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In a constantly changing world, humans are adapted to alternate routinely between
attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn
to recognize and name novel objects without unselectively disrupting our memories of familiar
ones. We can notice fine details that differentiate nearly identical objects and generalize
across broad classes of dissimilar objects. This chapter describes a class of self-organizing
neural network architectures—called ARTMAP—that are capable of fast, yet stable, on-line
recognition learning, hypothesis testing, and naming in response to an arbitrary stream of
input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter,
Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system
to learn incrementally for an unlimited period of time. System stability properties can be
traced to the structure of its learned memories, which encode clusters of attended features
into its recognition categories, rather than slow averages of category inputs. The level of
detail in the learned attentional focus is determined moment-by-moment, depending on
predictive success: an error due to over-generalization automatically focuses attention on
additional input details, enough of which are learned in a new recognition category so that
the predictive error will not be repeated.

An ARTMAP system creates an evolving map between a variable number of learned
categories that compress one feature space (e.g., visual features) to learned categories of
another feature space (e.g., auditory features). Input vectors can be either binary or analog.
Computational properties of the networks enable them to perform significantly better in
benchmark studies than alternative machine learning, genetic algorithm, or neural network
models. Some of the critical problems that challenge and constrain any such autonomous
learning system will next be illustrated. Design principles that work together to solve these
problems are then outlined. These principles are realized in the ARTMAP architecture,
which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of
a series of benchmark simulations.

Critical Problems to be Solved by an Autonomous Learning System

ARTMAP performance success is based on a set of design principles that are derived from
an analysis of learning by an autonomous agent in a nonstationary environment (Table 1).
Realization of these principles enables a self-organizing ARTMAP system to learn, categorize,
and make predictions about a changing world, as follows.

Rare Events: A successful autonomous agent must be able to learn about rare events
that have important consequences, even if these rare events are similar to a surrounding
cloud of frequent events that have different consequences. Fast learning is needed to pick
up a rare event on the fly. For example, a rare medical condition could be either a unique
case or the harbinger of a new epidemic. A slightly different chemical assay could either be
a routine variation or predict the biological activity of a new drug. Many feedforward neural
network systems, such as back propagation, require a form of slow learning that tends to
average over similar event occurrences. ARTMAP can rapidly group or single out events,
depending on their predictive outcomes.

Large Nonstationary Databases: Rare events typically occur in a nonstationary
environment whose event statistics may change rapidly and unexpectedly through time. In-
dividual events may also occur with variable probabilities and durations, and arbitrarily
large numbers of events may need to be processed. Each of these factors tends to destabilize
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Table 1:  AUTONOMOUS LEARNING AND CONTROL
IN A NONSTATIONARY WORLD

An ARTMAP system can reconcile conflicting
requirements and autonomously learn about:

RARE EVENTS
- requires FAST learning

LARGE NONSTATIONARY DATABASES
- requires STABLE learning

MORPHOLOGICALLY VARIABLE EVENTS
- requires MULTIPLE SCALES of
generalization (fine/coarse)

MANY-TO-ONE AND ONE-TO-MANY RELATIONSHIPS
- requires categorization and naming for expert knowledge

To realize these properties, ARTMAP systems:
PAY ATTENTION
- ignore masses of irrelevant data

TEST HYPOTHESES _ )
- discover predictive constraints hidden in data streams

CHOOSE BEST ANSWERS
- quickly select globally optimal solution
at any stage of learning

CALIBRATE CONFIDENCE
- measure on-line how well a hypothesis matches the data

DISCOVER RULES

- identify transparent if-then relations at each learning stage

SCALE :
- preserve all desirable propertie in arbitrarily large problems
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the learning process within feedforward algorithms. New learning in such systems tends to
_unselectively wash away the memory traces of old, but still useful, knowledge. Using such an
algorlthm for example, learning new faces could erase the memory of a parent’s face. More
generally, learning a new type of expertise could erase the memory of previous expert knowl-
edge. ARTMAP contains a self-stabilizing memory that permits accumulating knowledge to
be stored reliably in response to arbitrarily many events in a nonstationary environment un-
der incremental learning conditions. Learning may continue until the system’s full memory
capacity, which can be chosen arbitrarily large, is exhausted.

Morphologically Variable Types of Events: In many environments, some informa-
tion, including rule-like inferences, is coarsely defined whereas other information is precisely
characterized. Otherwise expressed, the morphological variability of the data may change
through time. For example, we may recognize one photograph as an animal, while seeing a
similar one as a picture of our own pet. Under autonomous learning conditions, a system
typically has to constantly adjust how coarse the generalization, or compression, of particu-
lar types of data should be. Multiple scales of generalization, from fine to coarse, need to be
available on an as-needed basis. ARTMAP automatically adjusts-its scale of generalization
to match the morphological variability of the data, based on predictive success. The network
embodies a Minimax Learning Rule that conjointly minimizes predictive error and maximizes
generalization using only the information that is locally available under incremental learning
conditions in a nonstationary environment. This property has been used to suggest how
the inferotemporal cortex can learn to recognize both fine and coarse information about the
world (Carpenter and Grossberg, 1993), as demonstrated by neurophysiological experiments
of Desimone (1992), Harries and Perrett (1991), Miller, Li, and Desimone (1991), Mishkin
(1982), and Spitzer, Desimone, and Moran (1988), among others.

