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Abstract- This article introduces a new neural network architecture, called ARTMAP, that autonomously learns
to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success.
This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ART. and
ARTh) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of
input patterns. During training trials, the ART, module receives a stream [a(p)] of input patterns, and ARTh
receives a stream [b(p)] of input patterns, where b(p) is the correct prediction given a(p). These ART modules are
linked by an associative learning network and an internal controller that ensures autonomous system operation
in real time, During test trials, the remaining patterns a(p) are presented without b(p), and their predictions at
ARTh are compared with b(p). Tested on a benchmark machine learning database in both on-line and off-line
simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than
alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the
database. It achieves these properties by using an internal controller that conjointly maximizes predictive gen-
eralization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis,
using only local operations. This computation increases the vigilance parameter p. of ART. by the minimal
amount needed to correct a predictive error at ARTh' Parameter P. calibrates the minimum confidence that ART.
must have in a category, or hypothesis, activated by an input a(p) in order for ART. to accept that category,
rather than search for a better one through an automatically controlled process of hypothesis testing, Parameter
P. is compared with the degree of match between a(PI and the top-down learned expectation, or prototype, that
is read-out subsequent to activation of an ART. category, Search occurs if the degree of match is less than P.,
ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based
upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if
they are similar to frequent events with different consequences, Between input trials P. relaxes to a baseline
vigilance p:. When p: is large, the system runs in a conservative mode, wherein predictions are made only if the
system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system
reaches asymptote with no loss of speed. Because ARTMAP learning is self-stabilizing, it can continue learning
one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.

Keywords-ARTMAP, Adaptive resonance theory, Supervised learning, Self-organization, Prediction, Expert
system, Mushroom database, Machine learning.

I 1. INTRODUCTION: PREDICTIVE ART
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The possibility of stable learning in response to various colors and associate that category with a
an arbitrary stream of inputs is required by an au- certain taste. Due to the variability of color fea-
tonomous learning agent that needs to cope with tures compared with those of visual form, this learned
unexpected events in an uncontrolled environment. recognition category may incorporate form fea-
One cannot restrict the agent's ability to process input tures more strongly than color features. However,
sequences if one cannot predict the environment in the color green may suddenly, and unexpectedly,
which the agent must successfully function. The abil- become an important differential predictor of a ba-
ity of humans to vividly remember exciting adventure nana's taste,
movies is a familiar example of fast learning in an The different taste of a green banana triggers hy-
unfamiliar environment, po thesis testing that shifts the focus of visual at-

tention to give greater weight, or salience, to the
1.1. Fast Learning Abont Rare Events banana's color features without negating the ~

importance of the other features that define a ba-
A successful autonomous a~ent must be able to learn nana's form" A new visual recognition category can
about .rare events that have Impor~a~t consequences, hereby form for green bananas, and this category
even If t~ese rare "events are sImIlar to frequoent can be used to accurately predict the different taste
events wIth very dIfferent cons~qu~nces" Survolval of green bananas, The new, finer category can form,
may her~by depend on fast lea~mng m a nOnS!atlO?- moreover, without recoding either the previously
ary enVIronment, ~any learnIng schemes are, m learned generic representation of bananas or their
contrast, slow learnIng models that average over taste association,
indiv~du~l eve~~ .occ~rrences an.d are deg~aded by Future representations may also form that incor- .

learnIng InstabIlItIes m a nonstatlonary envIronment porate new knowledge about bananas, without dis-
(Carpenter & Grossberg, 1988; Grossberg, 1988a). rupting the representations that are used to predict

their different tastes. In this way, predictive feedback
1.2. Many-to-One and One-to-Many Learning provides one means whereby one-to-many recogni-

An efficient recognition system needs to be capable ti~n and predic,tion c.odes can for~ thro~gh time, by
f t I " Fo ample each of the USIng hypothesIs testIng and attentIon shIfts that sup-

0 many- o-one earnIng. r ex , ., I 0 . h f, .
different exemplars of the font for a prescribed letter port ~ew recog?ltIon ear~mg WIt out orcmg un-
may generate a single compressed representation selectIve forgettIng of prevIous knowledge,

that serves as a visual recognition category. This ex-
emplar-to-category transformation is a case of many- 1.4. Adaptive Resonance Theory
to-one learning. In addition, many different fonts, .0 ,
including lower case and upper case printed fonts The a~chJtecture descrIbed herem forms 'part of
and scripts of various kinds, can all lead to the same .AdaptIve ~esonance Theory, or ART, whlc~ was
verbal name for the letter. This is a second sense in Introduced m 1976 (G~ossberg, 1976a, 1976b) m or-

h' h I 0 b a to one der to analyze how braIn networks can autonomously
w IC earnIng may e m ny- -." I " b h ' ld " .dL . I b -t - any sothat a sl'ngle learn m rea tIme a out a c angmg wor m a rap I

earnmg may a so eone 0 m , h' so h 0 ARTh d o
lb " t t d ' ff ent P edl'ctlOons or but stable fas Ion. mce t at tIme, as stea I y

0 Jec can genera e many I er r '"
F I I k Ong at a banana one developed as a physIcal theory to explaIn and predIct

names. or examp e, upon 00 I , I d b b ". & "I "f "t bl b ' t f . t b nana ever arger ata ases a out cognItIve mlormatIon
may c assl y I as an 0 ong 0 Jec , a rut , a a, " 0II b d A fl "bl knowledge processIng and ItS neural substrates (Grossberg,
a ye ow anana, an so on. exI et th d t sent I'n l'tS memory 1982a, 1987a, 1987b, 1988b). A parallel development
sys em may us nee 0 repre '0',

d" f h bo t d t ke the has descrIbed a serIes of rIgorously characterIzed
many pre IctIons or eac 0 Jec , an 0 ma I hOt t II d ART 1 ART 2 and.. d 'f& ' h" h neura arc I ec ures-ca e , ,
best predIctIon for each I lerent context m w IC ART ~ 0h ' ' I rf II " tt..b dd d .J-Wlt IncreasIng y powe u earnIng, pa ern
the object IS em e e. recognition, and hypothesis testing capabilities (Car-

penter & Grossberg, 1987a, 1987b, 1988, 1990),
1.3. Control of Hypothesis Testing, Attention, and
Learning by Predictive Snccess

, , 1.5. Self-Organizing Predictive Maps
Why does not an autonomous recognItIon s~stem get o.
trapped into learning only that interpretatIon of an The present class of archItectures are called Predlc-
object which is most salient given the system's initial tive ART architectures because they incorpor~te
biases? One factor is the ability of that system to ART modules into systems that can learn to predIct
reorganize its recognition, hypothesis testing, and a prescribed m-dimensional output vector b given a
naming operations based upon its predictive success prescribed n-dimensional input vector a (Figure 1).
or failure. For example, a person may learn a visual The present example of Predictive ART is called
recognition category based upon seeing bananas of ARTMAP because its transformation from vectors
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INTER-ART
ASSOCIATIVE

MEMORY

a
F2 Fb

2

Fa b
1 F1

a ART a b ART b

SELF -ORGANIZE SELF -ORGANIZE
CATEGORIES FOR { a (p)} CATEGORIES FOR { b (p)}

Predictive Back
ART Propagation

supervised yes yes
self-organizing yes no
real-time yes no
self-stabilizing yes no

learning: fast or slow slow
match mismatch

FIGURE 1. A Predictive ART, or ARTMAP, system includes two ART modules linked by an inter-ART associative memory.
Internal control structures actively regulate learning and information flow. Back Propagation and Predictive ART both carry
out supervised learning, but the two systems differ in many respects, as indicated.

in ~il.n to vectors in ~lm defines a map that is learned memory is an index of the system's ability to gen-
by example from the correlated pairs {a(p), b(p)} of eralize from examples.
sequentially presented vectors, p = 1,2, ...(Car- Figure 1 compares properties of the ARTMAP
penter, 1989). For example, the vectors a(p) may en- network with those of the Back Propagation network
code visual representations of objects, and the (Parker, 1982; Rumelhart & McClelland, 1986; Wer-
vectors b(p) may encode their predictive conse- bos, 1974, 1982). Both ARTMAP and Back Prop-
quences, such as different tastes in the banana ex- agation are supervised learning systems. With
ample above. The degree of code compression in supervised learning, an input vector a(p) is associated
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with another input vector b(p) on each training trial. vigilance (Carpenter & Grossberg, 1987a, 1987b). A
On a test trial, a new input a is presented that has cycle of hypothesis testing is triggered if the degree
never been experienced before. This input predicts of match is less than vigilance. Conjoint maximiza-
an output vector b. System performance is evaluated tion of generalization and minimization of predictive
by comparing b with the correct answer. This prop- error is achieved on a trial-by-trial basis by increasing
erty of generalization is the system's ability to cor- the vigilance parameter in response to a predictive
rectly predict correct answers to a test set of novel error on a training trial (Carpenter & Grossberg,
inputs a. 1987a). The minimum change is made that is con-

sistent with correction of the error. In fact, the pre-
1 6 C ..1M. ..G r f d dictive error causes the vigilance to increase rapidlyM'... ?~JOlnpt Yd.a.xlmElzmg enera Iza Ion an until it just exceeds the analog match value, in a

Immlzlng re Ictrve rror process called match tracking.

