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Abstract
Detecting and monitoring changes in conditions at the Earth’s surface are essential for

understanding human impact on the environment and for assessing the sustainability of
development. In the next decade, NASA will gather high-resolution multi-spectral and multi-
temporal data, which could be used for analyzing long-term changes, provided that available
methods can keep pace with the accelerating flow of information. This paper introduces an
automated technique for change identification, based on the ARTMAP neural network. This
system overcomes some of the limitations of traditional change detection methods, and also
produces a measure of confidence in classification accuracy. Landsat thematic mapper (TM)
imagery of the Nile River delta provides a testbed for land use change classification methods.
This dataset consists of a sequence of ten images acquired between 1984 and 1993 at various
times of year. Field observations and photo interpretations have identified 358 sites as belonging
to eight classes, three of which represent changes in land use over the ten-year period. A
particular challenge posed by this database is the unequal representation of various land use
categories: three classes, urban, agriculture in delta, and other, comprise 95% of pixels in
labeled sites. A two-step sampling method enables unbiased training of the neural network
system across sites.

Index terms –  Neural network, ARTMAP, Landsat Thematic Mapper TM, change detection

Introduction

Change classification is the process of identifying state transitions of an object or
phenomenon observed over time [1]. A method that uses remote sensing data for change
detection or identification needs to be able to distinguish significant variables such as radiance
and local texture from distractors such as atmospheric conditions, illumination, viewing angle,
and soil moisture. In addition, changes of interest need to be separated from temporal variations
in seasons, weather, tides, or night and day. A number of researchers have developed change
detection methods for remotely sensed satellite data [2]. However, these methods often do not
take full advantage of the information available in the images.

An early review by Singh [1] describes simple image differencing and thresholding,
principal component analysis (PCA), and change vector analysis (CVA). These methods
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typically estimate change on the basis of linear combinations of spectral bands in the input image
[3]. Some of the methods (e.g., PCA) use statistical properties of the image to extract change
components based on the assumption that image variations caused by changes in the states of
objects are different from variations caused by extraneous sources. Image classification is
frequently used for change detection, either by comparing independent classifications from two
or more dates or by making multidate classifications. Other traditional methods, such as those
based on differencing images of derived indices, including NDVI, monitor a single image index
to estimate change in the landscape. Neural networks that can utilize large quantities of on-line
information from multiple high-dimensional sources have potential to significantly improve
change detection methodologies.

The question of which method is best suited to a given problem is complicated by the
many types of changes that can occur in landscapes and how those changes are manifested in
images. A taxonomy of landcover change might begin by separating landcover changes that are
continuous from those that are categorical. In continuous landcover changes, the amount or
concentration of some attribute of the landscape is measured as a continuous variable. Examples
include changes in forest attributes such as vegetation cover, basal area, and leaf area index. The
goal of change detection would here be to track the change in a given quantity through time.
Continuous change detection methods include image differencing, change vector analysis [4],
principal component analysis [5], multitemporal Gramm-Schmidt orthogonalization [6], and
some neural networks [7-9].

Categorical change monitors temporal variations in landcover or land use categories,
including descriptors of deforestation, urbanization, expansion of agriculture, and reforestation.
Methods to identify categorical landcover change include post-classification comparisons and
multidate classification [10], and the use of thresholds in combination with image differencing
[11]. Abuelgasim et al. [12] introduced a Change Detection Adaptive Fuzzy (CDAF) network for
environmental change detection and classification to monitor landcover changes resulting from
the Persian Gulf War. This ARTMAP-based neural network assesses quantitative change in class
likelihood or class intensity within a region.

Lenney et al. [13] used a multitemporal NDVI thresholding method to classify land use
changes in the Nile River delta. This labor-intensive technique required a great deal of hand
crafting and expertise. The present article develops a land use change classification methodology
that employs an ARTMAP neural network classifier to automate change identification across a
sequence of images. These images need not be taken under uniform seasonal, atmospheric, or
illumination conditions, and sensor calibration need not be consistent across the sequence. The
ARTMAP change classification system overcomes inconsistencies by learning to identify the
multidate spectral signatures of image pixels. It also uses internal measures to estimate
confidence in classification accuracy.