Many-to-One and One-to-Many Relationships: In ARTMAP learning, many-to-
one code compression occurs in two stages, categorization and naming. For example, during
categorization of printed letter fonts, many similar exemplars of the same printed letter may
establish a single recognition category, or compressed representation (Figure 1). Different
printed letter fonts or written exemplars of the letter may establish additional categories.
Each of these categories carries out a many-to-one map of exemplar into category. During
naming, all of the categories that represent the same letter may be associatively mapped
into the letter name, or prediction. Compressed many-to-one maps are hereby constructed
from both unsupervised (categorization) and supervised (naming) learning.

Conversely, one-to-many learning is also used to build up expert knowledge about an
object or event. A single visual image of a particular animal may, for example, lead to
learning that predicts: animal, dog, beagle, and my dog Rover (Figure 2). A computerized
record of a patient’s medical check-up may lead to a series of predictions about the patient’s
health.

In feedforward networks, the attempt to learn more than one prediction about a single
input leads to unselective forgetting of previously learned predictions, for the same reason
that these algorithms become unstable in response to nonstationary data. In particular,
error-based learning systems, including multi-layer perceptrons such as back propagation
(Rosenblatt, 1958; Rumelhart, Hinton, and Williams, 1986; Werbos, 1974), find it difficult,
if not impossible, to solve the critical problems described above.
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Figure 1. Many-to-one learning combines categorization of many exemplars into one category, and labelling
of many categories with the same name.
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system predicts an output that is disconfirmed at any given stage of learning, the predictive error drives
a memory search for a new category to associate with the new prediction without degrading its previous

Figure 2. One-to-many learning enables one input vector to be associated with-many output vectors. If the
knowledge about the input vector.




ARTMAP Design Principles

ARTMAP systems solve the critical design problems because they implement a qualita-
tively different set of heuristics than error-based learning systems, as follows (Table 1).

Pay Attention: ARTMAP learns top-down expectations (also called prototypes, primes,
or queries) that allow the system to ignore masses of irrelevant distributed data. These
queries “test the hypothesis” that is embodied by a recognition category, or symbol, as they
suppress features not in the prototypical attentional focus. When one object is recognized
as “dog” versus “Rover,” distinct top-down expectations focus attention on distinct feature
clusters. ARTMAP hereby embodies properties of intentionality. A large mismatch between
a bottom-up input vector and a top-down expectation (Figure 2) can drive an adaptive
memory search that carries out hypothesis testing for a better category, as described below.

Hypothesis Testing and Match-Based Learning: ARTMAP actively searches for
recognition categories, or hypotheses, whose top-down expectations provide an acceptable
match to bottom-up data. The top-down expectation learns a prototype that focuses atten-
tion upon that cluster of input features that it deems relevant. If no available category, or
hypothesis, provides a good enough match, then selection and learning of a new category
and top-down expectation is automatically initiated. When the search discovers a category
that provides an acceptable match, the system locks into an attentive resonance through
which the distributed input and its symbolic category are bound together. During this res-
onantly bound state, the input exemplar refines the adaptive weights of the category based
on any new information in the attentional focus. Thus ARTMAP carries out match-based
learning, rather than error-based learning, because a category modifies its previous learning
only if its top-down expectation matches the input vector well enough to risk changing its
defining characteristics. Otherwise, hypothesis testing selects a new category on which to
base learning of a novel event, thereby preserving information in both the new and the old
categories.

Choose Globally Best Symbolic Answer: In many learning algorithms, as learning
proceeds, local minima, or less than optimal solutions, are selected. In ARTMAP, at any
stage of learning, an input exemplar first selects the category whose top-down expectation
provides the globally best match. This top-down expectation hereby acts as a prototype
for the class of all the input exemplars that its category represents. After learning self-
stabilizes, every input directly selects the globally best matching category without any search.
This category symbolically represents all the inputs that share the same prototype. Before
learning self-stabilizes, familiar events gain direct access to the globally best category without
any search, even if they are interspersed with unfamiliar events that drive hypothesis testing
for better matching categories. A lesion in the orienting subsystem, that mediates the
hypothesis testing, or memory search, process, leads to a memory disorder that strikingly
resembles clinical properties of medial temporal amnesia in humans and monkeys after lesions
of the hippocampal formation (Carpenter and Grossberg, 1993). These and related data
properties provide support for the hypothesis that the hippocampal formation carries out an
orienting subsystem function as one of its several functional roles.

Learn Prototypes and Exemplars: The learned prototype represents the cluster of
input features that the category deems relevant based upon its past experience. The proto-
type represents the features to which the category “pays attention”. In cognitive psychology,
an input pattern is called an exemplar. A fundamental issue in cognitive psychology con-
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cerns whether the brain learns prototypes or exemplars. Some argue that the brain learns
prototypes, or abstract types of knowledge, such as being able to recognize that a particular
object is a face or an animal. Others have argued that the brain learns individual exemplars,
or concrete types of knowledge, such as being able to recognize a particular face or a par-
ticular animal. Recently it has been increasingly realized that some sort of hybrid system
is needed that can acquire both types of knowledge (Smith, 1990). ARTMAP is such a hy-
brid system. It uses the Minimax Learning Rule to control how abstract or concrete—how
fuzzy—a category becomes in order to conjointly minimize predictive error and maximize
predictive generalization.

