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A neural network architecture for the learning of recognition categories is derived. Real-time
network dynamics are completely characterized through mathematical analysis and computer
simulations. The architecture self-organizes and self-stabilizes its recognition codes in response
to arbitrary orderings of arbitrarily many and arbitrarily complex binary input patterns.
Top-down attentional and matching mechanisms are critical in self-stabilizing the code
learning process. The architecture embodies a parallel search scheme which updates itself
adaptively as the learning process unfolds. After learning self-stabilizes, the search process is
automatically disengaged. Thereafter input patterns directly access their recognition codes
without any search. Thus recognition time does not grow as a function of code complexity. A
novel input pattern can directly access a category if it shares invariant properties with the set
of familiar exemplars of that category. These invariant properties emerge in the form of
learned critical feature patterns, or prototypes. The architecture possesses a context-sensitive
self-scaling property which enables its emergent critical feature patterns to form. They detect
and remember statistically predictive configurations of featural elements which are derived~ ..from the set of all input patterns that are ever experienced. Four types of attentional

process-priming, gain control, vigilance, and intermodal competition-are mechanistically
characterized. Top-down priming and gain control are needed for code matching and
self-stabilization. Attentional vigilance determines how fine the learned categories will be. If
vigilance increases due to an environmental disconfirmation, then the system automatically
searches for and learns finer recognition categories. A new nonlinear matching law (the ~
Rule) and new nonlinear associative laws (the Weber Law Rule, the Associative Decay Rule,
and the Template Learning Rule) are needed to achieve these properties. All the rules describe
emergent properties of parallel network interactions. The architecture circumvents the noise,
saturation, capacity, orthogonality, and linear predictability constraints that limit the codes

I which can be stably learned by alternative recognition models. c> 1987 Academic Press. Inc.
...",; .; ~~:;- ; :::-.!.:i"::."i:': ~'!" 1. INTRODUCTION: SELF-ORGANIZAnON OF NEURAL

-." ., .i RECOGNmON CODES

f '0 A fundamental problem of perception and cognition concerns the characteriza-

tion of how humans discover, learn, and recognize invariant properties of the
environments to which they are exposed. When such recognition codes sponta-
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ADAPTIVE PATTERN RECOGNITION 55

neously emerge through an individual's interaction with an environment, the
processes are said to undergo self-organization [1]. This article develops a theory of
how recognition codes are self-organized by a class of neural networks whose
qualitative features have been used to analyse data about speech perception, word
recognition and recall, visual perception, olfactory coding, evoked potentials,
thalamocortical interactions, attentional modulation of critical period termination,
and amnesias [2-13]. These networks comprise the adaptive resonance theory (ART)

0 which was introduced in Grossberg [8].
This article describes a system of differential equations which completely char-

acterizes one class of ART networks. The network model is capable of self-organiz-
0 ing, self-stabilizing, and self-scaling its recognition codes in response to arbitrary

temporal sequences of arbitrarily many input patterns of variable complexity. These
formal properties, which are mathematically proven herein, provide a secure foun-
dation for designing a real-time hardware implementation of this class of massively
parallel ART circuits.

Before proceeding to a description of this class of ART systems, we summarize
some of their major properties and some scientific problems for which they provide
a solution.

A, Plasticity

Each system generates recognition codes adaptively in response to a series of
environmental inputs. As learning proceeds, interactions between the inputs and the
system generate new steady states and basins of attraction. These steady states are
formed as the system discovers and learns critical feature patterns, or prototypeS,
that represent invariants of the set of all experienced input patterns.

B, Stability

The learned codes are ~ynamically buffered against relentless recoding by irrele-
vant inputs. The formation of steady states is internally controlled using mecha-, nisms that suppress possible sources of system instability.

C. Stability-Plasticity Dilemma: Multiple Interacting Memory Systems

The properties of plasticity and stability are intimately related. ,An adequate
system must be able to adaptively switch between its stable and plastic modes. It
must be capable of plasticity in order to learn about significant new events, yet it
must also remain stable in response to irrelevant or often repeated events. In order
to prevent the relentless degradation of its learned codes by the "blooming, buzzing
confusion" of irrelevant experience, an ART system is sensitive to novelty. It is

:' :" ..,'" .l,~,.., ,: " capable of distinguishing between familiar and unfamiliar events, as well as between["""""""""'."""'".1..";.'...'..1 . ,..;,:':..' :'"!~\' ; ..~;' expected and unexpected events.

;:;:.,~:.:. .;: .; ..,,:::,~j- 1 Multiple interacting memory. s~stems are ~eeded ,to monitor and adaptivel~ react,. 
I ~.:' to the novelty of events. WIthin ART, mteractIons between two functIonally

i : i complementary subsystems are needed to process familiar and unfamiliar events.

: Familiar events are processed within an attentional subsystem. This subsystem, establishes ever more precise internal representations of and responses to familiar

events. It also builds up the learned top-down expectations that help to stabilize the
learned bottom-up codes of familiar events. By itself, however, the attentional
subsystem is unable simultaneously to maintain stable representations of familiar

J categories and to create new categories for unfamiliar patterns. An isolated atten-
tional subsystem is either rigid and incapable of creating new categories for
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FIG. 1. Anatomy of the attentional-orienting system: Two successive stages, Fl and F2, of the
attentional subsystem encode patterns of activation in short term memory (STM). Bottom-up and

" ;,. top-down pathways between Fl and F2 contain adaptive long term memory (LTM) traces which
multiply the signals in these pathways. The remainder of the circuit modulates these STM and L TM
processes, Modulation by gain control enables Fl to distinguish between bottom-up input patterns and
top-down priming, or template, patterns, as well as to match these bottom-up and top-down patterns.
Gain control signals also enable F2 to react supraliminally to signals from Fl while an input pattern is
on. The orienting subsystem generates a reset wave to F2 when mismatches between bottom-up and
top-down patterns occur at Fl' This reset wave selectively and enduringly inhibits active F2 cells until
the input is shut off. Variations of this architecture are depicted in Fig. 14.

unfamiliar patterns, or unstable and capable of ceaselessly recoding the categories of
familiar patterns in response to certain input environments.

The second subsystem is an orienting subsystem that resets the attentional
subsystem when an unfamiliar event occurs. The orienting subsystem is essential for'
expressing whether a rlovel pattern is familiar and well represented by an existing
recognition code, or unfamiliar and in need of a new recognition code. Figure 1, schematizes the architecture that is analysed herein.

.
D. Role of Attention in Learning ,-

Within an ART system, attentional mechanisms playa major role in self-stabiliz-
ing the learning of an emergent recognition code. Our mechanistic analysis of the
role of attention in learning leads us to distinguish between four types of attentional
mechanism: attentional priming, attentional gain control, attentional vigilance, and
intermodality competition. These mechanisms are characterized below.

!~ E. Complexity .

An ART system dynamically reorganizes "its recognition codes to preserve its
stability-plasticity balance as its internal representations become increasingly com- .; plex and differentiated through learning. By contrast, many classical adaptive

pattern recognition systems become unstable when they are confronted by complex
input environments. The instabilities of a number of these models are identified in
Grossberg [7,11,14]. Models which become unstable in response to nontrivial input
environments are not viable either as brain models or as designs for adaptive
machines.

I Unlike many alternative models [15-19], the present model can deal with arbi-
~ trary combinations pf binary input patterns. In particular, it places no orthogonality
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or linear predictability constraints upon its input patterns. The model computations
remain sensitive no matter how many input patterns are processed. The model does
not require that very small, and thus noise-degradable, increments in memory be
made in order to avoid saturation of its cumulative memory. The model can store
arbitrarily many recognition categories in response to input patterns that are defined
on arbitrarily many input channels. Its memory matrices need not be square, so that
no restrictions on memory capacity are imposed by the number of input channels.

.Finally, all the memory of the system can be devoted to stable recognition learning.
It is not the case that the number of stable classifications is bounded by some
fraction of the number of input channels or patterns.

.Thus a' primary goal of the present article is to characterize neural networks
capable of self-stabilizing the self-organization of their recognition codes in re-
sponse to an arbitrarily complex environment of input patterns in a way that
parsimoniously reconciles the requirements of plasticity, stability, and complexity.

2. SELF-SCALING COMPUTATIONAL UNITS, SELF-ADJUSTING MEMORY
SEARCH, DIRECT ACCESS, AND ATTENTIONAL VIGILANCE

Four properties are basic to the workings of the networks that we characterize
herein.

A. Self-Scaling Computational Units: Critical Feature Patterns

Properly defining signal and noise in a self-organizing system raises a number of
subtle issues. Pattern context must enter the definition so that input features which
are treated as irrelevant noise when they are embedded in a given input pattern may
be treated as informative signals when they are embedded in a different input
pattern. The system's unique learning history must also enter the definition so that
portions of an input pattern which are treated as noise when they perturb a system
at one stage of its self-org~ation may be treated as signals when they perturb the
same system at a different stage of its self-organization. The present systems, automatically self-scale their computational units to embody context- and learning-

dependent definitions of signal and noise.
One property of these self-scaling computational units is schematized i,n Fig. 2. In

Fig. 2a, each of the two input patterns is composed of three features.. The patterns
agree at two of ~ three features, but disagree at the third feature. A mismatch of
one out of three features may be designated as informative by the system. When this
occurs, these mismatched features are treated as signals which can elicit learning of
distinct recognition codes for the two patterns. Moreover, the mismatched features,
being informative, are incorporated into these distinct recognition codes.

:':'.. f" '.;::.' In Fig. 2b, each of the two input patterns is composed of 31 features. The
.patterns are constructed by adding identical subpatterns to the two patterns in Fig.

2a. Thus the input patterns in Fig. 2b disagree at the same features as the input
, .patterns in Fig. 2a. In the patterns of Fig. 2b, however, this mismatch is less

; important, other things being equal, than in the patterns of Fig. 2a. Consequently,-

the system may treat the mismatched features as noise. A single recognition code
may be learned to represent both of the input patterns in Fig. 2b. The mismatched
features would not be learned as part of this recognition code because they are
treated as noise.

I The assertion that critical feature patterns are the computational units of the code
~ learning process summarizes this self-scaling property. The term critical feature
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FIG. 2. Self-scaling property discovers critical features in a context-sensitive way: (a) Two input
patterns of 3 features mismatch at 1 feature. When this mismatch is sufficient to generate distinct
recognition codes for the two patterns, the mismatched features are encoded in L TM as part of the
critical feature patterns of these recognition codes. (b) Identical subpatterns are added to the two input
patterns in (a). Although the new input patterns mismatch at the same one feature, this mismatch may be
treated as noise due to the additional complexity of the two new patterns. Both patterns may thus learn
to activate the same recognition code. When this occurs, the mismatched feature is deleted from L TM in
the critical feature pattern of the code.

indicates that not all features are treated as signals by the system. The learned units
are patterns of critical features because the perceptual context in which the features
are embedded influences which features will be processed as signals and which
features will be processed as noise. Thus a feature may be a critical feature in one
pattern (Fig. 2a) and an irrelevant noise element in a different pattern (Fig. 2b).

The need to overcolile the limitations of featural processing with some of type of
contextually sensitive .pattern processing has long been a central concern in the~ human pattern recognition literature. Experimental studies have led to the general

conclusions that "the trace system which underlies the recognition of patterns can
be characterized by a central tendency and a boundary" [20, p. 54], and that "just
listing features does not go far enough in specifying the knowledge'represented in a
concept. People also know something about the relations between the features of a
concept, and about the variability that is permissible on any feature" [21, p. 83]. We
illustrate herein how these properties may be achieved using self-scaling computa-
tional units such as critical feature patterns.

I

':":~ B. Self-Adjwting Memory Search .
..'.. '.. .No pre-wired search algorithm, such as a search tree, can maintain its efficiency as

t". : a knowledge structure evolves due to learning in a unique input environment. A .
search order that may be optimal in one knowledge domain may become extremely
inefficient as that knowledge domain becomes more complex due to learning.

The ART system considered herein is capable of a parallel memory search that
adaptively updates its search order to maintain efficiency as its recognition code
becomes arbitrarily complex due to learning. This self-adjusting search mechanism
is part of the network design whereby the learning process self-stabilizes by

.{ engaging the orienting subsystem (Sect. 1 C).
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None of these mechanisms is akin to the rules of a serial computer program.
Instead, the circuit architecture as a whole generates a self-adjusting search order
and self-stabilization as emergent properties that arise through system interactions.
Once the ART architecture is in place, a little randomness in the initial values of its
memory traces, rather than a carefully wired search tree, enables the search to carry
on until the recognition code self-stabilizes.