The ARTMAP system is designed to conjointly max- Before each new input arrives, vigilance relaxes
imize generalization and minimize predictive error to a baseline vigilance value. Setting baseline vigi-
under fast learning conditions in real time in response lance to 0 maximizes code compression. The system
to an arbitrary ordering of input patterns. Remark- accomplishes this by allowing an "educated guess"
ably, the network can achieve 100% test set accuracy on every trial, even if the match between input and
on the machine learning benchmark database de- learned code is poor. Search ensues, and a new cat-
scribed below. Each ARTMAP system learns to egory is established, only if the prediction made in
make accurate predictions quickly, in the sense of this forced-choice situation proves wrong. When pre-
using relatively little computer time; efficiently, in dictive error carries a cost, however, baseline vigi-
the sense of using relatively few training trials; and lance can be set at some higher value, thereby
flexibly, in the sense that its stable learning permits decreasing the "false alarm" rate. With positive base-
continuous new learning, on one or more databases, line vigilance, the system responds "I don't know"
without eroding prior knowledge, until the full mem- to an input that fails to meet the minimum matching
ory capacity of the network is exhausted. In an ART-criterion. Predictive error rate can hereby be made
MAP network, the memory capacity can be chosen very small, but with a reduction in code compression.
arbitrarily large without sacrificing the stability of Search ends when the internal control system (Figure
fast learning or accurate generalization. 1) determines that a global consensus has been

reached.

1.7. Match Tracking of Predictive Confidence by
Attentive Vigilance 1.8. Self-Organizing Expert System

An essential feature of the ARTMAP design is its ARTMAP achieves its combination of desirable
ability to conjointly maximize generalization and properties by acting as a type of self-organizing ex-
minimize predictive error on a trial-by-trial basis us- pert system. It incorporates the basic properties of
ing only local operations. It is this property which all ART systems (Carpenter & Grossberg, 1988) to
enables the system to learn rapidly about rare events carry out autonomous hypothesis testing and parallel
that have important consequences even if they are memory search for appropriate recognition codes.
very similar to frequent events with different con- Hypothesis testing terminates in a sustained state of
sequences. This property builds upon a key design resonance that persists as long as an input remains
feature of all ART systems; namely, the existence approximately constant. The resonance generates a
of an orienting subsystem that responds to the un- focus of attention that selects the bundle of critical
expectedness, or novelty, of an input exemplar a by features common to the bottom-up input and the top-
driving a hypothesis testing cycle, or parallel memory down expectation, or prototype, that is read-out by
search, for abetter, or totally new, recognition cat- the resonating recognition category. Learning of the
egory for a. Hypothesis testing is triggered by the critical feature pattern occurs in this resonant and
orienting subsystem if a activates a recognition cat- attentive state, hence the term adaptive resonance.
egory that reads out a learned expectation, or pro-
totype, which does n?t match a well enough. The 1.9. 2/3 Rnle Matching, Priming, Intentionality,
degree of match provIdes an analog measure of the d L .

..an oglc
predictive confidence that the chosen recogmtlon cat- ..
egory represents a, or of the novelty of a with respect The resonant focus of attention IS a consequence of
to the hypothesis that is symbolically represented by a matching rule calle~ the 2/3 ~':lle (Carpenter &
the recognition category. This analog match value is Gr~ssberg, 1987a). ThIs rul~ cl.anftes h~w a b?ttom-
computed at the orienting subsystem where it is com- up mput pattern can suprahmmally actIvate Its fea-
pared with a dimensionless parameter that is called ture detectors at the level FI of an ART network,
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yet a top-down expectation can only subliminally sen- cus of attention. It is of interest that subliminal top-
sitize, or prime, the level Fl. Supraliminal activation down priming, which instantiates a type of "inten-
means that Fl can automatically generate output sig- tionality" in an ART system, implies a type of match-
nals that initiate further processing of the input. Sub- ing law, which instantiates a type of "logic." Searle
liminal activation means that Fl cannot generate (1983) and others have criticized some Artificial In-
output signals, but its primed cells can more easily telligence models because they sacrifice intention-
be activated by bottom-up inputs. For example, the ality for logic. In ART, intentionality implies logic.
verbal command "Look for the yellow banana" can
p'r~me visual. feat~re detectors to respond more sen- 2. THE ARTMAP SYSTEM
sltlvely to visual Inputs that represent a yellow ba-
nana, without forcing these cells to be fully activated, The main elements of an ARTMAP system are
which would have caused a visual hallucination. shown in Figure 2. Two modules, ARTa and ARTb,

Carpenter and Grossberg (Grossberg, 1987a) read vector inputs a and b. If ART a and ARTb were
have shown that the 2/3 Rule is realized by a kind disconnected, each module would self-organize cat-
of analog spatial logic. This logical operation com- egory groupings for the separate input sets. In the
putes the spatial intersection of bottom-up and top- application described below, ART a and ARTb are
down information. The spatial intersection is the fo- fast-learn ART 1 modules coding binary input vec-

b (TRAINING)

ARTb

MAP FIELD
GAIN MAP FIELD

CONTROL MAP FIELD ORIENTING
SUBSYSTEM

MATCH
-TRACKING

ARTa

a

FIGURE 2. Block diagram of an ARTMAP system. Modules ART. and ART b self-organize categories for vector sets a an~ b.
ART. and ART b are connected by an inter-ART module that consists of the Map Field.and t~e control nodes c:alled ~ap Field
gain control and Map Field orienting subsystem. Inhibitory paths are denoted by a minus sign; other paths are excitatory.
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tors. ARTa andARTb are here connected by an inter- resented in the database are similar to one another:
ART module that in many ways resembles ART 1. "These mushrooms are placed in a single family on
This inter-ART module includes a Map Field that the basis of a correlation of characteristics that in-
controls the learning of an associative map from clude microscopic and chemical features. .." (Lin-
ARTa recognition categories to ARTb recognition coff, 1981, p. 500). The "Field Guide" warns that
categories. This map does not directly associate ex- poisonous and edible species can be difficult to dis-
emplars a and b, but rather associates the com- tinguish on the basis of their observable features.
pressed and symbolic representations of families of For example, the poisonous species Agaricus cali-
exemplars a and b. The Map Field also controls fornicus is described as a "dead ringer" (Lincoff,
match tracking of the ART a vigilance parameter. A 1981, p. 504) for the Meadow Mushroom, Agaricus
mismatch at the Map Field between the ARTa cat- campestris, that "may be known better and gathered
egory activated by an input a and the ART b category more than any other wild mushroom in North Amer-
activated by the input b increases ARTa vigilance by ica" (Lincoff, 1981, p. 505). This database thus pro-
the minimum amount needed for the system to vides a test of how ARTMAP and other machine
search for and, if necessary, learn a new ARTa cat- learning systems distinguish rare but important
egory whose prediction matches the ARTb category. events from frequently occurring collections of sim-

This inter-ART vigilance resetting signal is a form ilar events that lead to different consequences.
of "back propagation" of information, but one that The database of 8,124 exemplars describes each
differs from the back propagation that occurs in the of 22 observable features of a mushroom, along with
Back Propagation network. For example, the search its classification as poisonous (48.2%) or edible
initiated by inter-ART reset can shift attention to a (51.8%). The 8,124 "hypothetical examples" rep-
novel cluster of visual features that can be incor- resent ranges of characteristics within each species;
po rated through learning into a new ART a recogni- for example, both Agaricus californicus and Agaricus
tion category. This process is analogous to learning campestris are described as having a "white to brown-
a category for "green bananas" based on "taste" ish cap," so in the database each species has corre-
feedback. However, these events do not "back sponding sets of exemplar vectors representing their
propagate" taste features into the visual represen- range of cap colors. There are 126 different values
tation of the bananas, as can occur using the Back of the 22 different observable features. A list of the
Propagation network. Rather, match tracking reor- observable features and their possible values is given
ganizes the way in which visual features are grouped, in Table 1. For example, the observable feature of
attended, learned, and recognized for purposes of "cap-shape" has six possible values. Consequently,
predicting an expected taste. the vector inputs to ART a are 126-element binary

The following sections describe ARTMAP simu- vectors, each vector having 22 l's and 104 O's, to
lations using a machine learning benchmark data- denote the values of an exemplar's 22 observable
base. The ARTMAP system is then described features. The ARTb input vectors are (1, 0) for poi-
mathematically. The Appendix summarizes ART 1 sonous exemplars and (0, 1) for edible exemplars.
and ARTMAP system equations for purposes of sim-
ulation, and outlines system responses to various in- 3 1 P f
put protocols. ..er ormance

The ARTMAP system learned to classify test vectors
3. ARTMAP SIMULADONS: rapidly and accuratel~, and system performa~ce

DISDNGUISHING EDIBLE AND comp'ares fav~rably with. results of other machIne
POISONOUS MUSHROOMS learnIng algorithms applied to th~ same .database.