Calibrate Confidence: A confidence measure, called vigilance, calibrates how well an
exemplar must match the prototype that it selects. Otherwise expressed, vigilance measures
how well the chosen hypothesis must match the data. If vigilance is low, even poorly matching
exemplars can then be incorporated into one category, so compression and generalization by
that category are high. The symbol here is more abstract. If vigilance is high, then even good
matches may be rejected, and hypothesis testing may be initiated to select a new category.
In this case, few exemplars activate the same category, so compression and generalization
are low. In the limit of very high vigilance, prototype learning reduces to exemplar learning.

The Minimax Learning Rule is realized by adjusting the vigilance parameter in response
to a predictive error. Vigilance is first low, to maximize compression. When a predictive
error occurs, vigilance is increased just enough to initiate hypothesis testing to discover a
better category, or hypothesis, with which to match the data. In this way, a minimum
amount of generalization is sacrificed to correct the error. This process is called match
tracking because vigilance tracks the degree of match between exemplar and prototype in
response to a predictive error.

IF-THEN Rule Discovery: At any stage of learning, a user can translate the learned
weights of an ARTMAP system into a set of IF-THEN rules that completely characterize the
decisions of the system. These rules evolve as ARTMAP is exposed to new inputs. Suppose,
for example, that n visual categories are associated with the auditory prediction “AY.”
Backtrack from prediction “AY” along the associative pathways whose adaptive weights
have learned to connect the n visual categories to this prediction (Figure 1). Each of these
categories codes a “reason” for predicting “AY.” The prototype of each category embodies the
set of features, or constraints, whose binding together constitutes that category’s “reason.”
The IF-THEN rule takes the form: IF some of the features of any of these n categories
are found bound together, within the fuzzy constraints that would lead to selection of that
category, THEN the prediction “AY” holds. Keeping in mind that ARTMAPs carry out
hypothesis testing and memory search to discover these rules, we can see that ARTMAPs
are a type of self-organizing production system (Laird, Newell, and Rosenbloom, 1987) that
evolves adaptively from individual input-output experiences, as in case-based reasoning.

IF-THEN rules of ARTMAP can be extracted from the system at any stage of the learn-
ing process. This property is particularly important in applications such as medical diagnosis
from a large database of patient records, where doctors may want to study the rules by which
the system reaches its diagnostic decisions. Some of these rules may already be familiar to
the doctors. Others may represent novel constraint combinations (symptoms, tests, treat-
ments, ...) which the doctors could then evaluate for their possible medical significance.
This property also sheds light on how humans believe that brains somehow realize rule-like
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behavior although brain anatomy is not algorithmically structured in a traditional sense.
The Minimax Learning Rule determines how abstract these rules will become in response
to any prescribed environment. Typical databases generate a mixture of a few broad rules,
with few constraints and many exemplars, plus a set of more highly specified special cases
(Carpenter, Grossberg, and Reynolds, 1991).

Table 2 summarizes some medical and other benchmark studies that compare the per-
formance of ARTMAP with alternative recognition and prediction models. Three of these
benchmarks are summarized below. These and other benchmarks are described elsewhere
in greater detail (Carpenter, Grossberg, and lizuka, 1992; Carpenter, Grossberg, Markuzon,
Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991).

Properties Scale: One of the most serious deficiencies of many algorithms is that
their desirable properties tend to break down as small toy problems are generalized to large-
scale problems. In contrast, all of the desirable properties of ARTMAP scale to arbitrarily
large problems. Recall, however, that ARTMAP solves a particular class of problems, not
all problems of learning or intelligence. The categorization and inference problems that
ARTMAP does handle well are, however, core problems in many intelligent sys'tems, and
include technology bottlenecks for many alternative approaches.

ARTMAP Architecture

Each ARTMAP system includes a pair of ART modules (ART, and ART}), as in Fig-
ure 3. During supervised learning, ART, receives a stream {a(?)} of input patterns and ART,
receives a stream {b(P)} of input patterns, where b(?) is the correct prediction given a(?).
These modules are linked by an associative learning network and an internal controller that
ensures autonomous system operation in real time. The controller is designed to create the
minimal number of ART, recognition categories, or “hidden units,” needed to meet accuracy
criteria. As noted above, this is accomplished by realizing a Minimax Learning Rule that
conjointly minimizes predictive error and maximizes predictive generalization. This scheme
automatically links predictive success to category size on a trial-by-trial basis using only
local operations. It works by increasing the vigilance parameter p, of ART, by the minimal
amount needed to correct a predictive error at ART, (Figure 4).

Parameter p, calibrates the minimum confidence that ART, must have in a recognition
category, or hypothesis, that is activated by an input a() in order for ART, to accept that
category, rather than search for a better one through an automatically controlled process of
hypothesis testing. Lower values of p, enable larger categories to form. These lower p, values
lead to broader generalization and higher code compression. A predictive failure at ART,
increases the minimal confidence p, by the least amount needed to trigger hypothesis testing
at ART,, using a mechanism called match tracking. Match tracking sacrifices the minimum
amount of generalization necessary to correct the predictive error. Match tracking increases
the criterion confidence just enough to trigger hypothesis testing. Hypothesis testing leads
to the selection of a new ART, category, which focuses attention on a new cluster of a(®)
input features that is better able to predict b(®). Due to the combination of match tracking
and fast learning, a single ARTMAP system can learn a different prediction for a rare event
than for a cloud of similar frequent events in which it is embedded.