ARTMAP has previously been shown to be an effective tool for landcover classification
of individual images [14-16]. A straightforward extension of this method might analyze
landcover change by first establishing categorical classifications for each date. Postclassification
comparisons of single-date class labels would then show how landcover had changed during the
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study period. Unfortunately, such a straightforward method gives poor results, since errors in
single-date classifications are compounded when multiple images are considered [1].

Multidate classification combines spectral bands from a series of dates to form a single
spectral signature. This method does not rely on single-date classifications, but rather constructs
a classifier system to extract spectral signatures that differentiate constant land use from
changing land use. Multidate classification has previously been implemented using the K-means
technique [12].

A drawback of multidate classification is that the dimension of the input vectors increases
with each date represented in the spectral signature. It is therefore desirable to use a classifier
system that scales well with high-dimensional data. The ARTMAP neural network is one such
system. It has been applied successfully to classification problems involving hundreds of input
features [17, 18], as well as to a number of remote sensing landcover classification problems [12,
14-16, 19]. The multidate ARTMAP classification method developed here extends single-date
neural network landcover classification methods, using feature vectors from a sequence of ten
satellite images as inputs to the neural network system.

ARTMAP Classification of Land Use Change

Data

Ten Landsat TM images of the Nile River delta region and surrounding areas were taken at
various times of year between 1984 and 1993. The images form the dataset used by Lenney et al.
[13] to classify land use changes based on multitemporal NDVI vegetation index features. The
images were geometrically registered and normalized as described in that study. Field data were
collected during the summer of 1993 at 88 sites in the study area. Ground truth labels for 270
additional sites were determined by expert image analysis at the Boston University Center for
Remote Sensing. This information was combined to form a database of 358 sites. In order to
make full use of the limited number of labeled sites, the present study employs four-fold cross-
validation. To this end, the database was partitioned into four subsets, each containing 89, 90, or
91 sites. Each of the four subsets was then used, in turn, as a test set to evaluate the performance
of an ARTMAP classifier which had been trained on the sites in the other three subsets.
Carpenter et al. [15] describe the use of such a cross-validation method to evaluate machine
learning systems for remote sensing applications.

Method

Data preprocessing:  Prior to performing model selection, input vectors were preprocessed. This
preparation consisted of computing transformations and scaling each input component to the
interval [0,1].

In order to investigate which input variables would be most useful for ARTMAP neural
network identification of land use change categories, several feature sets were prepared using
different transformations of the spectral data. The first feature set, SPECTRAL, contained
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untransformed spectral values from all available spectral bands and dates, for a total of 59
features. The second feature set, BGW, contained spectral data transformed by the Tasseled Cap
transformation, which transforms spectral values into coordinates known as Brightness (B),
Greenness (G), and Wetness (W) [3, 20]. This linear transformation reduces the dimension of the
spectral data from six to three while preserving most of the non-redundant information. It was
possible to compute the BGW transformation for only 9 of the 10 dates due to a missing band in
one image. Concatenating the BGW data from these 9 dates resulted in a vector of 27 features.
The third feature set, NDVI, contained the normalized difference vegetation index values [21].
These were derived from Landsat TM spectral values for each of 10 dates, for a total of 10
features.

Results of prior ARTMAP remote sensing applications suggested that auxiliary variables
(pixel location coordinates and geographic zone designations) might also contribute to neural
network classification performance [15, 16]. The feature set COORDINATES consisted of the x
and y coordinates of each pixel. The feature set ZONE consisted of 4 mutually exclusive
indicator variables:  the variable corresponding to the designated geographic zone was assigned a
value of 1 and all others were assigned a value of 0.

Table 1

2) Model selection:  For each of the four training/testing partitions, input variables and
parameters were selected by evaluation on the training set (Table 1). The Tasseled Cap
transformation (BGW feature set) gave the best performance of the three transformations under
consideration. Performance also improved when the BGW information was supplemented with
geographic zone information and image pixel locations.