The STAGGER algorithm reached Its maxImum per-
The ARTMAP system was tested on a benchmark formance level of 95% accuracy after exposure to
machine learning database that partitions a set of 1,000 training inputs (Schlimmer, 1987b). The HIL-
vectors a into two classes. Each vector a characterizes LARY algorithm achieved similar results (Iba, Wo-
observable features of a mushroom as a binary vec- gulis, & Langley, 1988). The ARTMAP system
tor, and each mushroom is classified as edible or consistently achieved over 99% accuracy with 1,000
poisonous (Schlimmer, 1987a). The database rep- exemplars, even counting "I don't know" responses
resents the 11 species of genus Agaricus and the 12 as errors. Accuracy of95% was usually achieved with
species of the genus Lepiota described in "The Au- on-line training on 300-400 exemplars and with off-
dubon Society Field Guide to North American Mush- line training on 100-200 exemplars. In this sense,
rooms" (Lincoff, 1981). These two genera constitute ARTMAP was an order of magnitude more efficient
most of the mushrooms described in the "Field than the alternative systems. In addition, with con-
Guide" from the family Agaricaceae (order Agar- tinued training, ARTMAP predictive accuracy al-
icales, class Hymenomycetes, subdivision Basidiomy- ways improved to 100%. These results are elaborated
ceres, division Eumycota). All the mushrooms rep- below.
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TABLE 1
126 Values of 22 Observable Features Represented in ART. Input Vectors I

I

Number Feature Possible Values

1 Cap-Shape Bell, Conical, Convex, Flat, Knobbed, Sunken
2 Cap-Surface Fibrous, Grooves, Scaly, SmoothI 
3 Cap-Color Brown, Buff, Gray, Green, Pink, Purple, Red, White, Yellow,

Cinnamon
4 Bruises Bruises, No Bruises
5 Odor None, Almond, Anise, Creosote, Fishy, Foul, Musty, Pun-

gent, Spicy
6 Gill-Attachment Attached, Descending, Free, Notched
7 Gill-Spacing Close, Crowded, Distant
8 Gill-Size Broad, Narrow
9 Gill-Color Brown, Buff, Orange, Gray, Green, Pink, Purple, Red,

White, Yellow, Chocolate, Black
10 Stalk-Shape Enlarging, Tapering
11 Stalk-Root Bulbous, Club, Cup, Equal, Rhizomorphs, Rooted, Missing
12 Stalk-Surface-Above-Ring Fibrous, Silky, Scaly, Smooth
13 Stalk-Surface-Below-Ring Fibrous, Silky, Scaly, Smooth
14 Stalk-Color-Above-Ring Brown, Buff, Orange, Gray, Pink, Red, White, Yellow, Cin-

namon
15 Stalk-Color-Below-Ring Brown, Buff, Orange, Gray, Pink, Red, White, Yellow, Cin-

namon
16 Veil-Type Partial, Universal
17 Veil-Color Brown, Orange, White, Yellow
18 Ring-Number None, One, Two
19 Ring-Type None, Cobwebby, Evanescent, Flaring, Large, Pendant,

Sheathing, Zone
20 Spore-Print-Color Brown, Buff, Orange, Green, Purple, White, Yellow, Choc-

olate, Black
21 Population Abundant, Clustered, Numerous, Scattered, Several, Soli-

tary
22 Habitat Grasses, Leaves, Meadows, Paths, Urban, Waste, Woods

Almost every ARTMAP simulation was com- Four types of on-line simulations were carried out,
pleted in under 2 minutes on an IRIS 40 computer, using two different baseline settings of the ARTa
with total time ranging from about 1 minute for small vigilance parameter Po: P: = 0 (forced choice con-
training sets to 2 minutes for large training sets. This dition) and P: = 0.7 (conservative condition); and
is comparable to 2-5 minutes on a SUN 4 computer. using sample replacement or no sample replacement.
Each timed simulation included a total of 8,124 train- With sample replacement, anyone of the 8,124 input
ing and test samples, run on a time-sharing system samples was selected at random for each input pre-
with nonoptimized code. Each 1-2 minute compu- sentation. A given sample might thus be repeatedly
tation included data read-in and read-out, training, encountered while others were still unused. With no
testing, and calculation of multiple simulation in- sample replacement, a sample was removed from the
dices. input pool after it was first encountered. The re-

placement condition had the advantage that repeated
3 2 0 L " L " encounters tended to boost predictive accuracy. The

"" n. me earnmg I d.. h d h d f hno-rep acement con Juon ate a vantage 0 av-

On-line learning imitates the conditions of a human ing learned from a somewhat larger set of inputs at
or machine operating in a natural environment. An each point in the simulation. The replacement and
input a arrives, possibly leading to a prediction. If no-replacement conditions had similar performance
made, the prediction mayor may not be confirmed. indices, all other things being equal. Each of the 4
Learning ensues, depending on the accuracy of the conditions was run on 10 independent simulations.
prediction. Information about past inputs is available With P: = 0, the system made a prediction in re-
only through the present state of the system. Simu- sponse to every input. Setting p: = 0.7 increased the
lations of on-line learning by the ARTMAP system number of "I don't know" responses, increased the
use each sample pair (a, b) as both a test item and number of ART a categories, and decreased the rate
a training item. Input a first makes a prediction that of incorrect predictions to nearly 0%, even early in
is compared with b. Learning follows as dictated by training. The p: = 0.7 condition generally outper-
the internal rules of the ARTMAP architecture. formed the p: = 0 condition, even when incorrect
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predictions and "I don't know" responses were both tion accuracy at any given time, since performance
counted as errors. The primary exception occurred almost always improves during the 100 trials over
very early in training, when a conservative system which errors are tabulated.
gives the large majority of its no-prediction re-
sponses. 3 3 O ff L o L . II- me earnmg

Results are summarIzed m Table 2. Each entry
gives the number of correct predictions over the pre- In off-line learning, a fixed training set is repeatedly
vious 100 trials (input presentations), averaged over presented to the system until 100% accuracy is
10 simulations. For example, with P; = 0 in the no- achieved on that set. For training sets ranging in size
replacement condition, the system made, on the av- from 1 to 4,000 samples, 100% accuracy was almost
erage, 94.9 correct predictions and 5.1 incorrect pre- always achieved after one or two presentations of
dictions on trials 201-300. In all cases a 95% correct- each training set. System performance was then mea-
prediction rate was achieved before trial 400. With sured on the test set, which consisted of all 8,124
P; = 0, a consistent correct-prediction rate of over samples not included in the training set. During test-
99% was achieved by trial 1,400, while with P; = ing no further learning occurred.
0.7 the 99% consistent correct-prediction rate was The role of repeated training set presentations was
achieved earlier, by trial 800. Each simulation was examined by comparing simulations that used the
continued for 8,100 trials. In all four cases, the min- 100% training set accuracy criterion with simulations
imum correct-prediction rate always exceeded 99.5% that used only a single presentation of each input
by trial 1,800 and always exceeded 99.8% by trial during training. With only a few exceptions, per-
2,800. In all cases, across the total of 40 simulations formance was similar. In fact, for P; = 0.7, and for
summarized in Table 2, 100% correct prediction was small training sets with P; = 0, 100% training-set
achieved on the last 1,300 trials of each run. accuracy was achieved with single input presenta-

Note the relatively low correct-prediction rate for tions, so results were identical. Performance differ-
P; = 0.7 on the first 100 trials. In the conservative ences were greatest for P; = 0 simulations with mid-
mode, a large number of inputs initially make no sized training sets (60-500 samples), when 2-3 train-
prediction. With P; = 0.7 an average total of only 2 ing set presentations tended to add a few more ARTa
incorrect predictions were made on each run of 8,100 learned category nodes. Thus, even a single presen-
trials. Note too that Table 2 underestimates predic- tation of training-then-testing inputs, carried out on-

TABLE 2
On-line Learning and Performance in Forced Choice (P;; = 0) or

Conservative (P;; = 0.7) Cases, With Replacement or No Replacement of

Samples After Training

Average number of correct predictions on previous
100 trials

P; = 0 P; = 0 P; = 0.7 P; = 0.7
Trial No Replace Replace No Replace Replace

100 82.9 81.9 66.4 67.3
200 89.8 89.6 87.8 87.4
300 94.9 92.6 94.1 93.2

400 95.7 95.9 96.8 95.8
500 97.8 97.1 97.5 97.8
600 98.4 98.2 98.1 98.2
700 97.7 97.9 98.1 99.0
800 98.1 97.7 99.0 99.0
900 98.3 98.6 99.2 99.0

1000 98.9 98.5 99.4 99.0

1100 98.7 98.9 99.2 99.7
1200 99.6 99.1 99.5 99.5
1300 99.3 98.8 99.8 99.8
1400 99.7 99.4 99.5 99.8
1500 99.5 99.0 99.7 99.6
1600 99.4 99.6 99.7 99.8
1700 98.9 99.3 99.8 99.8
1800 99.5 99.2 99.8 99.9
1900 99.8 99.9 99.9 99.9
2000 99.8 99.8 99.8 99.8
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Training Set Test Set Misclassifications
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FIGURE 4. Training sets of increasing size (left column) and test set exemplars that were incorrectly classified (right column),
projected onto first two principal components. Baseline vigilance p; equals 0, (a) With a 5-sample training set that established
2 ART. categories, the test set of 8,119 inputs made 2,194 errors (27.0%). On 10 other 5-sample runs, the number of ART.
categories ranged from 1 to 5 and the error rate ranged from 5.8% to 48.2%, averaging 26.9%; (b) With a 30-sample training
set that established 3 ART. categories, the test set of 8,094 inputs made 624 errors (7.7%). On 10 other 30-training sample
runs, the number of ART. categories ranged from 4 to 6; and the error rate ranged from 6.7% to 25,1 %, averaging 12.4%; (c)
With a 125-sample training set that established 9 ART. categories, the test set of 7,999 inputs made 288 errors (3.6%). On 10
other 125-training sample runs, the number of ART. categories ranged from 5 to 14, and the error rate ranged from 1.2% to
8.5%, averaging 4.4%; (d) With a 500-sample training set that established 15 ART. categories, the test set of 7,624 inputs made

i 168 errors (2.2%). On 10 other 500-training sample runs, the number of ART. categories ranged from 9 to 22; and the error

rate ranged from 0.7% to 3.1%, averaging 1.6%,
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TABLE 3 (9 categories). The low error rate of this latter 9-
Off-line Forced C~o~ce (P; = 0) ARTMAP Syst~m .category simulation appears to reflect success of early

Performance After Training on Input .Sets Ranging In Size sampling. On other runs additional categories were
From 3 to 4,000 Exemplars. Each Line Shows Average 0'

Correct and Incorrect Test Set Predictions Over 10 added as errors m early category structures were de-
Independent Simulations, Plus the Range of Learned ART. tected.