An ARTMAP simulation algorithm will now be summarized. When input components
are binary, the ARTMAP system is constructed from ART 1 component modules (Carpenter
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Table 2: BENCHMARK STUDIES

Database benchmark:
MACHINE LEARNING ( 90-95 % correct )
ARTMAP (100% correct)
Training set an order of magnitude smaller.

Medical database: :
STATISTICAL METHOD ( 60% correct )
ARTMAP ( 91% correct)
Incrementally improvement.
Transparant “rules” from critical feature clusters.

Letter recognition database:
GENETIC ALGORITHM ( 82% correct )

ARTMAP ( 96% correct )

Database benchmarks: ]
BACKPROPAGATION (10,000 - 20,000 training epochs)
ARTMAP ( 1-5 epochs)

Used in applications where other algorithms fail
e.g., Boeing CAD Group Technology (T. Caudell et al.)
Part design reuse and inventory compression.
Need fast stable learning and search of a huge
(16 million) and continually growing nonstationary
parts inventory.
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Figure 3. Fuzzy ARTMAP architecture. The ART, complement coding preprocessor transforms the M,-
vector a into the 2M,-vector A = (a,a®) at the ART, field F§. A is the input vector to the ART, field
F¢. Similarly, the input to F} is the 2Mj-vector (b,b¢). When a prediction by ART, is disconfirmed at
ART}, inhibition of map field activation induces the match tracking process. Match tracking raises the ART,
vigilance (pq) to just above the F{-to-F§ match ratio |x*|/|A|. This triggers an ART, search which leads
to activation of either an ART, category that correctly predicts b or to a previously uncommitted ART,
category node.
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Figure 4. Match tracking: (a) A prediction is made by ART, when the baseline vigilance p, is less than
the analog match value. (b) A predictive error at ART; increases the baseline vigilance value of ART, until
it just exceeds the analog match value, and thereby triggers hypothesis testing that searches for a more
predictive bundle of feature to which to attend.
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and Grossberg, 1987). ART 1 dynamics are simulated via a series of operations that include
binary intersection (). When input components are analog (real-valued), the set-theoretic
intersection operator can be replaced by a fuzzy intersection (A), or componentwise minimum
(Zadeh, 1965). Binary ART 1 then is thereby transformed into fuzzy ART (Carpenter,
Grossberg, and Rosen, 1991), and binary ARTMAP (Carpenter, Grossberg, and Reynolds,
1991) becomes fuzzy ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen,
1992). Algorithms for the more general systems, fuzzy ART and fuzzy ARTMAP, will now
be specified.

Fuzzy ART Algorithm

ART Field Activity Vectors: Each ART system includes a field Fy of nodes that
represent a current input vector; a field F; that receives both bottom-up input from Fj and
top-down input from a field F; that represents the active code, or category. The F activity
vector is denoted I = (Iy,..., 1), with each component [; in the interval [0,1],1=1,..., M.
The Fy activity vector is denoted x = (z1,...,2) and the Fy activity vector is denoted
y = (¥1,---,yn)- The number of nodes in each field is arbitrary.

Weight Vector: Associated with each F5 category node j(j = 1,...,N) is a vector
w; = (wj1, ..., wjp) of adaptive weights, or Long-Term Memory (LTM) traces. Initially

wj1(0) = ... = wjy(0) =1; “ (1)

then each category is said to be uncommitted. After a category is selected for coding
it becomes committed. As shown below, each LTM trace w;; is monotone nonincreasing
through time and hence converges to a limit. The fuzzy ART weight vector w; subsumes
both the bottom-up and top-down weight vectors of the ART 1 neural network.

Parameters: Fuzzy ART dynamics are determined by a choice parameter o > 0; a
learning rate parameter 3 € [0, 1]; and a vigilance parameter p € [0, 1].
Category Choice: For each input I and F node j, the choice function T} is defined by

. Iawy \ ‘
j(I)“a+|w]~|’ (2)
where the fuzzy AND operator A is defined by

(p Aq); = min(p;, g;) (3)

and where the city-block norm |-| is defined by

M
Ipl=)_Ipil, (4)
i=1

for any M-dimensional vectors p and q. For notational simplicity, 7;(I) in (2) is often written
as T; when the input I is fixed.

The system is said to make a category choice when at most one F, node can become
active at a given time. The category choice is indexed by J, where

Ty=max{T;:j=1...N}. (5)
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If more than one T} is maximal, the category j with the smallest index is chosen. In
particular, nodes become committed in order j = 1,2,3,... . When the Jt* category is
chosen, y; =1; and y; =0 for j # J. In a choice system, the Fj activity vector x obeys the
equation

X = {I if Fy is inactive (6)
~ 1IAw; if the Jt* F, node is chosen.

Resonance or Reset: Resonance occurs if the match function [IAnw;|/|I| of the chosen
category meets the vigilance criterion:

TAaw,| _
T 2 A (7)

that is, by (6), when the J* category is chosen, resonance occurs if
x| = [TA W ;| > plI]. (8)

Learning then ensues, as defined below. Mismatch reset occurs if

|I/\WJ|
< p; 9
o <’ (9)
that is, if
x| = TAw | < plL|. (10)

Then the value of the choice function 7’; is set to 0 for the duration of the input presentation
to prevent the persistent selection of the same category during search. A new index J is
then chosen, by (5). The search process continues until the chosen J satisfies (7).

