 = 1).

structures and diverging decision boundaries that can result if a training set input falls near the
boundary.

Fuzzy ARTMAP Simulations

An ARPA benchmark simulation, circle-in-the-square (Wilensky, 1990), illustrates fuzzy
ARTMAP dynamics. The simulation task is learning to identify which points lie inside and
which lie outside a circle. During training, components of the ART, input a are the x- and
y-coordinates of a point in the unit square; and ART, input equals O or 1, identifying a as
inside or outside the circle. When ARTMAP makes a predictive error during training, match
tracking raises the ART, vigilance p, (Figure 2) just enough to trigger search for another F;}
category. This variable vigilance leads to variable category box sizes as the system balances the
competing requirements of code compression (large boxes) and predictive accuracy (small boxes
for exceptional cases).

Figure 4 shows fuzzy ARTMAP circle-in-the-square simulation results for the Weber law
choice function (dotted lines) and the choice-by-difference function (solid lines), each in the
conservative limit with fast learning. Performance is nearly identical for the two choice functions
for baseline vigilance parameters p, ranging from 0.0 to 0.7 and for training set sizes ranging
from 100 to 1000 inputs. Since choice-by-difference minimizes weight change, that system
creates slightly fewer categories when p, = 0.0 and has slightly more test set errors. Even this
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difference disappears as higher p, itself creates more ART, categories for both choice functions.
Similarly, no consistent or significant differences persist for larger values of the choice parameters
« and e.

The mushroom database (Schlimmer, 1987) generated the benchmark problem of the original
ARTMAP network (Carpenter, Grossberg, and Reynolds, 1991). The Weber law choice function
and the choice-by-difference function again show similar performance statistics across a wide
range of simulations that use this database. These include on-line and off-line learning with
varied baseline vigilance levels and training set sizes.

Performance statistics, plus the added advantage of true conservative learning, argue for the
use of the choice-by-difference function (19) when this function has computational properties that
are needed for a fuzzy ART network embedded in larger architectures or used for computations
beyond the scope of the original system.
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