Category Numbers With 1,000-sample training sets, 3 out of 10 sim-
Average Average Number ulations achieved 100% p~ediction accuracy o~ ~he

Training % Correct % Incorrect of ART. 7,124-sample test set. WIth 2,000-sample trammg
Set Size (Test Set) (Test Set) Categories sets, 8 out of 10 simulations achieved 100% accuracy

3 658 342 1-3 on the 6,124-sample test sets. With 4,000-sample
5 73: 1 26:9 1-5 training sets, all simulations achieved 100% accuracy

15 81.6 18.4 2-4 on the 4,124-sample test sets. In all, 21 of the 30
30 87.6 12.4 4-6 simulations with training sets of 1,000, 2,000, and
60 89.4 10.6 4-10 4,000 samples achieved 100% accuracy on test sets.

125 95.6 4.4 5-14 The number of categories established during these
250 97.8 2.2 8-14 21 . I 0 d f 10 22 .. do .500 98.4 1.6 9-22 Slmu atlons range rom to , agam m lcatmg

1000 99.8 0.2 7-18 the variety of paths leading to 100% correct predic-
2000 99.96 0.04 10-16 tion rate.
4000 100 0 11-22

..3.5. Off.Line Conservative Learningellmmated all errors there. However, errors per-
sisted for exemplars near the positive x-axis. On 10 As in the case of poisonous mushroom identification,
other simulations with 30-sample training sets, the it may be important for a system to be able to respond
correct prediction rate averaged 87.6% and ranged "I don't know" to a novel input, even if the total
from 74.9% (4 categories) to 93.3% (6 categories). number of correct classifications thereby decreases

The simulation that generated Figure 4c added early in learning. For higher values of the baseline
95 training samples to the 30 used for Figure 4b. vigilance jj"';;, the ARTMAP system creates more
The number of ART a categories increased to 9 and ART a categories during learning and becomes less
the correct prediction rate increased to 96.4%. On able to generalize from prior experience than when
10 other simulations with 125 randomly chosen train- jj"';; equals O. During testing, a conservative coding
ing exemplars, the correct-prediction rate averaged system with jj"';; = 0.7 makes no prediction in response
95.6%, ranging from 91.5% (10 categories) to 98.8% to inputs that are too novel, and thus initially has a
(9 categories). lower proportion of correct responses. However, the

The simulation of Figure 4d added 375 samples to number of incorrect responses is always low with
the set used in Figure 4c. This 500-sample training jj"';; = 0.7, even with very few training samples, and
set increased the correct-prediction rate to 97.8% on the 99% correct-response rate is achieved for both
the test set, establishing 15 categories. On 10 other forced choice (jj"';; = 0) and conservative (jj"';; = 0.7)
runs, each with 500 randomly chosen training systems with training sets smaller than 1,000 exem-
exemplars, the correct-prediction rate averaged plars..
98.4%, ranging from 96.9% (14 categories) to 99.3% Table 4 summarizes simulation results that repeat

TABLE 4
Off-line Conservative (P; = 0.7) ARTMAP System Performance After Training on
Input Sets Ranging in Size From 3 to 4,000 Exemplars. Each Line Shows Average

Correct, Incorrect and No-Response Test Set Predictions Over 10 Independent
Simulations, Plus the Range of Learned ART. Category Numbers

Average % Average % Average % Number
Training Correct Incorrect No-Response of ART.
Set Size (Test Set) (Test Set) (Test Set) Categories

3 25.6 0.6 73.8 2-3
5 41.1 0.4 58.5 3-5

15 57.6 1.1 41.3 8-10
30 62.3 0.9 36.8 14-18
60 78.5 0.8 20.8 21-27

125 83.1 0.7 16.1 33-37
250 92.7 0.3 7.0 42-51
500 97.7 0.1 2.1 48-64

1000 99.4 0.04 0.5 53-66
2000 100.0 0.00 0.05 54-69
4000 100 0.00 0.02 61-73
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the conditions of Table 3 except that ~ = 0.7. Here, values of each established category. The balance be-
a test input that does not make a 70% match with tween these opposing tendencies leads to the final
any learned expectation makes an "I don't know" net level of generalization.
prediction. Compared with the ~ = 0 case of Table Table 5 illustrates the long term memory structure
3, Table 4 shows that larger training sets are required underlying the 125-sample forced-choice simulation
to achieve a correct prediction rate of over 95%. shown in Figure 4c. Of the 9 categories established
However, because of the option to make no predic- at the end of the training phase, 4 are identified as
tion, the average test set error rate is almost always poisonous (P) and 5 are identified as edible (E). Each
less than 1 %, even when the training set is very small, ARTa category assigns a feature value to a subset of
and is less than .1 % after only 500 training trials. the 22 observable features. For example, Category
Moreover, 100% accuracy is achieved using only (ap- 1 (poisonous) specifies values for 5 features, and
proximately) 1/130 as manyARTacategories as there leaves the remaining 17 features unspecified. The
are inputs to classify. corresponding ARTa weight vector has 5 ones and

121 zeros. Note that the features that characterize
3 6 C t St t Category 5 (poisonous) form a subset of the features..a egory roc ore that characterize Category 6 (edible). Recall that this

Each ARTMAP category code can be described as category structure gave 96.4% correct responses on
a set of ARTa feature values on 1 to 22 observable the 7,999 test set samples, which are partitioned as
features, chosen from 126 feature values, that are shown in the last line of Table 5. When 100% ac-
associated with the ART b identification as poisonous curacy is achieved, a few categories with a small num-
or edible. During learning, the number of feature ber of specified features typically code large clusters,
values that characterize a given category is monotone while a few categories with many specified features
decreasing, so that generalization within a given cat- code small clusters of rare samples.
egory tends to increase. The total number of classes Table 6 illustrates the statistical nature of the cod-
can, however, also increase, which tends to decrease ing process, which leads to a variety of category struc-
generalization. Increasing the number of training tures when fast learning is used. Test set prediction
patterns hereby tends to increase the number of cat- accuracy of the simulation that generated Table 6
egories and decrease the number of critical feature was similar to that of Table 5, and each simulation

TABLE 5
Critical Feature Values of the 9 Category Prototypes Learned in the 125-Sample Simulation Illustrated in Figure 4c (~ = 0).
Categories 1, 5, 7 and 8 are Identified as Poisonous (P) and Categories 2, 3, 4, 6, and 9 are Identified as Edible (E). These

Prototypes Yield 96.4% Accuracy on Test Set Inputs.

# Feature 1 = P 2 = E 3 = E 4 = E 5 = P 6 = E 7 = P 8 = P 9 = E

1 Cap-Shape
2 Cap-Surface
3 Cap-Color
4 Bruises? Yes No Yes
5 Odor None None
6 Gill-Attachment Free Free Free Free Free Free Free Free
7 Gill-Spacing Close Close Close Close Close Close Close
8 Gill-Size Broad Narrow Broad
9 Gill-Color Buff

10 Stalk-Shape Tapering Enlarged
11 Stalk-Root Missing Club
12 Stalk-Surface- Smooth Smooth Smooth Smooth Smooth Smooth Smooth

Above-Ring
13 Stalk-Surface- Smooth Smooth

Below-Ring
14 Stalk-Color- White White White Pink White

Above-Ring
15 Stalk-Color-Be- White White

low-Ring ,
16 Veil-Type Partial Partial Partial Partial Partial Pa~lal Pa~lal Pa~lal Pa~lal
17 Veil-Color White White White White White White White White
18 Ring-Number One One One One One One One
19 Ring-Type Pendant Pendant Ev8;nescent Pendant
20 Spore-Print- White

Color
21 Population Several Several Scattered Several Scattered
22 Habitat

# Coded/Category: 2367 1257 387 1889 756 373 292 427 251

"i "
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TABLE 6
Critical Feature Values of the 4 Prototypes Learned in a 125-Sample Simulation With a

Training Set Different From the One In Table 5. Prediction Accuracy is Similar (96.0%), but
the ART. Category Boundaries are Different