Learning: Once search ends, the weight vector w is updated according to the equation
wi = BIAwPD) 4+ (1- gywlD). (11)

Fast learning corresponds to setting # = 1. The learning law used in the EACH system of
Salzberg (1990) is equivalent to equation (11) in the fast-learn limit with the complement
coding option described below.

Fast-Commit Slow-Recode Option: For efficient coding of noisy input sets, it is
useful to set 3= 1 when J is an uncommitted node, and then to take 8 < 1 after the category

is committed. Then wf,“ew) =T the first time category J becomes active. Moore (1989)
introduced the learning law (11), with fast commitment and slow recoding, to investigate
a variety of generalized ART 1 models. Some of these models are similar to fuzzy ART,
but none includes the complement coding option. Moore described a ‘category proliferation
problem that can occur in some analog ART systems when a large number of inputs erode

the norm of weight vectors. Complement coding solves this problem.

Input Normalization/Complement Coding Option: Proliferation of categories is
avoided in fuzzy ART if inputs are normalized. Complement coding is a normalization rule
that preserves amplitude information. Complement coding represents both the on-response
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and the off-response to an input vector a. To define this operation in its simplest form,
let a itself represent the on-response. The complement of a, denoted by a¢, represents the
off-response, where

(I.fE l—ai. (12)

The complement coded input I to the field F; is the 2M-dimensional vector

I=(a,a%) =(ay,...,ap,0a§,...,a5;). (13)
Note that
‘Il = |(aa ac)l
M M
=Zai+(M—Z(Li) (14)
1=1 =1
= M,

so inputs preprocessed into complement coding form are automatically normalized. Where
complement coding is used, the initial condition (1) is replaced by

Fuzzy ARTMAP Algorithm

The fuzzy ARTMAP system incorporates two fuzzy ART modules (ART, and ART})
that are linked together via an inter-ART module (F%?) called a map field. The map field is
used to form predictive associations between categories and to realize the match tracking rule
whereby the vigilance parameter of ART, increases in response to a predictive mismatch at
ART;. The interactions mediated by the map field F*® may be operationally characterized
as follows. ¢

ART, and ART,

Inputs to ART, and ART) are in the complement code form: for ART,, I = A = (a,a%);
for ART;, I = B = (b,b¢) (Figure 3). Variables in ART, or ART, are designated by
subscripts or superscripts “a” or “b”. For ARTq, let x* = (21 ...25,, ) denote the F}* output
vector; let y* = (yf ...y%,) denote the Fy output vector; and let w$ = (w}, wh,..., w;25,)
denote the j'* ART, weight vector. For ART}, let x> = (2} ...z}, ) denote the F} output
vector; let y® = (y8.. .y?\,b) denote the F} output vector; and let wb = (wh,,wl,,.. "wz,sz)
denote the k** ART, weight vector. For the map field, let x® = (z¢?,...,29 ) denote the
Fab output vector, and let w# = (w%,...,wt, ) denote the weight vector from the j** F
node to F'eb. Vectors x%,y%,xb, yb, and x* are set to 0 between input presentations.

Map Field Activation

The map field F2b is activated whenever one of the ART, or ART} categories is active.
If node J of F§ is chosen, then its weights w4 activate F®. If node K in F} is active, then
the node K in Fe is activated by 1-to-1 pathways between F? and F. If both ART, and
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ART, are active, then F%® becomes active only if ART, predicts the same category as ART,
via the weights w2?. The F% output vector x** obeys

yb Awdb if the Jth F¢ node is active and F? is active

ab W if the Jth F2 node is active and F? is inactive
x® = J . 2 : .2 (16)
y? if Fi¢ is inactive and F? is active
0 if F¢ is inactive and F} is inactive.

By (16), x2 = y® Aw% = 0 if the prediction w% is disconfirmed by y®. Such a mismatch
event triggers an ART, search for a better category, as follows.

Match Tracking

At the start of each input presentation the ART, vigilance parameter p, equals a baseline
vigilance pg. The map field vigilance parameter is p,;. A predictive mismatch is detected
when:

x| < paylyPl. (17)

Then, p, is increased until it is slightly larger than |A A w§|]A]—1, where A is the input to
F{, in complement coding form. After match tracking,

x4 = A AWS| < palAl, (18)

where J is the index of the active Fi¢ node, as in (10). When this occurs, ART, search leads
either to activation of another Fi§ node J with

X% =|AAWS| > palA| (19)

and
%1 = Iy AwS| > paslyl; (20)
or, if no such node exists, to the shut-down of Fi for the remainder of the input presentation.
Map Field Learning
Learning rules determine how the map field weights w;’f change through time, as follows.
Weights w2} in F§ — Fab paths initially satisfy

wik(0) = 1. " (21)

During resonance with the ART, category J active, w4’ approaches the map field vector
x%, With fast learning, once J learns to predict the ART, category K, that association is

permanent; i.e., w3 =1 for all time.