C. Direct Access to Learned Codes

A hallmark of human recognition performance is the remarkable rapidity with
which familiar objects can be recognized. The existence of many learned recognition
codes for -alternative experiences does not necessarily interfere with rapid recogni-
tion of an unambiguous familiar event. This 'type of rapid recognition is very
difficult to understand using models wherein trees or other serial algorithms need to
be searched for longer and longer periods as a learned recognition code becomes

, , larger and larger.
In an ART model, as the learned code becomes globally self-consistent and

predictively accurate, the search mechanism is automatically disengaged. Subse-
quently, no matter how large and complex the learned code may become, familiar
input patterns directly access, or activate, their learned code, or category. Unfamiliar
patterns can also directly access a learned category if they share invariant properties
with the critical feature pattern of the category. In this sense, the critical feature
pattern acts as a prototype for the entire category. As in human pattern recognition
experiments, an input pattern that matches a learned critical feature pattern may be
better recognized than any of the input patterns that gave rise to the critical feature
pattern [20, 22, 23].

Unfamiliar input patterns which cannot stably access a learned category engage
the self-adjusting search !)rocess in order to discover a network substrate for a new
recognition category. After this new code is learned, the search process is automati-

, cally disengaged and direct access ensues.

D. Environment as a Teacher: Modulation of Attentional Vigilance

Although an ART system self-organizes its recognition code, the environment can
also modulate the learning process and thereby carry out a teaching role. This
teaching role allows a system with a fixed set of feature detectors to function
successfully in an environment which imposes variable performance demands.
Different environments may demand either coarse discriminations or fine dis-
criminations to be made among the same set of objects. As Posner [20, pp. 53-54]

"',,.":,..;:,..,..:::-:;.);,;]. has noted:
.;: -': If subjects are taught a tight concept, they tend to be very careful about classifying any

particular pattern as an instance of that concept. They tend to reject a relatively small
, distortion of the prototype as an instance, and they rarely classify a pattern as a member of the

.concept when it is not. On the other hand, subjects learning high-variability concepts often
falsely classify patterns as members of the concept, but rarely reject a member of the concept
incorrectly. --The situation largely determines which type of learning will be superior.

In an ART system, if an erroneous recognition is followed by negative rein-
forcement, then the system becomes more vigilant. This change in vigilance may be
interpreted as a change in the system's attentional state which increases its sensitiv-

i ity to mismatches between bottom-up input patterns and active top-down critical
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feature patterns. A vigilance change alters the size of a single parameter in the
network. The interactions within the network respond to this parameter change by
learning recognition codes that make finer distinctions. In other words, if the
network erroneously groups together some input patterns, then negative rein-
forcement can help the network to learn the desired distinction by making the
system more vigilant. The system then behaves as if has a better set of feature
detectors.

The ability of a vigilance change to alter the course of pattern recognition .
illustrates a theme that is common to a variety of neural processes: a one-dimen-
sional parameter change that modulates a simple nonspecific neural process can
have complex specific effects upon high-dimensional neural information processing. .

Sections 3-7 outline qualitatively the main operations of the model. Sections
8-11 describe computer simulations which illustrate the model's ability to learn
categories. Section 12 defines the model mathematically. The remaining sections
characterize the model's properties using mathematical analysis and more computer
simulations, with the model hypotheses summarized in Section 18.

3. BOlTOM-UP ADAPTIVE FILTERING AND CONTRAST-ENHANCEMENT IN
SHORT TERM MEMORY

We begin by considering the typical network reactions to a single input pattern I
within a temporal stream of input patterns. Each input pattern may be the output
pattern of a preprocessing stage. Different preprocessing is given, for example, to
speech signals and to visual signals before the outcome of such modality-specific
preprocessing ever reaches the attentional subsystem. The preprocessed input pat-
tern I is received at the stage Fi of an attentional subsystem. Pattern I is
transformed into a pattern X of activation across the nodes, or abstract "feature
detectors," of Fi (Fig.!3). The transformed pattern X represents a pattern in short
term memory (STM). tIn Fi each node whose activity is sufficiently large generates

~

STM ACTIVITY PATTERN (Y)
F2 XjD " ,,'

VM+'. .Vi. vN.\~~R i ~CES
(ZiJ

) x) \
i ...! I i l ~VITY

.: . j ;-'f F U LJ x;U ~ PATTERN.,. -.'.. ..t 1.~"":"""~; ; ,.:...,,~,", vI. .~. .vM8 (X) .
.::..'-":..;-';.;...! i i i i . " .I

~ \ ~, INPUT PATTERN (I) .

.FIG. 3. Stages of bottom-up activation: The inpufpattern I generates a pattern of STM activation
X across Fl. Sufficiently active FI nodes emit bottom-up signals to F2. This signal pattern S is gated by
long term memory (L TM) traces within the FI -+ F2 pathways. The L TM-gated signals are summed
before activating their target nodes in F2. This LTM-gated and summed signal pattern T generates a
pattern of activation Yacross F2. The nodes in FI are denoted by VI' V2'...' VM. The nodes in F2 are

;~. I denoted by VM+I' VM+2'...' VN. The input to node Vi is den.oted by Ii. The STM activity of node Vi is
:/ denoted by Xi. The LTM trace of the pathway from Vi to Vj IS denoted by Zij.
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FIG. 4. Search for a correct F2 code: (a) The input pattern I generates the specific STM activity
pattern X at Fl as it nonspecifically activates A. Pattern X both inhibits A and generates the output
signal pattern S. Signal pattern S is transformed into the input pattern T, which activates the STM
pattern Yacross F2. (b) Pattern Y generates the top-down signal pattern U which is transformed into
the template pattern V. If V Inismatches I at Fl, then a new STM activity pattern X* is generated at Fl.
The reduction in total STM activity which occurs when X is transformed into X* causes a decrease in
the total inhibition from Fl to A. (c) Then the input-driven activation of A can release a nonspecific
arousal wave to F2, which resets the STM pattern Y at F2. (d) After Y is inhibited, its top-down
template is eliminated, and X can be reinstated at Fl' Now X once again generates input pattern T to
F2, but since Y remains inhibited T can activate a different STM pattern y* at F2. If the top-down
template due to y* also Inismatches I at Fl, then the rapid search for an appropriate F2 code continues.

I
I.

, excitatory signals along pathways to target nodes at the next processing stage F2. A

pattern X of STM activities across F1 hereby elicits a pattern S of output signals

from Fl. When a signal from a node in F1 is carried along a pathwaY,.to F2, the

signal is multiplied, or gated, by the pathway's long term memory (LTM) trace. The

L TM -gated signal (i.e., signal times L TM trace), not the signal alone, reaches the

target node. Each target node sums up of all of its LTM-gated signals. In this way,

pattern S generates a pattern T of L TM-gated and summed input signals to F2 (Fig.

4a). The transformation from S to T is called an adaptive filter.

The input pattern T to F2 is quickly transformed by interactions among the nodes""'::!;';t'-:; 
':'::~,r~ ~:

..,.,..' --'.. .r" than the mput pattern T, is stored m STM by F2.
.; .A special case of this contrast-enhancement process is one in which F2 chooses

the node which receives the largest input. The chosen node is the only one that can

i store activity in STM. In general, the contrast enhancing transformation from T to
i Yenables more than one node at a time to be active in STM. Such transformations

are designed to simultaneously represent in STM several groupings, or chunks, of an

input pattern [9, 11, 24-26]. When F2 is designed to make a choice in STM, it

.selects that global grouping of the input pattern which is preferred by the adaptive

j filter. This process automatically enables the network to partition all the input

,
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patterns whic e'received by Fl into disjoint sets of recognition categories,
correspondin~ a particular node (or "pointer," or "index") in F2. SUI
categorical m .sm is both interesting in itself and a necessary prelude t<
analysis of re .tion codes in which multiple groupings of X are simultane<
represented y. In the example that is characterized in this article, level.
designed to make a choice.

All the L TM traces in the adaptive filter, and thus all learned past experienc
the network, are used to determine the recognition code Y via the transforIn1
1 -+ X -+ S -+ T -+ Y. However, only those nodes of F2 which maintain st
activity in the STM pattern Y can elicit new learning at contiguous L TM tr,
Because the recognition code Y is a more contrast-enhanced pattern than T, 11
F2 nodes which receive positive inputs (1 -+ X -+ S -+ T) may not store any ~
activity (T -+ Y). The LTM traces in pathways leading to these nodes thus influ
the recognition event but are not altered by the recognition event. Some mem
which influence the focus of attention are not themselves attended.

4. TOP-DOWN TEMPLATE MATCHING AND STABILIZATION OF CODE
LEARNING

As soon as the bottom-up STM transformation X -+ Y takes place, the ~
activities Y in F2 elicit a top-down excitatory signal pattern U back to Fl (Fig.
Only sufficiently large STM activities in Y elicit signals in U along the feedl
pathways F2 -+ Fl. As in the bottom-up adaptive filter, the top-down signals [
also gated by LTM traces and the LTM-gated signals are summed at Fl nodes.
pattern U of output signals from F2 hereby generates a pattern Vof L TM-gated
summed input signal& to Fl. The transformation from U to V is thus alS(
adaptive filter. The pattern V is called a top-down template, or learned expecta

, Two sources of input now perturb Fl: the bottom-up input pattern 1 which

rise to the original activity pattern X, and the top-down template pattern V
resulted from activating X. The activity pattern X* across Fl that is induced
and V taken together is typically different from the activity patJero X that
previously induced by 1 alone. In particular, Fl acts to match V against 1.
result of this matching process determines the future course of learning
recognition by the network.

The entire activation sequence

r., 1 -+ X -+ S -+ T -+ Y -+ U -+ V -+ X*
,I

takes place very quickly relative to the rate with which the L TM traces in eithe
bottom-up adaptive filter S -+ T or the top-down adaptive filter U -+ V
change. Even though none of the L TM traces changes during such a short I

,,'ti!.' ~;j t~eir. prior learning strongly .~fluences the STM .patterns Y and X* that e'
I 1'" wlthin the network by deterInlmng the transformatlons S -+ T and U -+ V. We

discuss how a match or mismatch of 1 and V at Fl regulates the course of leal
I in response to the pattern 1, and in particular solves the stability-plasticity dilel

(Sect. lC).
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5. INTERACTIONS BETWEEN AnENTIONAL AND ORIENTING SUBSYSTEMS:
STM RESET AND SEARCH

In Fig. 4a, an input pattern I generates ~ STM activity pattern X across Fl. Th4
input pattern I also excites the orienting subsystem A, but pattern X at Fl inhibit
A before it can generate an output signal. Activity pattern X also elicits an outpu
pattern S which, via the bottom-up adaptive filter, instates an STM activity patten
Yacross F2. In Fig. 4b, pattern Y reads a top-down template pattern V into Fl
Template V mismatches input I, thereby significantly inhibiting STM activity acros
Fl. The amount by which activity in X is attenuated to generate X* depends UpOJ
how much of the input pattern I is encoded within the template pattern V.

.When a mismatch attenuates STM activity across Fl' the total size of thl
inhibitory signal from Fl to A is also attenuated. If the attenuation is sufficientl:
great, inhibition from Fl to A can no longer prevent the arousal source A fron
firing. Fig. 4c depicts how disinhibition of A releases an arousal burst to F2 whicl
equally, or nonspecifically, excites all the F2 cells. The cell populations of F2 react tc
such an arousal signal in a state-dependent fashion. In the special case that l'
chooses a single population for STM storage, the arousal burst selectively inhibits
or resets, the active population in F2. This inhibition is long-lasting. One physiologi
cal design for F2 processing which has these properties is a gated dipole field [10
27]. A gated dipole field consists of opponent processing channels which are gate<
by habituating chemical transmitters. A nonspecific arousal burst induces selectivi
and enduring inhibition of active populations within a gated dipole field.