# Feature 1 = E 2 = P 3 = P 4 = E

1 Cap-Shape
2 Cap-Surface
3 Cap-Color
4 Bruises? No
5 Odor None
6 Gill-Attachment Free Free
7 Gill-Spacing Close Close
8 Gill-Size Broad Broad
9 Gill-Color

10 Stalk-Shape Enlarging
11 Stalk-Root
12 Stalk-Surface-Above-Ring Smooth
13 Stalk-Surface-Below-Ring
14 Stalk-Color-Above-Ring
15 Stalk-Color-Below-Ring White
16 Veil-Type Partial Partial Partial Partial
17 Veil-Color White White White
18 Ring-Number One One
19 Ring-Type Pendant
20 Spore-Print-Color
21 Population
22 Habitat

# Coded/Category: 3099 1820 2197 883

had a U5-sample training set. However, the simu- vectors, so ART. and ARTb can be ART 1 modules.
lation of Table 6 produced only 4 ART. categories, The main computations of an ART 1 module will
only one of which (Category 1) has the same long- here be outlined. A full definition of ART 1 modules,
term memory representation as Category 2 in Table as systems of differential equations, along with an
5. Note that, at this stage of coding, certain features analysis of their network dynamics, can be found in
are uninformative. For example, no values are spec- Carpenter and Grossberg (1987a).
ified for features 1, 2, 3, or 22 in Table 5 or Table In an ART 1 module, an input pattern I is rep-
6; and feature 16 (veil-type) always has the value resented in field F, and the recognition category for
"partial." However, performance is still only around I is represented in field F2. We consider the case
96%. As rare instances form small categories later where the competitive field F2 makes a choice and
in the coding process, some of these features may where the system is operating in a fast-learn mode,
become critical in identifying exemplars of small cat- as defined below. An algorithm for simulations is
egories. given in the Appendix.

We will now turn to a description of the compo-
nents of the ARTMAP system.

4.1. F I Activation

4 ART MODULES ART and ART Figure 5 illustrates. the main compone~ts of an
."b ART 1 module. A field, F, of M nodes, with output

Each ART module in Figures 1 and 2 establishes vector x = (x" ..., XM), registers the Fo -+ F, input
compressed recognition codes in response to se- vector I = (I" ...,1M), Each F, node can receive
quences of input patterns a and b. Associative learn- input from 3 sources: the Fo -+ F, bottom-up input;
ing at the Map Field links pairs of pattern classes via nonspecific gain control signals; and top-down sig-
these compressed codes. One type of generalization nals from the N nodes of F2, via an F2 -+ Fl adaptive
follows immediately from this learning strategy: If filter. A node is said to be active if it generates an
one vector a is associated with a vector b, then any output signal equal to 1. Output from inactive nodes
other input that activates a's category node will pre- equals O. In ART 1 an F, node is active if at least 2
dict the category of pattern b. Any ART module can of the 3 input signals are large. This rule for FI ac-
be used to self-organize the ART" and ARTb cate- tivation is called the 2/3 Rule. The 2/3 Rule is re-
gories. In the application above, a and b are binary alized in its simplest, dimensionless form as follows:
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2/3 Rule matching eqn (1) reduces to the single term Zli, so
The ith FI node is active if its net input exceeds .-

a fixed threshold. Specifically, Xi = {1 If Ii = ! and ZJi > Z (5)
0 otherwIse.

xi = {1 if Ii + ?I + If.1 Yjzji > 1 + z (1)
0 otherwise, 4 2 F C .

..2 holce
where term Ii is the binary Fo -+ F( input, term 81 is ..
the binary nonspecific FI gain control signal, term Let Tj ~enote the total Input from FI to the jth F2
"" . h f F F . I . h node given by~ YjZji IS t e sum 0 2 -+ I signa s Yj via pat -'
ways with adaptive weights zji, and z is a constant M
such that Tj = L XiZij, (6)

i=1

0 < z < 1. (2) where the Zij denote the FI -+ F2 adaptive weights.

F 1 gain control If some ~ > 0, define the F2 choice index J by

The FI gain control signal 81 is defined by T - {T ..- 1 } ( )J-max j.J- ...N. 7

= {1 if Fo is .active and F2 is inactive (3)
gl 0 otherwise. In the typical case, J is uniquely defined. Then the

Note that F2 activity inhibits FI gain, as shown in F2 output vector y = (YI, ..., YN) obeys

Figure 5. These laws for FI activation imply that, if {1 .f ' = JF I J
(8)2 IS inactive, Yj -0 if j ~ J.

{1 iff=1 () If . d .. h . I . hXi = 0 th ' .4 two or more In Ices j s are maxima Input, t en

0 erwlse. h II h h I .. Th.. t ey equa y s are t e tota activity. IS case IS not

If exactly one F2 node J is active, the sum ~ YiZji in considered here.

ART 1
ORIENTING

SUBSYSTEM

y.
-J

0

FIGURE 5. ART 1 schematic diagram (Carpenter & Grossberg, 1987a). The binary vector I forms the bottom-up input to the
field F, whose activity vector Is denoted x. The competitive field F, Is designed to make a choice. Adaptive pathways lead from
each F, node to all F, nodes, and from each F, node to all F, nodes. Reset occurs when the match between x and I falls to meet
the criterion established by the vigilance parameter p. All paths are excitatory unless marked with a minus sign.
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4.3. Learning Laws The first time an F2 node J becomes active, it is
I f I ART 1 d .. h h h .said to be uncommitted. Then, by eqns (13)-(15),
n ast- earn , a aptlve welg ts reac t elr

new asymptote on each input presentation. The ZJ -I (16)
learning laws, as well as the rules for choice andh .

I d . b d . th f II durIng learnIng. Thereafter node J IS said to be com-
searc , are convement y escn e usIng e 0 ow- 'tt ding notation. If a is a binary M-vector, define the ml e B.

tt I . 0 om-up earnmg
normofaby I .

I 1 In slmu atlons It IS convement to assign mltla va-
M ues to the bottom-up F1 -+ F2 adaptive weights Zij

lal = ~ Uj. (9) in such a way that F2 nodes first become active in

the order j = 1, 2, This can be accomplished
If a and b are two binary vectors, define a third binary by letting
vector a n b by Zij(O) = aj (17)

(a n b)i = 1 ~ Uj = 1 and bi = 1. (10)
hwere

Finally, let a be a subset of b (a k b) iff a n b = a. 18
All ART 1 learning is gated by F2 activity; that al > a2 > ...> aN. ( )

is, the adaptive weights ZJi and ZiJ can change only Like the top-down weight vector zJ, the bottom-up
when the Jth F2 node is active. Then both F2 -+ F1 F1 -+ F2 weight vector ZJ = (ZIJ ...ZiJ ...ZMJ)
and F1 -+ F2 weights are functions of the F1 vector also becomes proportional to the F1 output vector x
x, as follows: when the F2 node J is active. In addition, however,

Top-down learning the bottom-up weights are scaled inversely to lxi, so
Top-down F2 -+ F1 weights in active paths learn that

x; that is, when the Jth F2 node is active
Z -Xi ( 19 )ZJi -Xi. (11) IJ P + Ix\'

All other Zji remain unchanged. Stated as a differ- where p > O. This F1 -+ F2 learning law, called the
ential equation, this learning rule is Weber Law Rule (Carpenter & Grossberg, 1987a),

realizes a type of competition among the weights ZJ
~ Zji = Yj(Xi -Zji). (12) adjacent to a given F2 node J. This competitive com-
dt putation could alternatively be transferred to the F1

In eqn (12), learning by Zji is gated by Yj. When the field, as it is in ART 2 (Carpenter & Grossberg,
Yj gate opens-that is, when Yj > O-then learning 1987b). By eqns (14), (15), and (19), during learning
begins and Zji is attracted to Xi. In vector terms, if I n Z~oId)
Yj> 0, then Zj = (Zjl, Zj2, , ZjM) approac~es x. ZJ -P + II n z~OId)I. (20)
Such a law is therefore sometimes called learnIng by
gated steepest descent. It is also called the outstay The Zij initial values are required to be small
learning rule, and was introduced into the neural enough so that an input I that perfectly matches a
modelling literature in 1969 (Grossberg, 1969). previously learned vector ZJ will select the F2 node

Initially all Zji are maximal: J rather than an uncommitted node. This is accom-
Zji(O) = 1. (13) plished by assuming that

1d . h 0 < a. = Z"j(O) < -
\ I (21) Thus with fast learning, the top- own welg t vector I .P + I

ZJ is a binary vector at the start and end of each input f II I:' F . t I Wh I . f. t t d.
) d

(13) or a ro -+ 1 mpu s. en IS Irs presen e ,
presentatl.o~. By eqns (4), (5), (1~), (11 , an , x = I, so by eqns (6), (15), (17), and (20), the
the F1 activity vector can be descrIbed as F F . t t T = ( T T T ) I' Sgl.

ven1-+ 2 mpu vec or -I, 2".., N
- { I if F2 is inactive (14) by

x -I n ZJ if the Jth F2 node is active.
AI - { lllaj if j is an uncommilted node

By eqns (5) and (12), when node J IS active, learnIng 11 -~ l;Zij -II n zjl/(P + Izjl) if j is a committed node,

causes (22)

zJ -I n Z~old), (15) In the simulations above, P is taken to be so small
where Z)Old) denotes ZJ at the start of the input pre- that,. among committe~ nodes, Tj is determined by

t. B (11) a nd ( 14 ) x remains constant the size of II n zjl relative to Izjl. Ifp were large, Tj
senta Ion. yeqns, ..