The Geometry of Fuzzy ART

Fuzzy ARTMAP dynamics will be illustrated below by a benchmark simulation problem,
circle-in-the-square. The low dimensions of this problem (M, = 2, N = 1) allow the evolving
category structure to be illustrated graphically. To do this, a geometric interpretation of
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fuzzy ART will now be outlined. For definiteness, let the input set consist of 2-dimensional
vectors a preprocessed into the 4-dimensional complement coding form. Thus

I=(a,a) =(a1,a9,1 —ay,1 —ay). (22)

In this case, each category j has a geometric representation as a rectangle R;, as follows.
Following (22), the weight vector w; can be written in complement coding form:

W] = (u]’,V;), (23)

where u; and v; are 2-dimensional vectors. Let vector u; define one corner of a rectangle
R; and let v; define another corner of R; (Figure 5a). The size of R, is defined to be

|R;| = |vj —ul, (24)

which is equal to the height plus the width of R; in Figure 5a.

In a fast-learn fuzzy ART system, with 8 =1 in (11), Wsnew) =1=(a,a®) when J is an
uncommitted node. The corners of R(Jnew) are then given by u; = a and v; = (a®)¢ = a.

Hence R(Jnew) is just the point a. Learning increases the size of each R;. In fact the size of
R; grows as the size of w; shrinks during learning. The maximum size of R; is limited by
the size of the vigilance parameter, with |R;| < 2(1 - p). During each fast-learning trial, R
expands to R; & a, the minimum rectangle containing R; and a (Figure 5b). The corners
of Ry a are given by aAuy and av vy, where the fuzzy AND (intersection) operator A is

defined by (3); and the fuzzy OR (union) operator v is defined by
(p Vv a); = max(p;, q;) (25)
(Zadeh, 1965). Hence, by (24), the size of R; & a is given by
IRy @al=I(avvy) - (anuy)l (26)

However, reset leads to another category choice if |R ;¢ a| is too large. In summary, with fast
learning, each R; equals the smallest rectangle that encloses all vectors a that have chosen
category j, under the constraint that |R;| <2(1 - p).

Simulation: Circle-in-the-Square

The circle-in-the square problem requires a system to identify which points of a square lie
inside and which lie outside a circle whose area equals half that of the square. This task was
specified as a benchmark problem for system performance evaluation in the DARPA Artificial
Neural Network Technology (ANNT) Program (Wilensky, 1990). Wilensky examined the
performance of 2-n—1 back propagation systems on this problem. He studied systems where
the number (n) of hidden units ranged from 5 to 100, and the corresponding number of
weights ranged from 21 to 401. Training sets ranged in size from 150 to 14,000. To avoid
over-fitting, training was stopped when accuracy on the training set reached 90%. This
criterion level was reached most quickly (5,000 epochs) in systems with 20 to 40 hidden
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-eavy,

vector w; has a geometric interpretation as a rectangle R; with corners (u;,v;). (b) During fast learning,

k Figure 5. Fuzzy ART weight representation. (a) In complement coding form with M = 2, each weight
k Ry expands to Ry ¢ a, the smallest rectangle that includes Ry and a, provided that |R; & a|] < 2(1 — p).
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units. In this condition, approximately 90% of test set points, as well as training set points,
were correctly classified.

Fuzzy ARTMAP performance on this task after one training epoch is illustrated in
Figures 6 and 7. As training set size increased from 100 exemplars (Figure 6a) to 100,000
exemplars (Figure 6d) the rate of correct test set predictions increased from 88.6% to 98.0%
while the number of ART, category nodes increased from 12 to 121. Each category node j
required four learned weights w? in ART, plus one map field weight w2b to record whether
category j predicts that a point lies inside or outside the circle. Thus, f’or example, 1-epoch
training on 100 exemplars used 60 weights to achieve 88.6% test set accuracy. Figure 7 shows
the ART, category rectangles R} established in each simulation of Figure 6. Initially, large
R} estimated large areas as belonging to one or the other category plus 3 point rectangles
created near the decision boundary, to correct errors (Figure 7a). Additional R%’s improved
accuracy, especially near the boundary of the circle (Figure 7d). The map can be made
arbitrarily accurate provided the number of ART, nodes is allowed to increase as needed.
As in Figure 5 each rectangle R? corresponds to the 4-dimensional weight vector we =
(u?,(v$)¢), were uj and v} are plotted as the lower-left and upper-right corners of RY,
respectively.

Figure 8 depicts the response patterns of fuzzy ARTMAP on another series of circle-
in-the-square simulations. The simulations used the same training sets as in Figure 6, but
with each training set input presented for as many epochs as were needed to achieve 100%
predictive accuracy on the training set. In each case, test set predictive accuracy increased,
as did the number of ART, category nodes. For example, with 10,000 exemplars, 1-epoch
training used 50 ART, nodes to give 96.7% test set accuracy (Figure 6¢). The same training
set, after 6 epochs, used 89 ART, nodes to give 98.3% test set accuracy (Figure 8c).

Figure 6 showed a test set error rate that is reduced from 11.4% to 2.0% as training set
size increases from 100 to 100,000 in 1-epoch simulations. Figure 8 showed how a test set error
rate can be further reduced if exemplars are presented for as many epochs as necessary to
reach 100% accuracy on the training set. An ARTMAP voting strategy provides a third way
to eliminate test set errors. The voting strategy assumes a fixed set of training exemplars,
with the input ordering randomly assembled before each individual simulation. After the
simulation the prediction of each test set item is recorded. Voting selects the outcome
predicted by the largest number of individual simulations. In case of a tie, one outcome
is selected at random. The number of votes cast for a given outcome provides a measure
of predictive confidence at each test set point. Given a limited training set, voting across
a few simulations can improve predictive accuracy by a factor that is comparable to the
improvement that could be attained by an order of magnitude more training set inputs, as
shown in the following example.