In Fig. 4c, inhibition of Y leads to removal of the top-down template V, an<
thereby terminates the mismatch between I and V. Input pattern I can thu
reinstate the original activity pattern X across Fl' which again generates the outpu
pattern S from Fl and the input pattern T to F2' Due to the enduring inhibition a
F2' the input pattern T cap no longer activate the original pattern Y at F2. A nev
pattern y* is thus generated at F2 by I (Fig. 4d). Despite the fact that some l'

, nodes may remain inhibited by the STM reset property, the new pattern y* ma;
encode large STM activities. This is because level F2 is designed so that its tota
suprathreshold activity remains approximately constant, or nonnalized, oespite th,
fact that some of its nodes may remain inhibited by the STM reset me~ha:nism. Thi
property is related to the limited capacity of STM. A physiological process capab1
of achieving the STM nonnalization property is based upon on-center off-surrounc
feedback interactions among cells obeying membrane equations [10, 28].

The new activity pattern y* reads out a new top-down template pattern V*. If;
mismatch again occurs at Fl' the orienting subsystem is again engaged, thereb:
leading to another arousal-mediated reset of STM at F2.In this way, a rapid serie

.of STM matching and reset events may occur. Such an STM matching and rese
series controls the system's search of LTM by sequentially engaging the novelty-sen
sitive orienting subsystem. Although STM is reset sequentially in time via thi

.mismatch-mediated, self-terminating LTM search process, the mechanisms whic]
control the LTM search are all parallel network interactions, rather than seria
algorithms. Such a parallel search scheme continuously adjusts itself to the system'
evolving L TM codes. In general, the spatial configuration of L TM codes depend
upon both the system's initial configuration and its unique learning history, anc
hence cannot be predicted a priori by a pre-wired search algorithm. Instead, th

J. mismatch-mediated engagement of the orienting subsystem realizes the type 0
self-adjusting search that was described in Section 2B.
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"~ : EJ
I~ ,11 e.~~ 81 " l:.-:ILJ

+ +

I')- ~ (d) EJ
r.::]~ \ -.

I I

FIG. 5. Matching by the ~ Rule: (a) A top-down template from F2 inhibits the attentiona
control source as it subliminally primes target Fi cells. (b) Only Fi cells that receive bottom-up j
and gain control signals can become supraliminally active. (c) When a bottom-up input pattern
top-down template are simultaneously active, only those Fi cells that receive inputs from both s<
can become supraliminally active. (d) Intermodality inhibition can shut off the Fi gain control!
and thereby prevent a bottom-up input from supraliminally activating Fi. Similarly, disinhibition
Fi gain control source may cause a top-down prime to become supraliminal.

The mismatched-mediated search of L TM ends when an STM pattern acr01
reads out a top-down template which matches I, to the degree of accuracy req1
by the level of attenti9nal vigilance (Sect. 2D), or which has not yet undergone
prior learning. In the latter case, a new recognition category is then established

~ bottom-up code and top-down template are learned.

6. ATrENTIONAL GAIN CONTROL AND A1TENllONAL PRIr.:IING

Further properties of the top-down template matching process can be derive
considering its role in the regulation of attentional priming. Consider, for examf
situation in which F2 is activated by a level other than F1 before F1 CaI
~ctivated by a bottom-up input (Fig. Sa). In such a situation, F2 can gener~
top-down template V to Fl' The level F1 is then primed, or sensitized, to recei
bottom-up input that mayor may not match the active expectancy. As depict~
Fig. Sa, level F1 can be primed to receive a bottom-up input without necess
eliciting suprathreshold output signals in response to the priming expectancy.

On the other hand, an input pattern I must be able to generate a suprathres
activity pattern X even if no top-down expectancy is active across F1 (Figs. 4a
Sb). How does F1 know that it should generate a suprathreshold reaction
bottom-up input pattern but not to a top-down input pattern? In both c:
excitatory input signals stimulate F1 cells. Some auxiliary mechanism must exi:
distinguish between bottom-up and top-down inputs. This auxiliary mechanis
called attentional gain control to distinguish it from attentional priming by
top-down template itself (Fig. Sa). While F2 is active, the attentional prir
mechanism delivers excitatory specific learned template patterns to Fl' The a1
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tional gain control mechanism has an inhibitory nonspecific unlearned effect on the
sensitivity with which Fl responds to the template pattern, as well as to other
patterns received by Fl' The attentional gain control process enables Fl to tell the
difference between bottom- p and top-down signals.

.MATCHING: THE ~ RULE

A rule for pattern matc .gat Fl, called the! Rule, follows naturally from the
distinction between attenti al gain control and attentional priming. It says that

0 two out of three signal sou es must activate an Fl node in order for that node to

generate suprathreshold out ut signals. In Fig. 5a, during top-down processing, or
priming, the nodes of Fl r ceive inputs from at most one of their three possible0 input sources. Hence no ce s in Fl are supraliminally activated by the top-down

template. In Fig. 5b, during bottom-up processing, a suprathreshold node in Fl is
one which receives both a s ecific input from the input pattern I and a nonspecific
excitatory signal from the g" control channel. In Fig. 5c, during the matching of
simultaneous bottom-up an top-down patterns, the nonspecific gain control signal
to Fl is inhibited by the to -down channel. Nodes of Fl which receive sufficiently
large inputs from both the ottom-up and the top-down signal patterns generate
suprathreshold activities. N des which receive a bottom-up input or a top-down
input, but not both, cann t become suprathreshold: mismatched inputs cannot
generate suprathreshold acti .ties. Attentional gain control thus leads to a matching
process whereby the additi n of top-down excitatory inputs to Fl can lead to an
overall decrease in Fl's S M activity (Figs. 4a and b). Figure 5d shows how
competitive interactions acr ss modalities can prevent Fl from generating a supra-
liminal reaction to bottom p signals when attention shifts from one modality to
another.

8. COqE INSTABILITY AND CODE STABILITY

, The importance of using e! Rule for matching is now illustrated by describing
how its absence can lead 0 a temporally unstable code (Fig. 6a). The system
becomes unstable when th inhibitory top-down attentional gain control signals
"(Fig. 5c) are too small for e t Rule to hold at Fl' Larger attentional gain control
signals restore code stabili by reinstating the t Rule (Fig. 6b). Figure 6b also
illustrates how a novel e emplar can directly access a previously established
category; how the category which a given exemplar is coded can be influenced by
the categories which form t encode very different exemplars; and how the network
responds to exemplars as oherent groupings of features, rather than to isolated
feature matches or mismat es.

c'",.: ";,,"
Code Instabili~ Example

In Fig. 6, four input patt rns, A, B, C, and D, are periodically presented in the
order ABC AD. Patterns B, , and D are all subsets of A. The relationships among
the inputs that make the s' ulation work are as follows: D c C c A; B c A; B n
C = cp; and IDI < IBI < I I, where III denotes the number of features in input
pattern I. The choice of .put patterns in Fig. 6 is thus one of infinitely many
examples in which, without e! Rule, an alphabet of four input patterns cannot be
stably coded.

The numbers 1,2,3,..., "sted at the left in Fig. 6 itemize the presentation order.
The next column, labeled U for Bottom-Up, describes the input pattern that was

..
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(0) UNSTABLE CODING (b) STABLE CODING
I TOP-OOWN TEMPLATES TOP-OOWN TE~PLATES

BU 1 2 3 4 BU 1 2 3 4
II 1 ..NOOE 1 1 ..NODE 1

RES RES

2~~ 2~M
RES RES

38 ~8 38 ~8
RES RES

4 .M. NODE 2: 4 .~ 8. NODE 3:
RES 2/3 RULE FAILS 2 1 RES SEARCH

S~'~' 5~'~' .M ~
RES RES

6 ..~' 6 .~~'.
RES RES

7~' 7~' .I ~ ~ ~ M
, RES RES

8 8 8 8 8 ~'8M ~
RES RES NODE 4.

9 .~. NODE 2 9 .~~' 8. LAST.
RES 2 3 1 RES RECODING

10~' ~~' ID~' ~~' 8.
RES RES

11. .~' NODE 1 11. ~~' 8. DIRECT
RES RES ACCESS

12 ~ ~~' 12 ~ ~~"8.
RES RES

138M 8 13 8 ~~' 8 .
RES RES

14. M. NODE 2 14. ~~' 8.
RES RES

15~' M~' 15~' ~ ~, 8 ..
: RES RES

; FIG. 6. Stabilization of categorical learning by the ~ Rule: In both (a) and (b), four input patterns A,

B, C, and D are presented repeatedly in the list order ABCAD. In (a), the ~ Rule is violated because the
top-down inhibitory gain control mechanism is weak (Fig. 5c). Pattern A is periodically coded by vM+l
and VM+2' It is never coded by a single stable category. In (b), the ~ Rule is restored by strengthening
the top-down inhibitory ~ain control mechanism. After some initial recoding during the first two
presentations of ABCAD, 'all patterns directly access distinct stable categories. A black square in a

, template pattern designates that the corresponding top-down L TM trace is large. A blank square

designates that theL TM trace is smaIl. ~

..
"

presented on each trial. Each Top-Down Template column corresponds to a
different node in F2. If M nodes VI' V2' ..., V M exist in Fl, then the F2 nodes are
denoted by VM+l' VM+2"'.' UN. Column 1 corresponds to node vM+i, column 2
corresponds to node VM+2' and so on. Each row summarizes the network response
to its input pattern. The symbol RES, which stands for resonance ,designates the

;;;;, .;::c.,' node in F2 which codes the input patte~ on that trial. For example, VM+2 codes .
:;: .pattern C on trial 3, and VM+l codes pattern B on trial? The patterns in a given
.row describe the templates after learning has equilibrated on that trial.

In Fig. 6a, input pattern A is periodically recoded. On trial 1, it is coded bY'VM+l; .
on trial 4, it is coded by vM+i; on trial 6, it is coded by VM+l; on trial 9, it is coded
by VM+2' This alternation in the nodes VM+l and VM+2 which code pattern AI
repeats indefinitely.

Violation of the ! Rule occurs on trials 4, 6, 8, 9, and so on. This violation is, 
illustrated by comparing the template of VM+2 on trials 3 and 4. On trial 3, the
template of VM+2 is coded by pattern C, which is a subset of pattern A. On trial 4,

J pattern A is presented and directly activates node VM+2' Since the inhibitory

.~
;
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top-down gain control is too weak to quench the mismatched portion of the input,
pattern A remains supraliminal in Fl even after the template C is read out from
VM+2. No search is elicited by the mismatch of pattern A and its subset template C.
Consequently the template of VM+2 is recoded from pattern C to its superset
pattern A.

Code Stability Example

In Fig. 6b, the t Rule does hold because the inhibitory top-down attentional gain
control channel is strengthened. Thus the network experiences a sequence of
recodings that ultimately stabilizes. In particular, on trial 4, node VM+2 reads-out
the template C, which mismatches the input pattern A. Here, a search is initiated, as
indicated by the numbers beneath the template symbols in row 4. First, VM+2'S
template C mismatches A. Then VM+l'S template B mismatches A. Finally A
activates the uncommitted node VM+3' which resonates with Fl as it learns the
template A.

In Fig. 6b, pattern A is coded by VM+l on trial 1; by VM+3 on trials 4 and 6; and
by VM+4 on trial 9. Note that the self-adjusting search order in response to A is
different on trials 4 and 9 (Sect. 2B). On all future trials, input pattern A is coded
by VM+4. Moreover, all the input patterns A, B, C, and D have learned a stable
code by trial 9. Thus the code self-stabilizes by the second run through the input list
ABC AD. On trials 11-15, and on all future trials, each input pattern chooses a
different code (A ~ VM+4; B ~ VM+l; C ~ VM+3; D ~ VM+2). Each pattern be-
longs to a separate category because the vigilance parameter (Sect. 2D) was chosen
to be large in this example. Moreover, after code learning stabilizes, each input
pattern directly activates its node in F2 without undergoing any additional search
(Sect. 2C). Thus after trial 9, only the "RES" symbol appears under the top-down
templates. The patterns spown in any row between 9 and 15 provide a complete
description of the learned' code., Examples of how a novel exemplar can activate a previously learned category are

found on trials 2 and 5 in Figs. 6a and b. On trial 2 pattern B is presented for the
first time and directly accesses the category coded by v M + l' which was,.. previously
learned by pattern A on trial 1. In other words, B activates the same categorical
"pointer," or "marker," or "index" as A. In so doing, B may change the categorical
template, which determines which input patterns will also be coded by this index on
future trials. The category does not change, but its invariants may change.