Some of the ARTMAP parameters chosen via the cross-validation process were the same
for all four partitions. Namely, an option called instance counting had a consistently detrimental
effect on network performance on this problem, and so was never used; and setting the baseline
vigilance parameter 

† 

r  equal to 0 minimized cross-validated classification error. On the other
hand, other system options, including the values of the choice parameter 

† 

a , the number of
networks combined in a voting system, and the duration of training, varied across the four
partitions.

3) Training:  Each ARTMAP network was trained by presenting a random sequence of
pixels from the training subset. A major challenge encountered with this database was that the
number of pixels in individual sites varied considerably, with sites ranging in size from 4 to
3,440 pixels. Optimal prediction required that small sites be adequately represented in the neural
network training set while still exploiting information contained in all pixels of large sites. This
goal was achieved via a two-step pixel sampling process. Each training pixel was determined by
first selecting a random training site and then selecting a random pixel from that site. The
number of times each site was presented, via representative pixels, was determined during the
parameter selection phase.

4) Model testing:  Multiple trained ARTMAP networks were combined to form a
committee voting system to improve classification performance and stability [22]. Combining
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two or more networks in a committee and making a classification decision on the basis of the
average output of these committee members is a proven way of improving the expected
performance of neural network systems [23]. The number of voting networks (V) was determined
during parameter selection, with each voter weighted equally. The net vote for each class k was
taken to be the average analog output across the V voters. A classification decision was made by
selecting the class with maximum average output value.

The analog values assigned to pixels by the voting system may be thought of as estimates
of their fuzzy membership in various classes. Averaging these values across all the pixels within
a site gives membership estimates for the site. The system labels a site as belonging to the class
with the maximum fuzzy membership value.

Results and Discussion

Figure 1
Table 2

The present analysis shows how an ARTMAP system can automate the classification of
land use change from remote sensing data, to produce the map shown in Figure 1. The user’s
accuracy, defined as the rate of correct classification of test set sites in the ground truth database,
averaged 84.6% for the four systems (Table 2), compared to user’s accuracy of 87.55% reported
by Lenney et al. [13]. The producer’s accuracy, which adjusts classification rates in proportion
to the estimated true fractions of land use change categories in the map, averaged 86.4%. During
training, each neural network attempts to optimize user’s accuracy, having no knowledge of
underlying class probabilities that might enable higher performance on producer’s accuracy, such
as the 95.85% obtained by Lenney et al. Note, however, that Lenney et al. used a somewhat
different assessment dataset and testing methodology.

Table 3
Table 4

Confusion matrices (Tables 3 and 4) provide details of system predictive accuracy for
each of the nine output classes. Two of the land use change classes, urbanization and wetlands
reclaimed, had insufficient data for training the neural network. In particular, the entire ground
truth dataset included only three wetlands reclaimed sites. Not surprisingly, the learning systems
consistently failed to identify these sites when they had not been seen at all during training. Like
the NDVI-based classification system developed by Lenney et al. [13], the ARTMAP classifier
had substantial difficulty distinguishing between urban and reduced productivity classes. These
classes evidently have similar spectral signatures which are easily confused.

Figure 2

A benefit of using ARTMAP neural networks to generate land use change classification
maps is that the confidence of classification decisions is readily available via the variables 

† 

sk ,
which provide the system’s class probability estimates. A map of classification confidence thus
accompanies each primary map of land use changes. Note that large areas in the southwest
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quadrant of the study area are incorrectly classified by the ARTMAP system as urban. Figure 2
shows that the ARTMAP system is least certain of its predictions in these regions. Identifying
the areas in which the network’s classifications are most likely to be incorrect could be used to
guide manual editing of a land use change map. These areas could further be used to guide
collection of additional ground truth data.

A key feature of ARTMAP neural network classifiers is that large-scale datasets can be
analyzed rapidly and automatically, once enough sample field identifications have been made to
form the training set. Virtually every function of the current system, including cross-validated
parameter selection, feature set selection, training, testing, and map generation, could be
performed by a single integrated software package. The user would need to provide only
candidate feature vectors and ground truth training set labels to the system. Thus ARTMAP is a
natural choice among candidate systems for development of efficient land use change
classification systems.