1 II n I I dd.t.during learning, even though IzJI may decrease. would depend pnman yon Zj. n a lion, aj

:"c': -"
,i~,:,,'.\'
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values ~re taken to be so s~all that an un~ommitted resents input I. A reset wave is triggered only if this
node.will generate the maxlmum.~ value m eqn (22) confidence measure falls below a dimensionless pa~
only If I I n Zj I = 0 for all committed nodes. Larger rameter p that is called the vigilance parameter. The
value~ of aj and P bi.as the system toward earlier vigilance parameter calibrates the system's sensitivity
selection of uncommitted nodes when only poor to disconfirmed expectations.
matches are to be found among the committed One of the main reasons for the successful clas-
nodes. A more com!,let~ dis.cussion of this aspect of sification of nonstationary data sequences by
ART 1 system design IS given by Carpenter and ARTMAP is its ability to recalibrate the vigilance
Grossberg (1987a). parameter based on predictive success. How this

works will be described below. For now, we char-
4.4. Hypothesis Testing, Confidence, Novelty, acterize t?~ ART 1 search process given a constant
and Search level of vigilance. .

In fast-learn ART 1 with choice at F2, the search
By eqns (7), (21), and (22), a committed F2 node J process occurs as follows:
may be chosen even if the match between I and zJ
is poor; the match need only be the best one avail- Step I-Select one F2 node J that maximizes ~
able. If the match is too poor, then the ART 1 system in eqn (22), and read-out its top-down weight
can autonomously carry out hypothesis testing, or vector ZJ.
search, for a better F2 recognition code. This search Step 2-With J active, compare the Fl output
process is mediated by the orienting subsystem, vector x = I n ZJ with the Fa -Fl input vector
which can reset F2 nodes in response to poor matches I at the orienting subsystem (Figure 5).
at F. (Figure 5). The orienting subsystem is a type Step 3A-Suppose that I n ZJ fails to match I
of novelty detector that measures system confidence. at the level required by the vigilance criterion,
If the degree of match between bottom-up input I i.e., that
and top-down weight vector zJ is too poor, the sys-tem's confidence in the recognition code labelled by Ixl = II n zJI < pili. (23)

J is inadequate. Otherwise expressed, the input I is Th F t d J .
h ff f h d.en 2 rese occurs: no e IS s ut 0 or t e u-

too unexpected relative to the top-down vector ZJ, t.
f h .. I d . h . h I .

.ra Ion 0 t e mput mterva unng w IC remams

which plays the role of a learned top-down expec- Th . d f h h F d . ht t.on. e m ex 0 t e c osen 2 no e IS reset to t ea Ion. I d. h .
An unexpected input triggers a novelty burst at va ue ~orrespon mg to t e ".ext highest F1- F2 input

the orienting subsystem which sends a nonspecific Tj. With the new node active, Steps 2 and 3A are
t f th .' t ' b t t F Th repeated until the chosen node satisfies the reso-

rese wave r rom e orten mg su sys em 0 2' e ...

t d . I h t ff d J I nance crIterIon m Step 3B. Note that reset never
rese wave en unng y s u s 0 no e so ong as '

f. I . W. h J ff d . d occurs I
mput remams on, It 0 an ItS top- own
F2 -Fl signals silent, Fl can again instate vector p :5; 0, (24)
x = I, which leads to selection of another F2 node .
th h th b tt F F d t. f ' lt Th ' When eqn (24) holds, an ART system acts as If thereroug e 0 om-up I -2 a ap Ive I er. IS . t.

b th h .. I d ., f were no orten mg su sys em.
ypot esls testmg process ea s to activation 0 a St 3B-S th t I n h .

, , ep uppose a ZJ meets t e cn-
sequence of F2 nodes until one IS chosen whose vector t . f .

th tf d ' ' h f d h ' h enon or resonance; I.e., a

0 a aptlve welg ts orms an a equate matc Wit
I, or until an uncommitted node is selected. The Ixl = II n zJI ~ pili, (25)
search takes place so rapidly that essentially no learn-
ing occurs on that time scale. Learned weights are Then the search ceases and the last chosen F2 node
hereby buffered against recoding by poorly matched J remains active until input I shuts off (or until p
inputs that activate unacceptable F2 recognition increases). In this state, called resonance, both the
codes. Thus, during search, previously learned F. -F2 and the F2 -Fl adaptive weights approach
weights actively control the search for a better rec- new values if I n Z)Old) ;06 Z)Old). Note that resonance
ognition code without being changed by the signals cannot occur if p > 1.
that they process. If psI, search ceases whenever I k ZJ, as is the

case if an uncommitted node J is chosen. If vigilance
4 5 v, 'I t S h d R t L ' is close to 1, then reset occurs if F2 -Fl input alters
..Igl an earc an esonan earning ...

the Fl activity pattern at all; resonance requires that
As noted above, the degree of match between bot- I be a subset of zJ. If vigilance is near 0, reset never
tom-up input I and top-down expectation zJ is eval- occurs. The top-down expectation zJ of the first cho-
uated at the orienting subsystem, which measures sen F2 node J is then recoded from Z)Old) to I n
system confidence that category J adequately rep- Z)old), even if I and Z)old) are very different vectors.

",,' "", ", .' ""'"
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4.6. F 2 Gain Control 5. THE MAP FIELD

For simplicity, ART 1 is exposed to discrete presen- A Map Field module links the F2 fields of the ART a
tation intervals during which an input is constant and and ARTb modules. Figure 6 illustrates the main
after which FI and F2 activities are set to zero. Dis- components of the Map Field. We will describe
crete presentation intervals are implemented in one such system in the fast-learn mode with choice
ART 1 by means of the FI and F2 gain control signals at the fields F~ and Fq. As with the ART 1 and
gt and g2 (Figure 5). The F2 gain signal g2 is assumed, ART 2 architectures themselves (Carpenter &
like gt in eqn (3), to be 0 if Fo is inactive. Then, Grossberg, 1987a, 1987b), many variations of the
when /'() becomes active, g2 and F2 signal thresholds network architecture lead to similar computations.
are assumed to lie in a range where the F2 node that In the ARTMAP hierarchy, ARTa, ARTb, and Map
receives the largest input signal can become active. Field modules are all described in terms of ART 1
When an ART 1 system is embedded in a hierarchy, variables and parameters. Indices a and b identify
F2 may receive signals from sources other than Ft. terms in the ARTa and ARTb modules, while Map
This occurs in the ARTMAP system described be- Field variables and parameters have no such index.
low. In such a system, F2 still makes a choice and Thus, for example, Pa, Pb, and P denote the ARTa,
gain signals from Fo are still required to generate ARTb, and Map Field vigilance parameters, respec-
both FI and F2 output signals. In the simulations, F2 tively.
nodes that are reset during search remain off until
the input shuts off. A real-time ART search mech- 5 1 ART ART d C I t C d " . h . h . I fl ...a' b, an omp emen 0 Ingamsm t at can cope Wit continuous y uctuating
analog or binary inputs of variable duration, fast or Both ART a and ARTb are fast-learn ART 1 mo~ules.
slow learning, and compressed or distributed F2 With one optional addition, they duplicate the design
codes is described by Carpenter and Grossberg described above. That addition, called complement
(1990). coding (Carpenter, Grossberg, & Rosen, 1991), rep-

ARTb

CHOICE
P

~

MAP FIELD

a I
-Y.

J

~~::2~~~ CHOICE
MATCH

ART a TRACKING

FIGURE 6. The Map Field is connected to F~ with one-to-one, nonadaptive pathways in both directions. Each F; node is connected
to all Map Field nodes via adaptive pathways. A mismatch between the category predicted by a and the actual category of b
activates the Map Field orienting subsystem. This leads to F; reset and increased vigilance (P.) via match tracking.
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resents both the on-response to an input vector and
5 3 F abG " C t I..aln on ro

the off-response to that vector. This ART coding .
strategy has been shown to playa useful role in ComparIson of eqns (1) and (28) indicates an analogy
searching for appropriate recognition codes in re- betw~en fields F~, Fab, and F~ in a Map Field module
sponse to predictive feedback (Grossberg, 1982b, and fields ~O, FI, and F2, respectively, in an ART 1
1984). :0 represent such a code in its simplest form, modu!e: DI~ferences between these modules include
let the mput vector a itself represent the on-response the bIdIrectional nonadaptive connections between
and the complement of a, denoted by ac, represen; F~ and Fab in the Map Field module (Figure 6) com-
the off-response, for each ARTa input vector a. If a pared to the bidirectional adaptive connections be-
~s the binary~ector (ai' ..., aM.), the input to ART a tween field~ FI and F2 in th~ ART 1 module (Figure
IS the 2Ma-dlmensional binary vector 5). These dIfferent connectIvity schemes require dif-

ferent rules for the gain control signals G and 81.
(a, ac) = (aI' ..., aM , a~, ..., a~) (26) Th~ Map Field gain control signal G obeys the

..equatIon

where G = {o if F~ and F~ are both active
1 otherwise. (30)

af = 1 -ai' (27) Note that G is a persistently active, or tonic, signal
..that is turned off only when both ARTa and ARTb

The utIlity of complement coding for searching an are active.