,~, , ;

!. 9. USING CONTEXT TO DISnNGUISH SIGNAL FROM NOISE IN PATTERNS, ,,- -

i ,," _OF: YARIABLE COMPLEXITY
'j c;;;:i;j{ ""!..': '" , ,

.: i~:]i .The simulation in Fig. 7 illustrates how, at a fixed vigilance level, the network
'.. ; automatically rescales its matching criterion in response to inputs of variable

! complexity (Sect. 2A). On the first four trials, the patterns are presented in the order

.ABAB. By trial 2, coding is complete. Pattern A directly accesses node VM+l on trial
3, and pattern B directly accesses node VM+2 on trial 4. Thus patterns A and B are
coded by different categories. On trials 5-8, patterns C and D are presented in the
order CDCD. Patterns C and D are constructed from patterns A and B, respec-
tively, by adding identical upper halves to A and B. Thus, pattern C differs from
pattern D at the same locations where pattern A differs from pattern B. Due to the

J addition of these upper halves, the network does not code C in the category VM+l of

"
I

~
;
i
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TOP-DOWN TEMPLATES
BU 1 2 3 4

NEW CATEGORY 1 A. .
RES

NEW CATEGORY 2 B w .W
1 RES

NO RECODING: TD = au 3 A. ~.W ~RES 2 CATEGORIES

NO RECOOING: TD = au 4 B w .W
RES

NEW CATEGORY 5 C. .w .
1 2 RES

RECOOING TO TD " au 6 D W .w .
1 RES

NO RECOOING: TD c au 7 C. .W ~.) RES 1 CATEGORY
NO RECODING: TD c au 8 D W .w .~

RES

FIG. 7. Distinguishing noise from patterns for inputs of variable complexity: Input patterns A and B
are coded by the distinct category nodes vM+l and VM+2' respectively. Input patterns C and D include
A and B as subsets, but also possess identical subpatterns of additional features. Due to this additional
pattern complexity, C and D are coded by the Saqle category node vM+3. At this vigilance level
(p = 0.8), the network treats the difference between C and D as noise, and suppresses the discordant

elements in the VM+3 template. By contrast, it treats the difference between A and B as informative, and
codes the difference in the VM+l and VM+2 templates, respectively.

A and does not code D in the category VM+2 of B. Moreover, because patterns C
and D represent many more features than patterns A and B, the difference between
C and D is treated as noise, whereas the identical difference between A and B is
considered significant. In particular, both patterns C and D are coded within the
same category VM+3 o,h trials 7 and 8, and the critical feature pattern which forms
the template of VM+j does not contain the subpatterns at which C and D are, mismatched. In contrast, these subpatterns are contained within the templates of

VM+l and VM+2 to enable these nodes to differentially classify A and B.
Figure 7 illustrates that the matching process compares whole activity patterns

across a field of feature-selective cells, rather than activations of individual feature
detectors, and that the properties of this matching process which enable it to
stabilize network learning also automatically rescale the matching criterion. Thus
the network can both differentiate finer details of simple input patterns and tolerate
larger mismatches of complex input patterns. This rescaling property also defines
the difference between irrelevant features and significant pattern mismatches.

';. I: If a mismatch within the attentional subsystem does not activate the orienting .
.-fJ subsystem, then no further search for a different code occurs. Thus on trial 6 in Fig.

; 7, mismatched features between the template of VM+3 and input pattern D are
trea~ed as noise in the sense that they are rapidly suppressed in short term memory .
(STM) at Fl, and are eliminated from the critical feature pattern learned by the
v M + 3 template. If the mismatch does generate a search, then the mismatched
features may be included in the critical feature pattern of the category to which the
search leads. Thus on trial 2 of Fig. 6, the input pattern B mismatches the template
of node VM+l' which causes the search to select node VM+2. As a result, A and B
are coded by the distinct categories VM+! and VM+2, respectively. If a template
mismatches a simple input pattern at just a few features, a search may be elicited,
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thereby enabling the network to learn fine discriminations among patterns com-
posed of few features, such as A and B. On the other hand, if a template
mismatches tlie same number of features within a complex input pattern, then a
search may not be elicited and the mismatched features may be suppressed as noise,
as in the template of VM+3' Thus the pattern matching process of the model
automatically exhibits properties that are akin to attentional focussing, or "zooming
."ffi.

10. VIGILANCE LEVEL TUNES CATEGORICAL COARSENESS:
DISCONFIRMING FEEDBACK

The previous section showed how, given each fixed vigilance level, the network
automatically rescales its sensitivity to patterns of variable complexity. The present
section shows that changes in the vigilance level can regulate the coarseness of the
categories that are learned in response to a fixed sequence of input patterns. First
we need to define the vigilance parameter p.

Let III denote the number of input pathways which receive positive inputs when
I is presented. Assume that each such input pathway sends an excitatory signal of
fixed size P to A whenever I is presented, so that the total excitatory input to A is
Pili. Assume also that each Fl node whose activity becomes positive due to I
generates an inhibitory signal of fixed size Q to A, and denote by IXI the number of
active pathways from Fl to A that are activated by the Fl activity pattern X. Then
the total inhibitory input from Fl to A is QIXI. When

Pili> QIXI, (2)

the orienting subsystem A receives a net excitatory signal and generates a non-
specific reset signal to F2 (Fig. 4c). The quantity.-

, P

p = Q , (3)

..
..

is called the vigilance parameter of A. By (2) and (3), STM reset is ini4ated when

., IXI'"""r

;;"'~~ic~:': TIT' ., )
:: ',c

.STM reset is prevente

I XI ; ,.,. ., 'c 0 : ( ).;;ii£;ii.,' p ~ TIT' c' -,.'- --~ 5

In other words, the proportion lXI/III of the input pattern I which is matched by
the top-down template to generate X must exceed p in order to prevent STM reset
at F2.

While F2 is inactive (Fig. 5b), IXI = III. Activation of A is always forbidden in
this case to prevent an input I from resetting its correct F2 code. By (5), this

f

~
i
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;
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constraint is achieved if

p ~ 1; .(6)

that is, if P ~ Q.
In SU1I)Inary, due to the t Rule, a bad mismatch at Fl causes a large collapse of

total Fl activity, which leads to activation of A. In order for this to happen, the
system maintains a measure of the original level of total Fl activity and compares
this criterion level with the collapsed level of total Fl activity. The criterion level is
computed by summing bottom-up inputs from I to A. This sum provides a stable
criterion because it is proportional to the initial activation of Fl by the bottom-up
input, and it remains unchanged as the matching process unfolds in real-time.

We now illustrate how a low vigilance level leads to learning of coarse categories,
whereas a high vigilance level leads to learning of fine categories. Suppose, for
example, that a low vigilance level has led to a learned grouping of inputs which
need to be distinguished for successful adaptation to a prescribed input environ-
ment, but that a punishing event bccurs as a consequence of this erroneous grouping
(Sect. 2D). Suppose that, in addition to its negative reinforcing effects, the punishing
event also has the cognitive effect of increasing sensitivity to pattern mismatches.
Such an increase in sensitivity is modelled within the network by an increase in the
vigilance parameter, p, defined by (3). Increasing this single parameter enables the
network to discriminate patterns which previously were lumped together. Once these
patterns are coded by different categories in F2, the different categories can be
associated with. different behavioral responses. In this way, environmental feedback
can enable the network to parse more finely whatever input patterns happen to
occur without altering the feature. detection process per se. The vigilance parameter
is increased if a punishing event amplifies all the signals from the input pattern to A
so that parameter p: increases. Alternatively, p may be increased either by a

, nonspecific decrease in the size Q of signals from Fl to A, or by direct input signals

to A. .
Figure 8 describes a series of simulations in which four inl]ut patterns-

A, B, C, D-are coded. In these simulations, A c B c C c D. Tbe different parts
of the figure show how categorical learning changes with changes of p. When
p = 0.8 (Fig. 8a), 4 categories are learned: (A)(B)(C)(D). When p = 0.7 (Fig. 8b),
3 categories are learned: (A)(B)(C, D). When p = 0.6 (Fig. 8c), 3 different cate-
gories are learned: (AXB, CXD). When p = 0.5 (Fig. 8d), 2 categories are learned:
(A, lJ)(C, D). When p = 0.3 (Fig. 8e), 2 different categories are learned:
(A, B, C)(D). When p = 0.2 (Fig. 8f), all the patterns are lumped together into a
single category. -'.

11. RAPID CLASSIFICATION OF AN ARBITRARY TYPE FONT

In order to illustrate how an ART network codifies a more complex series of
patterns, we show in Fig. 9 the first 20 trials of a simulation using alphabet letters as
input patterns. In Fig. 9a, the vigilance parameter p = 0.5. 1n Fig:9b, p = 0.8.
Three properties are notable in "these simulations. First, choosing a different
vigilance parameter can determine different coding histories, such that higher
vigilance induces coding into finer categories. Second, the network modifies its
search order on each trial to reflect the cumulative effects of prior learning, and
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( (0 ) P = 0.8 (b) P = 0.7
, ,-,'t',;". TOP-DOWN TE~PlATES TOP-DOWN TEMPLATES
~ ..:' au 1 2 3 4 au 1 2 3 4
I': ,,'k: 1 1 1 1 1 1

'...:iI ,~ RES RES
~~,:': 2+1+ 2+1+

,,' 1 RES 1 RES
.."'cr" 3 * 1 + * 3 * 1 + *

l;~ 2 1 RES 2 1 RES
c,c'l 4- 1+*- 4- 1+*,( :5 2 1 RES RES

(c) P = 0.6 (d) p = 0.5
TOP-DOWN TE~PlA TES TOP-DOWN TE~PLA TES

au 1 2 3 4 au 1 2 3 4
1 1 1 1 1 1

RES RES

2+ 1+ 2+ 1
1 RES RES

3*1+ 3*1*
RES 1 RES

.' 4 -1 +- 4 -1 *
, .,.' 2 1 RES RES

'. :11,~, (e) p = 0.3 (f) p = 0.2
'.,::, TOP-DOWN TE~PLATES TOP-DOWN TE~PLATES

"C,;: au 1 2 3 4 au 1 2 ;5 4
1 1 1 1 1 1-"...:0',

C',!" , RES RES
"~~ 2 + 1 2 + 1

'III", :~c RES RES
i;~:~' ,,!,
,:," ~c 3 * 1 3 * 1

RES RES

4- I- 4. 1
1 RES RES

FIG. 8. Influence of vigilance level on categorical groupings: As the vigilance parameter p decreases,
the number of categories progressively decreases,

J.
...

, .-' bypasses the orienting subsystem to directly access categories after le,arning has
-taken place. Third, the templates of coarser categories tend to be more abstract

because they must approximately match a larger number of input pattern exem-

plars.
Given p = 0.5, the network groups the 26 letter patterns into 8 stable categories

,~;'" within 3 presentations. In this simulation, F2 contains 15 nodes. Thus 7 nodes
i,J remain uncoded because the network self-stabilizes its ..learning after satisfying

.'. .\ criteria of vigilance and global self-consistency. Given p = 0.8 and 15 F2 nodes, the

.:': ;: :::::~~~~":"'~~ ;f~~.:::::~~~:,;:t;~.j. network groups. 25 ~f the 26 letters into 1~ stable categories ~~ 3 pres~ntatio~s.
.;".. ..",.";:. -l:1 The 26th letter 1S rejected by the network m order to self-stabilize its learnIng while

'- ,-::.:'c: : :1 satisfying its criteria of vigilance and global self-consistency. Given a choice of p
:; '~i;-,:: i. closer to 1, the network classifies 15 letters into 15 distinct categories within 2

presentations. In general, if an ART network is endowed with sufficiently many
nodes in Pi and F2, it is capable of self-organizing an arbitrary ordering of
arbitrarily many and arbitrarily complex input patterns into self-stabilizing recogni-
tion categories subject to the constraints of vigilance and global code'self-con-

sistency.
We now turn to a mathematical analysis of the properties which controlleaming

and recognition by an ART network.
!
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(a) TOP-DOWN TEIAPLA TE5 (b) TOP-DOWN TEIAPlA TE5
BU 1 2 3 4 5 BU 1 2 3 4 5 6 7 8 9 1D