The methods described in this paper are useful for identifying known types of change and
nonchange pixels in the image database. A second type of categorical change detection is the
identification of new landcover classes, as discussed by Abuelgasim et al. [12]. The latter type of
detection was not within the scope of this study but might is a promising area for further analysis
of multidate neural network change detection systems.

Conclusions

Like other change classification methods, the ARTMAP system presented in this paper
has attributes that recommend it for certain types of problems. In particular, the multidate
ARTMAP neural network classifier accepts high-dimensional spectral signatures containing
features from a number of different dates, and produces a confidence map.

The development of new methods for change detection and classification would be
accelerated by the parallel development of benchmark databases for training and testing. Such
resources would help researchers to compare properties of various systems and to assign
different methods to different problem types.
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Partitio
n 1

Partition
2

Partition
3

Partition
4

Parameters determined a priori

† 

b  (learning rate parameter) 1.0

† 

e  (match tracking control) -.001

† 

p  (CAM decision rule power) 1.0
Parameters determined by cross-validation

Feature set BGW + ZONE + LOCATION
Instance counting? No

† 

r  (baseline vigilance) 0

† 

a  (choice parameter) .0025 .001 .01 .001

† 

V  (number of voters) 3 2 5 4
Average number of training presentations
of each site via representative pixels

190 70 106 62

Table 1.  Parameters of the ARTMAP systems used for four cross-validation partitions.

Partition
1

Partition
2

Partition
3

Partition
4

Mean of four
partitions

User’s accuracy (%) 89.9 85.4 84.3 79.1 84.6

Producer accuracy (%) 88.5 86.9 90.2 80.1 86.4

Table 2.  Performance of the ARTMAP land use change classifier on four cross-
validation partitions.
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Field assessments
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Urban 83 63 2 10 3 2 3 75.9%

Urbanization 1 1 100.0%

Reduced productivity 20 2 1 17 85.0%

Agriculture in delta 147 4 6 4 132 1 89.8%

Agriculture in desert/coast 15 12 1 2 80.0%

Reclamation 13 2 10 1 76.9%

Wetlands reclaimed 1 1 0.0%

Other 78 1 6 3 68 87.2%

Total 358 69 10 31 135 15 19 3 76
Overall
84.6%

Table 3.  User’s Accuracy Assessment:  a composite of the performance of the ARTMAP
land use change classifier on the four cross-validation partitions.
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Field assessments

Land  use
classifications
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M
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ro
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Urban 25 5.055% 0.689% 5.744%

Urbanization 0

Reduced
productivity 4 1.804% 1.804%

Agriculture in
delta 35 2.619% 43.214% 45.833%

Agriculture in
desert/coast

4 4.411% 4.411%

Reclamation 2 2.223% 2.223% 4.446%

Wetlands
reclaimed 0

Other 19 3.968% 1.984% 31.742% 37.694%

True proportions 5.055% 2.619% 2.493% 43.214% 6.634% 6.191% 1.984% 31.742%

Producer’s accuracy 100.0% 0.00% 72.36% 100.0% 66.49% 35.91% 0.00% 100.0%
Overall
88.45%

Table 4:  Producer’s Accuracy Assessment:  This performance assessment is for the
system developed for the first cross-validation partition. Table 2 indicates that the performance
on this partition is typical.
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Figure 1.  Composite map showing ARTMAP classifications of land use changes, after
water had been separated from land via a linear threshold mask. Classes are superimposed on a
false color image acquired in 1993. Four systems, each of whose performance has been
determined by cross-validated testing, were combined to create this map.
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Figure 2.  Composite map showing confidence of ARTMAP land use change classifications,
with red indicating regions of lowest confidence. Four systems, each of whose performance has
been determined by cross-validated testing, were combined to create this map. The confidence
measure, which is based on ARTMAP output values, reflects the degree of system confusion
between two or more classes.