A fixed set of 1,000 randomly chosen exemplars was presented to a fuzzy ARTMAP
system on five independent 1-epoch circle-in-the-square simulations. After each simulation,
inside/outside predictions were recorded on a 1,000-item test set. Accuracy on individual
simulations ranged from 85.9% to 93.4%, averaging 90.5%; and the system used from 15 to 23
ART, nodes. Voting by the five simulations improved test set accuracy to 93.9% (Figure 9c).
In other words, test set errors were reduced from an average individual rate of 9.5% to a
voting rate of 6.1%. Figure 9d indicates the number of votes cast for each test set point, and
hence reflects variations in predictive confidence across different regions. Voting by more
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@ ()

100 exemplars 1,000 exemplars
99.0% training set 95:5% training set
88.6% test set 92.5% test set

12 ART, categories 21 ART, categories

(c) (d)

10,000 exemplars 100,000 exemplars
97.7% training set 98.8% training set
96.7% test set 98.0% test set
50 ART, categories 121 ART, categories

Figure 6. Circle-in-the-square test set response patterns after 1 epoch of fuzzy ARTMAP training on (a)
100, (b) 1,000, (¢) 10,000, and (d) 100,000 randomly chosen training set points. Test set points in white
areas are predicted to lie inside the circle and points in black areas are predicted to lie outside the circle.
The test set error rate decreases, approximately inversely to the number of ART, categories, as the training
set size increases.
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100 exemplars 1,000 exemplars
99.0% training set 95.5% training set
88.6% test set 92.5% test set

12 ART, categories 21 ART|, categories
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(c) (d)

10,000 exemplars 100,000 exemplars
97.7% training set 08.8% training set
96.7% test set 98.0% test set
50 ART, categories 121 ART, categories

Figure 7. Fuzzy ARTMAP category rectangles R} for the circle-in-the-square simulations of Figure 6. Small
rectangles are created near the map discontinuities as the error rate drops toward 0.
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(a) (b)
100 exemplars 1,000 exemplars
2 epochs 3 epochs
89.0% test set 95.0% test set
12 ART, categories 2’7 ART, categories

(c) (d)

10,000 exemplars 100,000 exemplars
6 epochs 13 epochs
98.3% test set 99.5% test set
89 ART, categories 254 ART, categories

Figure 8. Circle-in-the-square test set response patterns with exemplars repeatedly presented until the
system achieved 100% correct prediction on (a) 100, (b) 1,000, (¢) 10,000, and (d) 100,000 training set
points. Training sets were the same as those used for Figures 6 and 7. Training to 100% accuracy required
(a) 2 epochs, (b) 3 epochs, (¢) 6 epochs, and (d) 13 epochs. Additional training epochs decreased test set
error rates but created additional ART, categories, compared to the l-epoch simulation in Figure 6.
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(@ b))
15 ART, categories 17 ART, categories
85.9% test set 92.4% test set

©) @

Voting on 5 runs Number of votes
93.9% test set

Figure 9. Circle-in-the-square response patterns for a fixed 1,000-item training set. (a) Test set responses
after training on inputs presented in random order. After 1 epoch that used 15 ART, nodes, test set
prediction rate was 85.9%, the worst of 5 runs. (b) Test set responses after training on inputs presented in
a different random order. After 1 epoch that used 17 ART, nodes, test set prediction rate was 92.4%, the
best of 5 runs. (c) Voting strategy applied to five individual simulations. Test set prediction rate was 93.9%.
(d) Cumulative test set response pattern of five 1-epoch simulations. Gray scale intensity increases with the
number of votes cast for a point’s being outside the circle.
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than five simulations maintained an error rate between 5.8% and 6.1%. This limit on further
improvement by voting appears to be due to random gaps in the fixed 1,000-item training
set. By comparison, a tenfold increase in the size of the training set reduced the error by
an amount similar to that achieved by five-simulation voting. For example, in Figure 6b,
l-epoch training on 1,000 items yielded a test set error rate of 7.5%; while increasing the
size of the training set to 10,000 reduced the test set error rate to 3.3% (Figure 6c).

In the circle-in-the square simulations, M, = 2, and ART, inputs a were randomly
chosen points in the unit square. Each F{* input A had the form

Az(a’l7a231"a’1a1—a2)a (27)
and |A|=2. For ARTy, M, = 1. The ART); input b was given by

_ [ (1) if ais inside the circle ‘
b= { %03 otherwise. (28)

In complement coding form, the F§ — F} input B is given by

_ {(1,0) 1if a is inside the circle ‘
B= {EO, 1; otherwise. (29)

The fuzzy ARTMAP simulations used fast learning, defined by (11) with 8 = 1; the choice
parameter o = 0 (the conservative limit) for both ART, and ART}; and the baseline vigilance
parameter g = 0. The vigilance parameters p,; and p, can be set to any value between 0
and 1 without affecting fast-learn results. In each simulation, the system was trained on the
specified number of exemplars, then tested on 1000 or more points.