1 A A 1 A A
RES RES

2BFc 2BFc
RES RES

3 [: r p=.5 3 [: Fc[: p=.8
RES 1 RES

4D r 4D Fc[:D
RES 2 1 RES

5E rE ..5E Fc[:DE
--~~ "i,_~:!:2RES
6P rE 6P F[:DE

RES RES

76 rlE 76 F[:DIE
1 RES 1 RES

8 H r I~ 8 H F [: D IE H
RES 1 .5 2 RES

9 X r I~ X 9 X F [: D Z H
1 RES 1 RES

107 rl~7 .107 F[:D~H
RES RES

11 K r I.: 7 11 K F [: D ~ ..:
RES RES

12 L r 1 .7 12 L F L D ~ ..:
RES RES

13 M r 1 .7 M 13 M F L D ~ ..: M
2 1 RES .2 5 1 RES

14 N r 1 .7 N 14 NFL D ~ ..: N
1 RES RES

15 C r 1 .7 to! 15 C F L D ~ ..: to!
RES RES

1-
16 P r!. 7 to! 16 P F L D ~ ..: tol P

RES 1 .5 5 2 4 RES

17 m r 1 .7 H 17 m F L D ~ ..: tol P m
1 2 RES 7 2 1 5 5 ..RES

18 R r 1 .7 H 18 R F L D ~ ..: tol P m
RES RES

195 r I.~H 195 F LD~":NP$
1 2 RES 2 5 5 1 4 .RES

I
20 T r I .-: H 20 T F L D ~ ..: tol P $ T

, RES 5 5 1 .2 RES

,
FIG. 9. Alphabet learning: different vigilance levels cause different numbers of letter categories and

different critical feature pattems,or templates, to form. .0-

j"
12. NETWORK EQUATIONS: INTERACTIONS BETWEEN SHORT 1ERM

MEMORY AND LONG TERM MEMORY PATTERNS

The STM and L TM equations are described below in dimensionless form [29],
where the number of parameters is reduced to a minin1um.

i
.: ~ ," ; A STM Equations",
:::~-! ., , .o. , .

-;'..:, The STM activity xk of any node Vk in FI or F2obeys a membrane equation of
the form ;::1, '~,;:' ',:

::; ..::,~.;:: ;~..;"'~7;"":. ,::;f: cf .',;;: :-':~i ,1;[ .;~j;JT, "'.

;i..,n ;~;""""C d '~~?: ,-s' '
;.(" ',;~~;i;;,:~;: Edixk = -Xk + (1 -AXk)Jk+'T;.,(B + CXk)Jk-, (7)

where Jk+ is the total excitatory input to Vk,Jk- is the total inhibitory input to Uk'
and all the parameters are nonnegative. If A >0 and C> 0, then the STM activity

J Xk(t) remains within the finite interval [-BC-I, A-I] no matter how large the
I nonnegative inputs Jk+ and Jk- become.

f
4'.
;

,. -~

;

"



---

ADAPTIVE PAlTERN RECOGNITION 73..

We denote nodes in Fl by Vi' where i = 1,2,..., M. We denote nodes in F2 by
vi' where j = M + 1, M + 2,..., N. Thus by (7),

d
edixi = -Xi + (1 -Alxi)J;+ -(Bl + ClXi)J;- (8)

and
d

e-xj = -Xj + (1 -A2xj)Jj+ -(B2 + C2Xj)Jj-. (9)
dt

In the no~ation of (1) and Fig. 4a, the Fl activity pattern X = (Xl' X2"..' XM) and
the F2 activity pattern Y = (XM+l' XM+2"'" XN).

The input J;+ to the ith node Vi of Fl is a sum of the bottom-up input Ii and the
top-down template input V;

V; = DlLf(xj)Zji; (10)
j

that is,

J;+ = Ii + V;, (11)

where f(x.) is the signal generated by activity X j of Vj' and Z ji is the L TM trace in
the top-d~wn pathway from Vj to Vi' In the notation of Fig. 4b, the input pattern
I=(Il,I2,...,IM), the signal pattern U=(f(XM+l),f(XM+2),...,f(XN»' and
the template pattern V = (VI, V2,..., VM).

The inhibitory input J;- governs the attentional gain control signal

! J;- = Lf(Xj}' -(12)
~ j

Thus J;- = 0 if and only if F2 is inactive. When F2 is active, Ji- > 0' and hence
term J;- in (8) has a nonspecific inhibitory effect on all the STM activities Xi of Fl'
In Fig. 5c, this nonspecific inhibitory e~ect is mediated by inhibition of an active
excitatory gain control channel. Such a mechanism is formally described by (12).
The attentional gain control signal can be implemented in any of several formally
equivalent ways. See the Appendix for some alternative systems.

The inputs and parameters of STM activities in F2 are chosen so that the F2 node
which receives the largest input from Fl wins the competition for STM activity.

0 Theorems provide a basis for choosing these parameters [30-32]. The inputs Jj+ and
J- to the F2 node Vj have the following form.J Input, Jj+ adds a positive feedback signal g(Xj) from vi to itself to the bott<:>m-up

.adaptive filter input 1j, where

1j = D2Lh(Xi)Zir (13)
i

That is,

J Jj+ = g(Xj) + 1j, (14)

.
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where h(Xi) is the signal emitted by the Fl node Vi and Zij is the LTM trace in the
pathway from Vi to Vi. Input ~- adds up negative feedback signals g(Xk) from all
the other nodes in F2,

~- = L g(Xk). (15)
k..j

In the notation of (1) and Fig. 4a, the output pattern S = (h(Xl)' h(X2)'...' h(XM»
and the input pattern T = (TM+l' TM+2'...' TN).

Taken together, the positive feedback signal g(Xj) in (14) and the negative
feedback signal ~- in (15) define an on-center off-surround feedback interaction
which contrast-enhances the STM activity pattern Yof F2 in response to the input
pattern T. When F2's parameters are chosen properly, this contrast-enhancement
process enables F2 to choose for STM activation only the node Vj which receives the
largest input 1j. In particular, when parameter E is small in Eq. (9), F2 behaves
approximately like a binary switching, or choice, circuit:

f(Xj)= { 1 if1j=.max{Tk} (16)

0 otherWIse.

In the choice case, the top-down template in (10) obeys

- {Dl Z ji if the F2 node V j is activeV; - 0 .f F ...(17)1 2 IS machve.

Since V; is proportional to the LTM trace Zji of the active F2 node vi' we can define
the template pattern j1hat is read-out by each active F2 node Vj to be VU) =

; Dl(zft,Zj2,...,ZjM)..

B. L TM Equations .
The equations for the bottom-up LTM traces Zij and the top-do~ LTM traces

Zji between pairs of nodes Vi in Fl and Vj in F2 are formally summarized in this
section to facilitate the description of how these equations help to generate useful
learning and recognition properties.

The L TM trace of the bottom-up pathway from Vi to Vj obeys a learning
equation of the form , -

'- '"

d _:,,! c:::
.:'j -d Zij = Kj(xj)[-Eijzij + h(Xi)]' ..'0 (18)
.., t

In (18), term f ( x j) is a postsynaptic sampling, or learning, signal because f (x) = 0
implies (d/dt)Zij = O. Term f(xj) is also the output signal of Vj to pathways from Vj
to Fl, as in (10).

i The LTM trace of the top-down pathway from Vj to Vi also obeys a learningI 
equation of the form

I. d
S d;Zji = KJ(xj)[-Ejizji + h(Xi)]. (19)

..

~
i

1
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In the present model, the simplest choice of K2 and Eji was made for the top-down
L TM traces

K2 = Eji = 1. (20)

A more complex choice of Eij was made for the bottom-up L TM traces in order
to generate the Weber Law Rule of Section 14. The Weber Law Rule requires that
the positive bottom-up L TM traces learned during the encoding of an Fl pattern X
with a smaller number I XI of active nodes be larger than the L TM traces learned
during the encoding of an Fl pattern with a larger number of active nodes, other
things being equal. This inverse relationship between pattern complexity and
bottom-up LTM trace strength can be realized by allowing the bottom-up LTM
traces at each node Vj to compete among themselves for synaptic sites. The Weber
Law Rule can also be generated by the STM dynamics of Fl when competitive
interactions are assumed to occur among the nodes of Fl' Generating the Weber
Law Rule at Fl rather than at the bottom-up L TM traces enjoys several ad-
vantages, and this model will be developed elsewhere [33]. In particular, implement-
ing the Weber Law Rule at Fl enables us to choose Eij = 1.

I Competition among the LTM traces which abut the node Vj is modelled herein by
! defining
I

Eij = h(Xi) + L -1 L h(Xk) (21)
k*i

I and letting Kl = constant. It is convenient to write Kl in the form Kl = KL. A
physical interpretation of this choice can be seen by rewriting (18) in the form

I
..~Zij = kf(Xj) [(1 -zij)Lh(Xi) -Zij L h(Xk) ] .(22)

dt k*i

,
By (22), when a postsynaptic signal f(xj) is positive, a positive presynaptic signal
from the Fl node Vi can commit receptor sites to the LTM process,z;j at a rate
(1 -zij)Lh(Xi)Kf(xj)' In other words, uncommited sites-which number (1 -Zij)
out of the total population size I-are committed by the joint action of signals
Lh(Xi) and Kf(xj)' Simultaneously signals h(xk)' k * i, which reach Vj at different
patches of the Vj membrane, compete for the sites which are already committed to
Zij via the mass action competitive terms -zijh(Xk)Kf(Xj)' In other words, sites
which are committed to Zij lose their commitment at a rate -ZijLk*ih(xk)Kf(Xj)
which is proportional to the number of committed sites Z ij' the total competitive
input -Lk..ih(xk)' and the postsynaptic gating signal Kf(xj)'

Malsburg and Willshaw [34] have used a different type of competition among
L TM traces in their model of retinotectal development. Translated to the present
notation, Malsburg and Willshaw postulate that for each fixed Fl node Vi' competi-
tion occurs among all the bottom-up LTM traces Zij in pathways emanating from
Vi in such a way as to keep the total synaptic strength LjZij constant through time.
This model does not generate the Weber Law Rule. We show in Section 14 that the
Weber Law Rule is essential for achieving direct access to learned categories of
arbitrary input patterns in the present model.
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C. STM Reset System
A simple type of mismatch-mediated activation of A and STM reset of F2 by A

were implemented in the simulations. As outlined in Section 10, each active input
pathway sends an excitatory signal of size P to the orienting subsystem A.
Potentials Xi of F1 which exceed zero generate an inhibitory signal of size Q to A.
These constraints lead to the following Reset Rule.

Reset Rule

Population A generates a nonspecific reset wave to F2 whenever

IXI P
~<P=Q' (23)

where] is the current input pattern and I XI is the number of nodes across F1 suc4
that Xi > O. The nonspecific reset wave successively shuts off active F2 nodes until
the search ends or the input pattern] shuts off. Thus (16) must be modified as
follows to maintain inhibition of all F2 nodes which have been reset by A duqng the
presentation of ]:

F2 Choice and Search

f(Xj) = {1 if 1J =.max{Tk: k E J} (24)

0 othefWlse

where J is the set of indices of F2 nodes which have not yet been reset on the
present learning trial. At the beginning of each new learning trial, J is reset at
{M + 1,..., N}. (See Fig. 1.) As a learning trial proceeds, J loses one index at a
time until the mismat9h-mediated search for F2 nodes terminates.,

, 13. DIRECT ACCESS TO SUBSET AND SUPERSET PATTERNS

The need for a Weber Law Rule can be motivated as follows. ~uppose that a
bottom-up input pattern ](1) activates a network in which pattern ](1) is perfectly
coded by the adaptive filter from F1 to F2. Suppose that another p~trern ](2) is also
perfectly coded and that ](2) contains ](1) as a subset; that is, ](2) equals ](1) at all
the nodes where ](1) is positive. If ](1) and ](2) are sufficiently different, they should
have access to distinct categories at F2. However, since ](2) equals ](1) at their
intersection, and since all the F1 nodes where ](2) does not equal ](1) are inactive
when ](1) is presented, how does the network decide between the two categories
when ](1) is presented?

:. To accomplish this, the node V(I) in F2 which codes ](1) should receive a bigger .