ARTMAP system will be described below. Condi-
tions will also be given where complement coding is 5.4. F! ~ Fab Initial Values
not needed. In fact, complement coding was not .needed for any of the simulations described above If an actIve F~ nodeJ has not yet learned a prediction,
and the ART a input was simply the vector a. ' the AR!MAP system is designed so that J can learn

In the discussion of the Map Field module below to predIct any ART b pattern if one is active or be-

F~ nodes, indexed by j = 1 ...Na, have binar; ~ome~ ~ctive -:vhile J is active. This design constraint
output signals yj; and F~ nodes, indexed by k = 1 IS satIsfied usmg the assumption, analogous to eqn

...Nb, have binary output signals y~. Correspond- (13), that

ingly, the index of the active F~ node is denoted byJ, and the index of the active F~ node is denoted by Wjk(O) = 1 (31)

K. Because the Map Field is the interface where for j = 1 ...Na and k = 1 ...Nb.

signals from F~ and F~ interact, it is denoted by Fab.
The nodes of Fab have the same index k k = 1 2 5 5 M F" Id A t " t "

, " ." ap Ie c Iva Ion
..., Nb, as the nodes of F~ because there is a one-
to-one correspondence between these sets of nodes. Rules governing G and WAO) enable the following
The output signals of Fab nodes are denoted by Xk. Map Field properties to obtain. If both ART a and

ARTb are active, then learning of ARTa ~ ARTb

5 2 2/3 R I M F" Id M h.associations can take place at Fab. If ARTa is ac-
..u e ap Ie atc Ing t. b ART ' .

Ive ut b IS not, then any previously learned

Each node of Fab can receive input from three ARTa~ARTbpredictionisreadoutatFab.IfARTb
sources: F~, F~, and a Map Field gain control G. is active but ART a is not, then the selected ARTb
The Fab output vector x obeys the 2/3 Rule of category is represented at Fab. If neither ART a nor
ART 1; namely, ART b is active, then Fab is not active. By eqns (28)-

(31), the 2/3 Rule realizes these properties in the

{1 if Ykb + G + }:~! y '!w > 1 + -w following four cases.
x = 1-1 I Ik (28)k 0 otherwise F! active and F~ active

b .b. .If both the F~ category node J and the F~ category
w.here ter.m Yk IS the.F2 output sIgnal, t~rm G IS a node K are active, then G = o b e n (30). Thus bbmary gam control sIgnal, term ~ yjWjk IS the sum eqn (28) y q Y

of F~ ~ Fab signals yj via pathways with adaptive '

weights Wjk, and W is a constant such that Xk = {1 if k = .K and WIK > W (32)
0 otherwise.

0 < W < 1. (29) All Xk = 0 for k ~ K. Moreover, XK = 1 only if an

.' association has previously been learned in the path-
Va~ues of the gam control sIgnal G and the F~ ~ Fab way from nodeJto node K, or ifJ has not yet learned
weIght vectors wi = (Wjl, ..., WjNb), j = 1 ...Na, to predict any ARTb category. If J predicts any cat-
are specified below. egory other than K, then all Xk = 0.
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F! active and F~ inactive is active. Otherwise WI remains constant. If node J
If the F~ node J is active and F~ is inactive, then has not yet learned to make a prediction, all weights

G = 1. Thus Wlk equal 1, by eqn (31). In this case, if ARTb re-

{l Of -ceives no input b, then all Xk values equal 1 by eqnI W > W .Xk = 0 th Jk o e (33) (33). Thus, by eqn (35), all Wjk values remaIn equal
0 erwls. 1 A I h " F dto .s a resu t, category c Oices m ~ 0 not alter

By eqns (31) and (33), if an input a has activated the adaptive weights Wjk until these choices are as-
node J in F~ but F~ is not yet active, J activates all sociated with category choices in F~.
nodes k in Fab if J has learned no predictions. If prior
learning has occurred, all nodes k are activated 5 8 M F. Id R t d M t h T k.'" ..ap Ie ese an a c rac mgwhose adaptive weIghts Wlk are still large.

F~ active and F! inactive The Map Field provides the control that allows the
If the F~ node K is active and F~ is inactive, then ARTMAP system to establish different categories

G = 1. Thus for very similar ART a inputs that make different pre-

o dictions, while also allowing very different ART aXk = {ol Ifthk = ,K (34) inputs to form categories that make the same

0 erWlse, d'. I . 1 h M F. Id ' .

pre IctIon. n partIcu ar, t e ap Ie onentIng

In this case, the Fab output vector x is the same as subsystem becomes active only when ARTa makes a
the F~ output vector yb. prediction that is incompatible with the actual ARTb

F! inactive and F~ inactive input. This mismatch event activates the control
If neither F~ nor F~ is active, the total input to strategy, called match tracking, that modulates the

each Fab node is G = 1, so all Xk = 0 by eqn (28). ARTa vigilance parameter Pa in such a way as to keep

the system from making repeated errors. As illus-
trated in Figure 6, a mismatch at Fab while F~ is active

5.6. F~ Choice and Priming triggers an inter-ART reset signal R to the ART a
, orienting subsystem. This occurs wheneverIf ARTb receives an input b while ARTa has no Input,

then F~ chooses the node K with the largest Ft -Ixl < plybl, (36)
F~ inPa~t. Fie~d F~ then a~tivates the Kth Fab ~o.de, where P denotes the Map Field vigilance parameter,
a~d F b- F~ feedback sIgnals, suppor~ the ongl~al The entire cycle of Pa adjustment proceeds as follows
FI -F2 choI~e. If ARTa receIves an Input a whIle through time. At the start of each input presentation,
A~Tb has?o Input, F~ chooses a.node J. If, due to Pa equals a fixed baseline vigilancefj";;. When an input
pnor learnIng, some WIK = 1 whIle all other Wlk = a activates an Fa category node J and resonance is
0, we say that a predicts the ARTb category K, as established 2
Fab sends its signal vector x to F~. Field F~ is hereby ,

attentionally primed, or sensitized, but the field re- Ix" = la n Z11 ~ p.lal, (37)
mains inactive so long as ARTb has no input from , (25) A . ART t . 1 ' t tb b b ' '

h F b h ' as m eqn .n mter- rese sIgna IS sen 0

Fo. IfthenanFo-FI mputbamves,t e 2C Oice ART 'f h ART t d ' t db f ' l t'" a 1 t e b ca egory pre IC e y a al s 0

depends upon network parameters and tImIng, It IS h h t '
ART t b (36) The' matc t e ac Ive b ca egory, y eqn .

natural to assume, however, that b sImultaneously , ART t ' 1 R .
t 1 that I' S' b b' 'b d mter- rese sIgna raIses Pa 0 a va ue

activates the F I and F 2 gaIn control sIgnals g I an . h' h h t (37)t f .1 S that.b ' Just Ig enoug 0 cause eqn 0 aI, 0g~ (FIgure 5). Then F~ processes the Fa pnme x as
soon as Ft processes the input b, and F~ chooses the ~ (38)
primed node K. Field Ft then receives F~ -Ft ex- P. > lal .

p~ctation inpu~ z~ as well as FS -Ft input b, leading Node J is therefore reset and an ART a search ensues.
either to matc or reset. Match tracking continues until an active ARTa cat-

egory satisfies both the ARTa matching criterion eqn
.(37) and the analogous Map Field matching criterion.5.7. F! -Fab Learnmg Laws Match tracking increases the ART a vigilance by

The F~ -Fab adaptive weights W jk obey an outstar the minimum amoun.t ~eeded to ab~rt an incorrect
learning law similar to that governing the F2 -FI ARTa -ARTb predICtion and to dnve, a search for
weights Zj; in (12); namely, a new ARTa category that can establIsh a correct

prediction. As shown by example below, match
E- W = Y'!(X -W ), (35) tracking allows a to make a correct prediction ondt Jk J k Jk subsequent trials, without repeating the initial se-

According to (35), the F~ -Fab weight vector WI que~ce. of error~. ~atch trac~ing, hereby co,nj,oi?tly
approaches the Fab activity vector x if the Jth F~ node maXImIzes predICtive generalIZation and mInImIZeS
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predictive error on a trial-by-trial basis, using only long-term memory (LTM). Such an intermediate rate
local computations. is called medium-term memory (MTM) (Carpenter

& Grossberg, 1990).
Comparing the match tracking circuit in Figure 7

5.9. Match Tracking Using VITE Dynamics to a VITE circuit, the inter-ART reset signal R is

The operation of match tracking can be implemented a~al.ogous to the VITE GO sign~l: total F1 outpu~
in several different ways. One way is to use a vari- Ix lis ~nalogous to the Targ~t PosItion Code (TPC),
ation on the Vector Integration to Endpoint, or total F 0 ?~tput, gated by Pa, IS analogous to the Pr~s-
VITE, circuit (Bullock & Grossberg, 1988) as fol- ent POSItIO~ ~omma.nd (PPC); and the .quantIty
lows. Let an ARTa binary reset signal ra (Figure 7) (Palal -Ix I) 10 (39) IS analogous to the DIfferen.ce
obey the equation Vector (DV). (See Bullock & Grossberg, 1988, FIg-

ure 17.)
r = { I if Palal.- Ixal > 0 (39) An ARTa search that is triggered by increasing Pa
a 0 otherwIse, according to eqn (40) ceases if some active F~ node