Two Analog ARTMAP Benchmark Studies: Letter and Written Digit Recogni-
tion

As summarized in Table 2, fuzzy ARTMAP has been benchmarked against a variety of
machine learning, neural network, and genetic algorithms with considerable success. An illus-
trative study used a benchmark machine learning task that Frey and Slate (1991) developed
and described as a “difficult categorization problem” (p. 161). The task requires a system to
identify an input exemplar as one of 26 capital letters A-Z. The database was derived from
20,000 unique black-and-white pixel images. The difficulty of the task is due to the wide
variety of letter types represented: the twenty “fonts represent five different stroke styles
(simplex, duplex, complex, and Gothic) and six different letter styles (block, script, italic,
English, Italian, and German)” (p. 162). In addition each image was randomly distorted,
leaving many of the characters misshapen (Figure 10). Sixteen numerical feature attributes
were then obtained from each character image, and each attribute value was scaled to a range
of 0 to 15. The resulting Letter Image Recognition file is archived in the UCI Repository of
Machine Learning Databases and Domain Theories (ml_repository@ics.uci.edu).

Frey and Slate used this database to test performance of a family of classifiers based
on Holland’s genetic algorithms (Holland, 1980). The training set consisted of 16,000 ex-
emplars, with the remaining 4,000 exemplars used for testing. Genetic algorithm classifiers
having different input representations, weight update and rule creation schemes, and sys-
tem parameters were systematically compared. Training was carried out for 5 epochs, plus
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a sixth “verification” pass during which no new rules were created but a large number of
unsatisfactory rules were discarded. In Frey and Slate’s comparative study, these systems
had correct prediction rates that ranged from 24.5% to 80.8% on the 4,000-item test set.
The best performance (80.8%) was obtained using an integer input representation, a reward
sharing weight update, an exemplar method of rule creation, and a parameter setting that
allowed an unused or erroneous rule to stay in the system for a long time before being
discarded. After training, the optimal case, that had 80.8% performance rate, ended with
1,302 rules and 8 attributes per rule, plus over 35,000 more rules that were discarded during
verification. (For purposes of comparison, a rule is somewhat analogous to an ART, cate-
gory in ARTMAP, and the number of attributes per rule is analogous to the size of ART,
category weight vectors.) Building on the results of their comparative study, Frey and Slate
investigated two types of alternative algorithms, namely an accuracy-utility bidding system,
that had slightly improved performance (81.6%) in the best case; and an exemplar/hybrid
rule creation scheme that further improved performance, to a maximum of 82.7%, but that
required the creation of over 100,000 rules prior to the verification step.

Fuzzy ARTMAP had an error rate on the letter recognition task that was consistently less
than one third that of the three best Frey-Slate genetic algorithm classifiers described above.
In particular, after 1 to 5 epochs, individual fuzzy ARTMAP systems had a robust prediction
rate of 90% to 94% on the 4,000-item test set. The ARTMAP voting strategy consistently
eliminated 25%-43% of the errors, giving a robust prediction rate of 92%-96%. Moreover
fuzzy ARTMAP simulations each created fewer than 1,070 ART, categories, compared to
the 1,040-1,302 final rules of the three genetic classifiers with the best performance rates.
Most fuzzy ARTMAP learning occurred on the first epoch, with test set performance on
systems trained for one epoch typically over 97% that of systems exposed to inputs for five
epochs. .

Rapid learning was also found in a benchmark study of written digit recognition, where
the correct prediction rate on the test set after one epoch reached over 99% of its best
performance (Carpenter, Grossberg, and lizuka, 1992). In this study, fuzzy ARTMAP was
tested along with back propagation and a self-organizing feature map. Voting yielded fuzzy
ARTMAP average performance rates on the test set of 97.4% after an average number of 4.6
training epochs. Back propagation achieved its best average performance rates of 96% after
100 training epochs. Self-organizing feature maps achieved a best level of 96.5%, again after
many training epochs.

In summary, on a variety of benchmarks, fuzzy ARTMAP has demonstrated much faster
learning and better performance compared to alternative machine learning, genetic, or neural
network algorithms. In addition, fuzzy ARTMAP can be used in applications where many
other adaptive pattern recognition algorithms cannot perform well. These are the classes
of applications where very large nonstationary databases need to be rapidly organized into
stable variable-compression categories under real-time autonomous learning conditions.

Concluding Remarks

Fuzzy ARTMAP is one of a rapidly growing family of attentive self-organizing learning
hypothesis testing, and prediction systems that have evolved from the biological theory of
cognitive information processing of which ART forms an important part (Carpenter and
Grossberg, 1991). ART modules have found their way into such diverse applications as the
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control of mobile robots, a Macintosh system that adapts to user behavior, diagnostic mon-
itoring systems for nuclear plants, learning and search of airplane part inventories, medical
diagnosis, 3-D visual object recognition, musical analysis, seismic recognition, sonar recog-
nition, and laser radar recognition (Baloch and Waxman, 1991; Caudell, Smith, Johnson,
Wunsch, and Escobedo, 1991; Gjerdingen, 1990; Goodman et al., 1992; Kayvan, Durg, and
Rabelo, 1993; Johnson, 1993; Seibert and Waxman, 1991). All of these applications exploit
the ability of ART systems to rapidly learn to classify large databases in a stable fashion,
to calibrate their confidence in a classification, and to focus attention upon those featural
groupings that they deem to be important based upon their past experience. We anticipate
that the growing family of supervised ARTMAP systems will find an even broader range
of applications due to their ability to adapt the number, shape, and scale of their category
boundaries to meet the on-line demands of large nonstationary databases.
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