.signal from the adaptive filter than the node V(2) in F2 which codes a superset ](2) of
](1). In order to realize this constraint, the LTM traces at V(2) which filter](I) should .
be smaller than theLTM traces at V(I) which filter ](1). Since the LTM traces at V(2)
were coded by the superset pattern ](2), this constraint suggests that larger patterns
are encoded by smaller L TM traces. Thus the absolute sizes of the L TM traces
projecting to the different nodes V(I) and V(2) reflect the overall scale of the patterns
](1) and ](2) coded by the nodes. The quantitative realization of this inverse
relationship between L TM size and input pattern scale is called the Weber Law
Rule.
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FIG. 10. Th5 We9c.r Law Rule and the Associative Decay Rule enable both subset and sjlperset input
patte;ns to di~~ctly access .1i~tinct F2 nodes: (a) and (b) schematize the learning induced by presentation
of 1< ) (a SJ..'ffset pattern) and ~ (a superset pattern). Larger path endings designate larger learned L 1M

tra.ces:,{t) and. (d) schematize ?o~- Pi) and [<2) ~~tl~;'3cces~ the F2 nodes vii) ,and v(2), r~s~c::~ly. .-.:0. -~.-" _.-
~roperty Illustrates how distinct, &tit otherwise afbltr~, Input patterns can directly Ac;£ess differeiit ..-

categories. No restrictions on input orthogon~~~_P~~tability are nee_d.~:--
"',-~--'

This inverse relationship suggests how a subset ](1) may selectively activate its
node v(1) rather than t)le node V(2) corresponding to a superset ](2). On the other
hand, the superset ](2) must also be able to directly activate its node V(2) rather than
the node v(1) of a subset ](1). To achieve subset access, the positive LTM traces of
v(1) become larger than the positive LTM traces of V(2). Since presentation of ](2)
activates the entire subset pattern [(1), a further property is needed to understand
why the subset node v(1) is not activated by the superset [(2). This property-which
we call the Associative Decay Rule- implies that some L TM traces decay toward
zero during learning. Thus the associative learning laws considered herein violate
Hebb's [35] learning postulate.

In particular, the relative sizes of the LTM traces projecting to an F2 node reflect
the internal structuring of the input patterns coded by that node. During learning of
](1), the LTM traces decay toward zero in pathways which project to v(1) from F1
cells where ](1) equals zero (Fig. lOa). Simultaneously, the LTM traces become large
in the pathways which project to v(1) from F1 cells where [(1) is positive (Fig. lOa).
In contrast, during learning of [(2), the LTM traces become large in all the pathways
which project to V(2) from F1 cells where ](2) is positive (Fig. lOb), including those
cells where [(1) equals zero. Since ](2) is a superset of [(1), the Weber Law Rule
implies that LTM traces in pathways to V(2) (Fig. lOb) do not grow as large as LTM
traces in pathways to v(1) (Fig. lOa). On the other hand, after learning occurs, more
positive L TM traces exist in pathways to V(2) than to v(1). Thus a trade-off exists
between the individual sizes of L TM traces and the number of positive L TM traces

'I
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w\1i'-:i lead to each F2 node. This trade-off enables 1(1) to access V(l) (Fig. lOc) and
1(2) to access V(2) (Fig. 10d).

14. WEBER LAW RULE AND ASSOCIATIVE DECAY RULE FOR BO1TOM-UP
L TM TRACES

We now describe more precisely how the conjoint action of a Weber Law Rule
anf, an Associative Decay Rule allow direct access to both subset and superset F2
cod~. To fix ideas, suppose that each input pattern I to Fl is a pattern of O's and .
1 's. Let III denote the number of l's in the input pattern I. The two rules can be
summarized as follows.

.".
Associative Decay Rule

As learning of I takes place, L TM traces in the bottom-up coding pathways and
the top-down template pathways between an inactive F1 node and an active F2 I
node approach O. Associative learning within the L TM traces can thus cause
decreases as well as increases in the sizes of the traces. This is a non-Hebbian form
of associative learning.

;
I

iI', J

.-Weber Law Rule

As learning of I takes plaCe~, LTM traces in the botto~-apo 'Codli~g pathways
which join active F 1 and F2 nod~",~pproach an asymptote6f the form '. '- "'-'

"-""0 ".. ' \."" -'., 4~" \ ~5)
0 "'" c a- +rI oJ' \." ---~-_o""p r

where a and fJ are positive constants. By (25), larger III values imply smaller
positive LTM traces in the pathways encoding I.

Direct access by the subset 1(1) and the superset 1(2) can now be understood as
follows. By (25), the positive L TM traces which code 1(1) have size

a (26)
~+I1<i>T -

and the positive LTM traces which code 1(2) have size

a (27)

fJ +11(2)1'

where 11(1)1 < 11(2)1. When 1(1) is presented at F1,II(1)1 nodes in F1 are supra- .
threshold. Thus the total input to v(1) is proportional to

aII(1) I .
T -(28)11 -fJ + 11(1)1

and the total input to V(2) is proportional to

al 1(1) I
T -(29)12 -fJ + 11(2) I -
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Because (25) defines a decreasing function of III and because 11(1)1 < 11(2)1, it
follows that Tn > T12. Thus 1(1) activates V(l) instead of V(2).

When 1(2) is presented at F1, 11(2)1 nodes in F1 are suprathreshold. Thus the total
input to V(2) is proportional to

all(2) 1T22 = fJ +11(2)1' (30)

We now invoke the Associative Decay Rule. Because 1(2) is superset of 1(1), only
those F1 nodes in 1(2) that are also activated by 1(1) project to positive LTM traces
at v(l). Thus the total input to V(l) is proportional to

all(l) IT21 = p+TJ<1>T' (31)

Both T22 and T21 are expressed in terms of the Weber function

W(lll) = ~, (32)

which is an increasing function of III. Since 11(1)\ < 11(2)\, T22 > T21' Thus the
superset 1(2) activates its node V(2) rather than the subset node V(l). In summary,
direct access to subsets and supersets can be traced to the opposite monotonic
behavior of the functions (25) and (32).

It remains to show how the Associative Decay Rule and the Weber Law Rule are
generated by the STM fnd L TM la~_s (8)-(22). The Associative Decay Rule for

, bottom-up LTM traces follows from (22). When the F1 node vj is inactive,
h(Xj) = O. When the F2 node vi is active, f(Xi) = 1. Thus if Zjj is the LTM trace in .
a bottom-up pathway from an inactive F1 node Vj to an active F2 node vi' (22)
reduces to .-

4

d-z. = -Kz. ~ h( X k). (33)dt IJ IJ .£...
k",j

The signal function h(Xk) is scaled to rise steeply from 0 to the constant 1 when Xk
exceeds zero. For simplicity, suppose that,

.; :'.; '-.'- ".; ...:;,';l: " ." c;

h(x ) = {1 if Xk >.0 (34)
k 0 othefWlse..

Thus during a learning trial when Vj is inactive,

r. h(Xk) = lXI, (35)
k",j

where IXI is the number of positive activities in the F1 activity pattern X. By (33)
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and (35), when Vj is inactive and Vj is active,

d
diZjj = -KzjjlXI (36)

which shows that Zjj decays exponentially toward zero.
The Weber Law Rule for bottom-up LTM traces Zjj follows from (22), (24), and

(34). Consider an input pattern I of O's and l's that activates III nodes in Fl and
node Vj in F2. Then, by (34),

M
E h(Xk) = III. (37)
k-l

For each Zjj in a bottom-up pathway from an active Fl node Vj to an active F2
node vi' f(Xj) = 1 and h(Xj) = 1, so

d
diZjj = K[(l -Zjj)L -zjj(III -1)]. (38)

At equilibrium, dZjj/dt = O. It then follows from (38) that at equilibrium

IX
Zjj = p+IJI (39)

as in (25), wjth IX = L and .B = L -1. Both IX and .B must be positive, which is the
case if L > 1. By (22), ibis means that each lateral inhibitory signal '-h(Xk)' k ~ i,

, is weaker than the dire'ct excitatory signal Lh(Xj), other things being equal.
When top-down signals from F2 to Fl supplement a bottom-up input pattern I

to Fl, the number IXI of positive activities in X may become smaller-than III due
:- ,;;, ,- to the t Rule. If Vj remains active after the F2 node Vj becomes active, (38)'-. " .,t~j.'j , generalizes to
" 't

J':11 d'~ [ ]',,;' diZjj = K (1 -zjj)L -zjj(lXI -1) .(40)

: ;';
,.: ' By combining (36) and (40), both the Associative Decay Rule and the Weber Law

[~;:::;:.:.,:~-.;~: ~-~~:, Rule for bottom-up LTM traces may be understood as consequences of the LTM

-.' , equation
1":::, .-d { K[(1-Zjj)L-Zj;(lXI-1)] ifvjandvjareactive .

diZjj= -KIXlzjj ',,';;. ifvjisinactiveandvjisactive (41)

0 if Vj is inactive.

Evaluation of term IXI in (41) depends upon whether or not a top-down template
perturbs Fl when a bottom-up input pattern I is active.
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15. TEMPLATE LEARNING RULE AND ASSOCIATIVE DECAY RULE FOR
TOP-DOWN LTM TRACES

The Template Learning Rule and the Associative Decay Rule together imply that
the top-down L TM traces in all the pathways from an F2 node v encode the
critical feature pattern of all input patterns which have activated v' without
triggering F2 reset. To see this, as in Section 14, suppose that an input p~tern Iof
O's and 1 's is being learned.

Template Learning Rule

As learning of I takes place, L TM traces in the top~down pathways from an
active F2 node to an active F1 node approach 1.

The Template Learning Rule and the Associative Decay Rule for top-down L TM
traces Z ji follow by combining (19) and (20) to obtain

, ': d

di"Zji =f(xj)[-Zji + h(Xi)]' (42)

If the F2 node Vj is active and the F1 node Vi is inactive, then h(Xi) = 0 and
f(Xj) = 1, so (42) reduces to

d
di"Zji = -Zji' (43)

Thus Z ji decays exponentially toward zero and the Associative Decay Rule holds.
On the other hand, if both Vi and Vj are active, then f(Xj) = h(Xi) = 1, so (42)

reduces to I

, d
di"Zji = -Zji + 1. (44)

.
Thus Z ji increases exponentially toward 1 and the Template Learning "Rule holds.

Combining equations (42)-(44) leads to the learning rule goventing the L TM
traces Z ji in a top-down template

l d { -Zji+..1 if Vi and Vj are active

r -Zji = -Zji if Vi is inactive and Vj is active (45)
.' dt 0 .f '..

'. .'.:':-' :':(~~;1. 1 Vj IS InactIve.

:';-"~I Equation (45) says that the template of Vj tries to learn the activity pattern across F1
.when Vj is active.

! The t Rule controls which nodes Vi in (45) remain active in response to an input
I pattern I. The t Rule implies that if the F2 node Vj becomes active while the F1

node Vi is receiVing a large bottom-up input Ii' then Vi will remain active only if Zji
JoC is sufficiently large. Hence there is some critical strength of the top-down L TM

traces such that if Zji falls below that strength, then Vi will never again be active
J when Vj is active, even if Ii is large. As long as Zji remains above the critical LTM

strength, it will incre~e when Ii is large and Vj is active, and decrease when Ii is

..
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small and Vj is active. Once Zji falls below the critical LTM strength, it will decay
toward 0 whenever Vj is active; that is, the feature represented by Vi drops out of the
critical feature pattern encoded by Vj.

These and related properties of the network can be summarized compactly using
the following notation.

Let I denote the set of indices of nodes Vi which receive a positive input from the
pattern I. When I is a pattern of O's and 1 's, then

, I = { I if i E I. (46).
I 0 otherwIse,

where I is a subset of the FI index set {I... M}. As in Section 12, let VU) = DI(Zjl .

...Z ji ...Z jM) denote the template pattern of top-down L TM traces in pathways
leading from the F2 node Vr The index set VU) = VU)(t) is defined as follows:

.~-. i E VU) iff Zj; is larger than the critical LTM strength required for Vi to be active
when Vj is active and i E I. For fixed t, let X denote the subset of indices {I. ..M}
such that i E X iff the FI node Vi is active at time t.

With this notation, the t Rule can be summarized by stating that when a pattern
I is presented,

( I if F2 is inactive
X = In VU) if the F2 node Vj is active. (47)

The link between STM dynamics at FI and F2 and LTM dynamics between FI and
F2 can now be succinctly expressed in terms of (47),

I

d { K[(I-Zij)L-ZijUXI-l)] ifiEXandj(xj) =1
~ -Zij= -KIXlzij ifilt:Xandj(xj) =1 (48)

dt
0 ifj(xj) = 0 '

and ~ 4 .,

{ -Z..+1 ifiEXand j( x. ) =1 d )1 )

j diZji = -Zji ~f i It: X ~d j(Xj) = 1 (49)

.: 0 nj(xj) -O.
:.f"...,j -, ."

.~; ..,":c ..'.'" "cr' ,. A number of definitions that were made intuitively in Sections 3-9 can now be

summarized as follows.

";, ~'~7~;'4r':"'; ':, Definitions

Coding
An active F2 node vJ is said to code an input Ion a given trial if no reset of vJ

occurs after the template V(J) is read out at Fl.
I Reset could, in principle, occur due to three different factors. The read-out of the
I template v(J) can c~ange the activity pattern X across Fl. The new pattern X could

~
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conceivably generate a maximal input via the F1 -+ F2 adaptive filter to an F2 node
other than vJ' The theorems below show how the t Rule and the learning rules
prevent template read-out from undermining the choice of vJ via the F1 -+ F2
adaptive filter. Reset of vJ could also, in principle, occur due to the learning induced
in the LTM traces ZiJ and ZJi by the choice of vJ' In a real-time learning system
whose choices are determined by a continuous flow of bottom-up and top-down
signals, one cannot take for granted that the learning process, which alters the sizes
of these signals, will maintain a choice within a single learning trial. The theorems in
the next sections state conditions which prevent either template readout or learning
from resetting the F2 choice via the adaptive filter from F1 to F2.

Only the third possible reset mechanism-activation of the orienting subsystem
A by a mismatch at F1-is allowed to reset the F2 choice. Equations (5) and (47)
imply that if v J becomes active during the presentation of I, then inequality

II n y(J)1 ~ pili (50)

is a necessary condition to prevent reset of vJ by activation of A. Sufficient
conditions are stated in the theorems below.

Direct Access
Pattern I is said to have direct access to an F2 node vJ if presentation of I leads

at once to activation of vJ and vJ codes Ion that trial.
By Eqs. (13) and (34), input I chooses node VJ first if, for all j * J,

L ZiJ > L Zij' (51)
iEI iEI

The conditions under which vJ then codes I are characterized in the theorems
below. I.

, Fast Learning

For the remainder of this article we consider the fast learning case in which
learning rates enable L TM traces to approximately reach the asymptotes petermined
by the STM patterns on each trial. Given the fast learning assumption,"at the end of
a trial during which v J was active, (48) implies that

{ L
ifieX":i ZiJ ~ L -1 + 'XI. .(52)

.:" 0 If I ~ X"..;. :,:,..:~ -

i"" .-:":,' and (49) implies thatI 
..." f..

" "" { I if i e X
( 53 ).zJr -0 if i ~ X.

Thus although Zij * Zji in (52) and (53), Zij is large iff Zji is large and Zij = 0 iff
z"" = o. We can therefore introduce the following definition.

JI

Asymptotic Learning
I An F2 node Vj has asymptotically learned the STM pattern X if its LTM traces
~ Z ij and Z ji satisfy (52) and (53).

,
I
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By (47), X in (52) and (53) equals either I or I n V(}). This observation motivates
the following definition.

Perfect Learning
An F2 node vi has perfectly learned an input pattern I iff vi has asymptotically

learned the STM pattern X = I.

16. DIRECT ACCESS TO NODES CODING PERFECTLY LEARNED PA1TERNS

We can now prove the following generalization of the fact that subset and
super~et nodes can be directly accessed (Sect. 13).

THEOREM 1 (Direct access by perfectly learned patterns). An input pattern I has
direct access to a node v J which has perfectly learned I if L > 1 and all initial
bottom-up L TM traces satisfy the

L
Direct Access Inequality 0 < Zi

J.(O) <, (54)L-1+M

where M is the number of nodes in Fl'

Proof In order to prove that I has direct access to v J we need to show that: (i)
vJ is the first F2 node to be chosen; (ii) VJ remains the chosen node after its
template V(J) is read out at FI; (ill) read out of V(J) does not lead to F2 reset by
the orienting subsystem; and (iv) vJ remains active as fast learning occurs.

To prove property (i), we must establish that, at the start of the trial, ~ > 1J for
all j * J. When I is presented, III active pathways project to each F2 node. In
particular, by (13) anq (34),

I.
.., TJ = D2LziJ (55)

ieI
arid '

~ ~ ..
T. = 1>2 ~ z, '. . (56)J ~ IJ J

ieI

Because node vJ perfectly codes I at the start of the trial, it follows from (52) that

{ L
ifieI..;:~ ZiJ = OL -1 + III if i ~ I. (57).

Y;;4
By (55) and (57), ,j- -: " .

1
c c D 2L II I ' ie".\, .= ". ~,,- (58)

TJ L -1 + III

In order to evaluate T in (56), we need to consider nodes vi which have asymptoti-
cally learned a diffeient pattern than I, as well as nodes vi which are as yet

J uncommitted. Suppose that vi' j * J, has asymptotically learned a pattern V(}) * I.

.
~
;

i
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Then by (52),

{ L if i E yU)

, Zij= L-1+ly(j)1 (59)

0 if i $ y(}).

By (59), the only positive L TM traces in the sum Li E IZ ij in (56) are the traces with
indices i E I n yv). Moreover, all of these positive LTM traces have the same
value. Thus (59) implies that

D2LII n Y(})\
1J = L -1 + IY(j)l. (60)

We now prove t TJ in (58) is larger than 1J in (60) if L > 1; that is,

III IInY(})1
L -1 + III > L -1 + IY(})I. (61)

Suppose firs that IY(})I > III. Then III ~ II n Y(})I and (L -1 + III) <
(L -1 + IY(j) ), which together imply (61).

Suppose ne that IY(})I ~ III. Then, since y(}) * I, it follows that III >
I I n Y (}) I. Th , since the function w / (L -1 + w) is an increasing function of w,

III II n y(j) I
"1:r1+-111 > L -1 + II n y(j) I " (62)

.
~ Finally, sin (j~1 ~ II n Y(f)I,

, I I n Y (j) I I I n Y ()) I '
-~;;~~ L-1+IInY(})I~L'-'-1+IY(})I. ." (63)

Inequalities (6 ) and (63) together imply (61). This completes the proof that 1 first
activates VJ ra er than any other previously coded node vi.

It remains to prove that I activates vJ rather than an uncommitted node Vj which
has not yet been chosen to learn any category. The LTM traces of each uncom-
mitted node Vj obey the Direct Access Inequality (54), which along with III ~ M
implies that

l-I 
D;LIII ' D2LIII -;::.::

T=;?;.>DLz-,=T..i'.c -(64)J L-1+ II I L-1+M 2, IJ J
"', r' lEI

'" '"

,

This completes the proof of property (i).
The proof of property (ii), that VJ remains the chosen node after its template V(J)

is read out, follows immediately from the fact that y(J) = I. By (47), the set X of
active nodes remains equal to I after V(J) is read-out. Thus T J and 1J are

S unchanged by read-out of V(J), which completes the proof of property (ii).

~

~
i

i

,
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i Property (ill) also follows immediately from the fact that I n v<J) = I in the
inequality

II n V(J)/ ~ pili, (50)

Property (iv) follows from the fact that, while vJ is active, no new learning occurs,
since vJ had already perfectly learned input pattern I before the trial began. This
completes the proof of Theorem I,

17. INITIAL STRENGTHS OF LTM TRACES

A. Direct Access Inequality: Initial Bottom-Up LTM Traces are Small .

Theorem 1 shows that the Direct Access Inequality (54) is needed to prevent
uncommitted nodes from interfering with the direct activation of perfectly coded
nodes. We now show that violation of the Direct Access Inequality may force all
uncommitted nodes to code a single input pattern, and thus to drastically reduce the
coding capacity of F2'

To see this, suppose that for all Vj in F2 and all i E I,

L
Zjj(O) > L -1 + II" (65)

Suppose that on the first trial, vj, is the first F2 node to be activated by input I.
Thus T, > T" where j * j l' at the start of the trial, While activation of VJ' persists,h J 1

T decreases towards the value D2LIII(L -1 + 111)-1 due to learning, However,
h

for all j *A,

D2LIIII T,=D 2 '""z.. (O» .(66).J i... IJ L -1 + II IlEI
,

By (66), 1Jl eventually decreases so much.that 1Jl = 1J2 for some other node Vh in
F2. Thereafter, 1Jl and 1J2 both ap~roach .D2LIII(L -1 + 111)-: as activation
alternates between vj, and vh' Due to Inequality (65), all F2 nodes.vj eventually are
activated and their 1J values decrease towards D2LIII(L -1 + 111)-1, Thus all the
F2 nodes asymptotically learn the same input pattern I. The Direct Access In-
equality (54) prevents these anomalies from occurring. It makes precise the idea that
the initial values of the bottom-up L TM traces Z jj(O) must not be too large.

B, Template Learning Inequality: Initial Top-Down Traces are Large

2In contrast, the initial top-down L TM traces Z jj(O) must not be too small. The 3" .
Rule implies that if the initial top-down L TM traces Z jj(O) were too small, then no
uncommitted F2 node could ever learn any input pattern, since all F1 activity would
be quenched as soon as F2 became active. .

To understand this issue more precisely, suppose that an input I is presented.
While F2 is inactive, X = I. Suppose that, with or without a search, the uncom-
mitted F2 node vJ becomes active on that trial, In order for VJ to be able to encode
I given an arbitrary value of the vigilance parameter P, it is necessary that X remain
equal to I after the template V<J) has been read out; that is,

In V<J)(o) = I for any I. (67)
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Because I is arbitrary, the t Rule requires that y(J) initially be the entire se1
{I,... ,M}. In other words, the initial strengths of all the top-down LTM trace!
ZJ1'" ZJM must be greater than the critical LTM strength, denoted by z, that i!
required to maintain suprathreshold STM activity in each F1 node Vi such thaI
i E I. Equation (49) and the t Rule then imply that, as long as I persists and VJ
remains active, ZJi ~ 1 for i E I and ZJi ~ 0 for i ~ I. Thus y(J) contracts frorr
{I, ..., M} to I as the node vJ encodes the pattern I.

It is shown in the Appendix that the following inequalities imply the t Rule

t Rule Inequalities

max{l, D1} < Bl < 1 + D1; (68:

and that the critical top-down L TM strength is

B-1
z = 1. (69'D '

1

Then the

Template Learning Inequality

.l~zji(O»z (70:

implies that yU)(O) = {I... M} for all j, so (67) holds.

C. Activity-DepeAdent Nonspecific Tuning of Initial LTM Values.
, Equations (52) and (53) suggest a simple developmental process by which th,

opposing constraints on Zij(O) and Zji(O) of Sections 17A and B can be achieved
Suppose that at a developmental stage prior to the category learning stage, all F
and F2 nodes become endogenously active. Let this activity nonspecifically influenci
F1 and F2 nodes for a sufficiently long time interval to allow their L'I'M traces tc
approach their asymptotic values. The presence of noise in the system implies tha
the initial Z ij and Z ji values are randomly distributed close to these asymptotil
values. At the end of this stage, then,

1;;1 L
:~~~1 .Zij(O) ~ L -1 + M ' ~ ":,,,:(71

and ' ,u';:

Zji(O) ~ 1 (72

for all i = 1... M and j = M + 1... N. Thebottom~up LTMtraces zifO) and th
top-down L TM traces Z ji(O) are then as1arge as possible, and still satisfy the Direc
Access Inequality (54) and the Template Learning Inequality (70). Switching fror
this early developmental stage to the category learning stage could then be viewed a

I a switch from an endogenous source of broadly-distributed activity to an exogenou
1 source of patterned activity.

i
~
i

i
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18. SUMMARY OF THE MODEL

Below, we summarize the hypotheses that define the model. All subsec
theorems in the article assume that these hypotheses hold.

Binary Input Patterns

I. = { I if i E I
I 0 otherwise.

Automatic Bottom-Up Activation and t Rule

( I if F2 is inactive
X = I n VU) if the F2 node Vj is active.

Weber Law Rule and Bottom-Up Associative Decay Rule

d
{ K[(l-Zij)L-Zij(IXI-l)] ifiEXandf(xj) =1

-z.= -K I X l z.. ifieXand f( x ) =ldt IJ IJ J

0 iff(xj) = O.

Template Learning Rule and Top-Down Associative Decay R.ule

~ - { =Zji + 1 ~f ~ E X and f(Xj) : 1

Z .-Z J/ if I e X and f ( Xl' ) 1dt JI
I 0 iff(Xj) = O.

Reset Rule I

An active F2 node Vj is reset if ...
IInV(j)1 P

<P= -.
; , III Q
,
,

Once a node is reset, it remains inactive for the duration of the trial.

..:...':' F] Choice and Search-..,
.:C If J is the index set of F2 nodes which have not yet been reset on the pn

learning trial, then

;;~: ..f(Xj) = {1 if 1J =.max{Tk: k E J} ""

, 0 otherwIse,

where

1 1J = D2 r. Zij.
I ieX

.,
~
;

i
.,
f;
;
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In addition, all STM activities Xi and Xj are reset to zero after each learning trial.
The initial bottom-up LTM traces Zi)O) are chosen to satisfy the

Direct Access Inequality

L
0 < Zij(O) < L -1 + M. (54)

The initial top-down L TM traces are chosen to satisfy the

0 Template Learning Inequality

B-1
1 ~ Zji(O) > z= 1. (75)

" D1
,.

Fast Learning

It is assumed that fast learning occurs so that, when Vj in F2 is active, all LTM
traces approach the asymptotes,

{ L
ifiEXZij ~ L -1 + IXI (52)

0 ifi~X

and
// _ { I ifiEX ( ), tji= 0 ifi~X. 53

on each learning trial. A complete listing of parameter constraints is p~ovided in..
Table 1. .

;'c.:' .'c.~ ,,' " TABLE 1

Parameter Constraints

."~~}.,,,'.A~:~O ',,'-
'. ' C1 ~ 0

max{l, D1} < Bl <) f-Dl '".,,' '-
0<£«1 .', "" 'K= 0(1) c

L>l
O<p~l

L -
0 < Z .(0) </} L -1 + M

-B1-11 ~ Zj;(O) > Z = -

Dl

J -_O~!Ii,f,g,h~l .,.,

~

~
i

f

,
;
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19. ORDER OF SEARCH AND STABLE CHOICES IN SHORT-TERM MEMORY

We will now analyze further properties of the class of ART systems which sa
the hypotheses in Section 18. We will begin by characterizing the order of se~
This analysis provides a basis for proving that learning self-stabilizes and lea<
recognition by direct access.

This discussion of search order does not analyse where the search ends. C
things being equal, a network with a higher level of vigilance will require betu
matches, and hence will search more deeply, in response to each input pattern.
set of learned filters and templates thus depends upon the prior levels of vigil~
and the same ordering of input patterns may generate different L TM encodings
to the settings of the nonspecific vigilance parameter. The present discu!
considers the order in which search will occur in response to a single input pal
which is presented after an arbitrary set of prior inputs has been asymptoti,
learned.

We will prove that the values of the F2 input functions 1J at the start of each
determine the order in which Fi nodes are searched, assuming that no F2 node:
active before the trial begins. To distinguish these initial 1J values from subseq
1J values, let OJ denote the value of 1J at the start of a trial. We will show th~
these values are ordered by decreasing size, as in

0.>0>0.>...11 12 13 '

then F2 nodes are searched in the order vii' Vj2' Vj3"'. on that trial. To prove
result, we first derive a formula for OJ.

When an input I is first presented on a trial,

OJ = D2 L Zjj'
I ;eI.

, where the Zjj's are evaluated at the ~tart of the trial. By the Associative Decay I
Zjj in (77) is positive only if i E yv), where yv) is also evaluated at the start 0
trial. Thus by (77), ,

..
0=D 2 ~ Z... .

J "'" /J
;eInvU)

If the LTM traces Zjj have undergone learning on a previous trial, then (52) im:

L-.-
,', Zjj= L.i-l+lyU)1
i' :;
, for all i E yU). If Vj is an uncommitted node, then the Template Lear

Inequality implies that I n yU) = I. Combining these facts leads to the folIo'
formula for OJ'

Order Function

{ D LII n YU)I 2
1 ( ') 1 if v j has been chosen on a previous trialO. = L -1 + Y J

J

D2LjeIZjj(0) if Vj is an uncommitted node.

.
I

~
i

f
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In response to input pattern I, (76) implies that node Vj is initially chosen by F2.
After Vjl is chosen, it reads-out template V(h) to Fl. WhenIV(h) and I both perturb
FI, a new activity pattern X is registered at FI, as in Fig. 4b. By the t Rule,
X = I n y(h). Consequently, a new bottom-up signal pattern from FI to F2 wiU
then be registered at F2. How can we be sure that Vh will continue to receive the
largest input from FI after its template is processed by FI? In other words, does
read-out of the top-down template VUI) confirm the choice due to the ordering oj
bottom-up signals OJ in (76)? Theorem 2 provides this guarantee. Then Theorem 3
shows that the ordering of initial 1j values determines the order of search on eacl1
trial despite the fact that the 1j values can fluctuate dramatically as different 1';
nodes get 'activated.

THEOREM 2 (Stable choices in STM). Assume the model hypotheses of Section 18.
Suppose that an F2 node vJ is chosen for STM storage instead of another node v
because OJ > OJ" Then read-out of the top-down template v(J) preserves the inequalit}
TJ> 1j and thus confirms the choice ofvJ by the bottom-up filter.

Proof Suppose that a node vJ is activated due to the input pattern I, and thai
vJ is not an uncommitted node. When vJ reads out the template v(J) to FI, X =
I n y(J) by the t Rule. Then

1j = D2 L Zjj. (81)
jelnv(J)

Since Zjj > 0 only if i E yU),

1j = D2 L Zjj. (82;
jelnv(J)nvU)

I

By (79), if 1j is not an uricommitted node,

D2LII n y(J) n YU)I 1

1j= L-l+lyU)I. ,(83)
f'-.By (SO) and (83), ." "J.,; -:,:\ ,,~ "

: ,,'~.
T < O. ( 84)'

J- J

Similarly, if Vj is an uncommitted node, the sum 1j in (82) is less than or equal tc
.the sum O. in (80). Thus read-out of template v(J) can only cause the bottom-:uI

Co .~ signals T.: other than T J, to decrease. Signal T J, on the other hand, remain~
.:. ..; .unchangid after read-out of V(J). This can be seen by replacing V(j) in (83) b)

.'~: : ~(J~;~~en '-;;!":~*"...: ':J"~...: .

.:D2LII n y(J)1 ,
TJ= - I (J) I .(85,

L.,y~ 7 y , ':

Hence, after V(J) is read-out

TJ = OJ' (86:

J Combining (84) and (8~) shows that inequality TJ > 1j continues to hold after v(J

.
~
i
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is read out, thereby proving that top-down template read-out confirms the F2 ch,

of the bottom-up filter.

The same is true if vJ is an uncommitted node. Here, the Template Lean
Inequality shows that X = I even after v(J) is read out. Thus all bottom-up sig

1J remain unchanged after template read-out in this case. This completes the p]

of Theorem 2.

Were the t Rule not operative, read-out of the template VU') might acti'

many F1 nodes that had not previously been activated by the input I alone.

example, a top-down template could, in principle, activate all the nodes of

thereby preventing the input pattern, as a pattern, from being coded. Alternati,

disjoint input patterns could be coded by a single node, despite the fact that tJ

two patterns do not share any features. The t Rule prevents such coding anom:

from occurring.

THEOREM 3 (Initial filter values determine search order). The Order Functiol

determines the order of search no matter how many times F2 is reset during a triaj

Proof Since OJ" > OJ" > ..., node VJ" is the first node to be activated (
, 2 ( " ) ,

given trial. After template V 11 is read out, Theorem 2 implies that

1j, = OJ, > max{Oj: j *h} ~ max{1j: j *h},

even though the full ordering of the 1j's may be different from that defined by

OJ's. If vj, is reset by the orienting subsystem, then template V(j,) is shut off for

remainder of the trial and subsequent values of 1j, do not influence which F2 n<

will be chosen.
As soon as vj, and ~u,) are shut off, To"= OJ for all j *h. Since °h > OJ] >

, node v h is chosen next and template v6v is read-out. Theorem 2 implies that

1J2 = °h> max{Oj: j *h, h} ~ max{1j: j *h, h}.

..
Thus VUv confirms the F2 choice due to °h even though the orde\-mg of 1j va

may differ both from the ordering of OJ values and from the ordering of 1j va

when VU,) was active.
This argument can now be iterated to show that the values OJ, > °h> ..'

I ! the Order Function determine the order of search. This completes the proo
,

.l J Theorem 3.
..c" °'fc "~o ;'f:r;'i .c
° ";":1':- 20. STABLE CATEGORY LEARNING

,.- .
':~' Theorems 2 and 3 describe choice and search properties which occur on SUI

fast time scale that no new learning can occur. We now analyse propertie
learning throughout an entire trial, and use these properties to show that I

learning self-stabilizes across trials in response to an arbitrary list of binary iJ

patterns. In Theorem 2, we proved that read-out of a top-down template com

the F2 choice made by the bottom-up filter. In Theorem 4, we will prove

learning also confirms the F2 choice and does not trigger reset by the oriel

.I subsystem. In addition, learning on a single trial causes monotonic changes ir
I L TM traces.

;
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, I

r 'THEOREM 4 (Learning on a single trial). Assume the model hypotheses of Se(
,.on 18. Suppose that an F2 node vJ is chosen for STM storage and that read-out of th
template V(J) does not immediately lead to reset of node vJ by the orienting subsystem

0 Then the LTM traces ZiJ and ZJi change monotonically in such a way that TJ increase

and all other 1j remain constant, thereby confirming the choice of vJ by the adaptiv
filter. In addition, the set In V(J) remains constant during learning, so that learnin;
does not trigger reset of vJ by the orienting subsystem.

Proof We first show that the LTM traces ZJi(t) can only change monotonicall:
and that the set X(t) does not change as long as VJ remains active. Thesl
conclusions follow from the learning rules for the top-down LTM traces ZJi' Usini
these facts, we then show that the ZiJ(t) change monotonically, that ~(t) can onl:
increase, and that all other 1j(t) must be constant while VJ remains active. Thesl
conclusions follow from the learning rules for the bottom-up LTM traces ZiJ
Together, these properties imply that learning confirms the choice of vJ and doe:
not trigger reset of vJ by the orienting subsystem.

Suppose that read-out of V(J) is first registered by F1 at time t = to. By the ~
Rule, X(to) = I n V(J)(to)' By (49), ZJi(t) begins to increase towards 1 if i E X(to)
and begins to decrease towards 0 if i ~ X(to)' The Appendix shows that when VJ ii
active at F2' each activity Xi in F2 obeys the equation

dx
E~ = -Xi + (1 -A1xi)(Ii + D1zJi) -(B1 + C1Xi)' (89:

By (89), Xi(t) increases if ZJi(t) increases, and Xi(t) decreases if ZJi(t) decreases
Activities Xi which start out positive hereby become even larger, whereas activitie:
Xi which start out non-positive become even smaller. In particular, X(t) = X(to) =
I n V(J)(to) for all times t ~ to at which VJ remains active.

We next prove that TJ(l) increases, whereas all other 1j(t) remain constant, whil
~ vJ is active. We suppose first that vJ is not an uncommitted node before considerin!

the case in which vJ is an uncommitted node. While VJ remains actiye, the se
X(t) = I n V(J)(to)' Thus ...

TJ(t) = D2 r. ZiJ(t). (90:

iEInV(J)(lo)

At time t = to, each LTM trace in (90) satisfies

;::~;,;.j .ZiJ(to) = L=t+~~)(t~ ~. (91:

r!~.I i.
1 1 due to (79). While VJ remains active, each of these LTM traces.resP.onds to the fac~

!. that X(t) = I n V(J)(to)' By (47) and (52), each ZiJ(t) W1th I E I n V(J)(too
:" ' increases towards

"'"; c. L

(92'L -1 + II n V(J)(to) I' ,

each ZiJ(t) with i ~ I n V(J)(to) decreases towards 0, and all other bottom-uI

.
i
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