J satisfies
as in eqn (23). The complementary ARTa resonance
signal r~ = 1 -ra. Signal R equals 1 during inter- la n z,1 ~ Palal. (41)

ART reset; that is, when inequality (36) holds. The If no such node exists Fa shuts down for the rest of
size of the ART a vi~ilance pa~ameter Pa is determined the input presentation: I~ particular, if a k z1, match
by the match tracking equation tracking makes Pa > 1, so a cannot activate another

dt category in order to learn the new prediction. The
dt Pa = (p;; -Po) + yRr~, (40) following anomalous case can thus arise. Suppose

that a = z1 but the ARTb input b mismatches the
where y ~ 1. During inter-ART reset, R = r~ = 1, ARTb expectation ztc previously associated with
causing Pa to increase until r~ = O. Then Palal > Ixal, J. Then match tracking will prevent the recoding
as required for match tracking (38). When r~ = 0, that would have associated a with b. That is, the
Pa relaxes to p;;. This is assumed to occur at a rate ARTMAP system with fast learning and choice will
slower than node activation, also called short-term not learn the prediction of an exemplar that exactly
memory (STM), and faster than learning, also called matches a learned prototype when the new predic-

ART a

Fa
2

INTER-
ART

RESET
ya

R

aF1 -

a
TE

Fa MATCH
0 TRACKING

FIGURE 7. Match tracking by a scalar VITE circuit. When r~ = R = 1, p, rapidly increases until p,lal > Ix'i. Once this occurs,
r~ = 0 and r, = 1, causing ART, reset. The inter-ART reset signal R plays a role analogous to the VITE model GO signal.
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tion contradicts the previous predictions of the ex- Choose p;; oS 0.6 and Pb > O. Vectors a(1) then b(1)
emplars that created the prototype. This situation are presented, activate ART a and ARTb categories
does not arise when all ARTa inputs a have the same 1 = 1 and K = 1, and the category 1 = 1 learns to
number of 1 's, as follows. predict category K = 1, thus associating a(1) with b(1).

Next a(2) then b(2) are presented. Vector a(2) first ac-
tivates 1 = 1 without reset, since

5.10. Equal-Norm Inputs and Search

la(2)nz~1 3 -ConsIder the case m whIch all ARTa mputs have the --~ = "4 ~ P. = P.. (43)
same norm:

However, node 1 = 1 predicts node K = 1. Since
lal = constant. (42)

.Ib(2) n ztlWhen an ARTa category node 1 becomes commItted Ib(2)1 = 0 < Pb, (44)
to input a, then Iz11 = lal. Thereafter, by the 2/3
Rule (15), z1 can be recoded only by decreasing its ART search leads to activation of a different Fb
number of 1 entries, and thus its norm. Once this node~ K = 2. Because of the conflict between th:
occurs, no i~put a can e.ver ~e a subs~t of~1, byeqn prediction (K = 1) made by the active F~ node and
(42). In partIcular, the sItuatIon descrIbed m the pre- the currently active Fq node (K = 2), the Map Field
vious section cannot arise. orienting subsystem resets F~, but without match

In the simulations reported in. this article, all tracking. Thereafter a new F~ node (J = 2) learns
ARTa inputs have norm 22. EquatIon (42) can also to predict the correct Fq node (K = 2), associating
be satisfied by using complement coding, since a(2) with b(2).
I(a, aC)1 = Ma. Preprocessing ART a inputs by com- Vector a(3) first activates 1 = 2 without ARTa
plement coding thus ensu~es that. the system will reset, thus predicting K = 2, with zq = b(2). How-
avoid the case where some mput a IS a proper subset ever, b(3) mismatches zq, leading to activation of the
of the active ART a prototype z1 and the learned pre- Fq node K = 1, since b(3) = b(1). Since the predicted
diction of category J mismatches the correct ARTb node (K = 2) then differs from the active node
pattern. .(K = 1), the Map Field orienting subsystem again

Finally, note that with ARTMAP fast learnmg and resets F~. At this point, still without match tracking,
choice, an ART a category node 1 is permanently the F~ node 1 = 1 would become active, without
committed to the first ARTb category n~de K to subsequent ARTa reset, since z1 = a(1) and
which it is associated. However, the set of mput ex-. I (3) n (1)1 3emplars that access eIther category may ~han~e ~~~ = -~ P. = JJ;;. (45)

through time, as in the banana example descrIbed m la I 5

the introduction. Since node 1 = 1 correctly predicts the active node

K = 1, no further reset or new learning would occur.
5 11 Match Tracking Example On subsequent prediction trials, vector a(3) would

once again activate 1 = 2 and then K = 2. When
The role of match trackmg IS Illustrated by the fol- vectorb(3) is not presented, on a test trial, vector a(3)
lowing example. The input pairs shown in Table 7 would not have learned its correct prediction.
are presented in order (a(1), b(1», (a(2), b(2», (a(3), With match tracking, when a(3) is presented, the
b(3». The problem solved by match tracking is c~e- Map Field orienting subsystem causes Pa to increase
ated by vector a(2) lying "between" a(1) and a(3), wIth to a value slightly greater than la(3) n a(2)lIa(3)1-1 =
a(1) C a(2) C a(3), while a(1) and a(3) are mapped to the 0.8 while node J = 2 is active. Thus after node 1 =
same ARTb vector. Suppose that, instead of match 2 is reset, node 1 = 1 will also be reset because
tracking the Map Field orienting subsystem merely, .

I (3) n a(I)1activated the ARTa reset system. Codmg would then ~---(":ii""- = 0.6 < 0.8 < Pa. (46)

proceed as follows. la I

The reset of node 1 = 1 permits a(3) to choose an
uncommitted F~ node (I = 3) that is then associated
with the active Fq node (K = 1). Thereafter eachTABLE 7 ...

Nested ART. Inputs and Their ARTa mput predIcts the correct ARTb output wIth-
Associated ART. Inputs out search or error.

ART. inputs ART b inputs
5.12. Complement Coding Example8(1) (111000) b(1) (1010)

8(2) (111100) b(2) (0101) The utility of ARTa complement coding is illustrated
8(3) (111110) b(3) (1010) by the following example. Assume that the nested
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input pairs in Table 7 are presented to an ARTMAP Carpenter, G. A., & Grossberg, S. (1988). The ART of adaptive

system in order (8(3), b(3», (8(2), b(2», (8(1), b(I», with pattern recognition by a self-organizing neural network. Com-

match tracking but without complement coding. puter, 21, 77-88.

Choose p < 0.5 and p > O. Carpenter, G. A., & Grossberg, S. (1990). ART 3: Hierarchical
V t a (3) d b(3)b t d d .search using chemical transmitters in self-organizing pattern

ec ors 8 an ~re presen e an actIvate recognition architectures. Neural Networks, 3, 129-152.

ARTa and ARTb categorIes J = 1 and K = 1. The Carpenter. G. A., Grossberg, S., & Rosen, D. B. (1991). Fuzzy

system learns to predict b(3) given 8(3) by associating ART: Fast stable learning and categorization of analog pat-

the F~ node J = 1 with the F~ node K = 1. terns by an adaptive re~onance system. Neural Networks, in

Next 8(2) and b(2) are presented. Vector 8(2) press. .
f .-' . I (2) Grossberg, S. (1969). On learnIng and energy-entropy depen-

Irst actIvates J -1 wIthout reset, sInce 8 n dence in recurrent and nonrecurrent signed networks. Journal

z~118(2)1-1 = 1 ~ Pa = p-;;. However, node J = 1 of Statistical Physics, 1,319-350.

predicts node K = 1. As in the previous example, Grossberg, S. (1976a). Adaptive pattern classification and uni-

after b(2) is presented, the F~ node K = 2 becomes versal recoding, I: Parallel development and coding of neural

active and leads to an inter-ART reset. Match track- feature detectors. Biological Cybernetics, 23,121-134.

.a ..Grossberg, S. (1976b). Adaptive pattern classification and uni-
mg makes Pa > 1, so F2 shuts down until the paIr versal recoding II. Feedback expectation olfaction and il-

(8(2), b(2» shuts off. Pattern b(2) is coded in ARTb as lusions. Biologi~al.Cybernetic;, 23,187-202. '

z~, but no learning occurs in the ART a and Fab mod- Grossberg, s. (1982a). Studies of mind and brain: Neural principles

ules. of learning, perception, development, cognition, and motor

Next 8(1) activates J = 1 without reset since control. Boston, MA: Reidel Press.
I (I) nail (1) 1 -1 -1 --S' d ' J -1 Grossberg, S. (1982b). Processing of expected and unexpected

8 .ZI 8 -~ Pa -Po. mce no e -events during conditioning and attention: A psychophysio-

predIcts the correct pattern b(l) = zt, no reset ensues. logical theory. Psychological Review, 89, 529-572.

Learning does occur, however, since z~ shrinks to Grossberg, S. (1984). Some psychophysiological and pharmaco-

a(I). If each input can be presented only once, 8(2) l?gical correlllctes of a developmental, cognitive, a?d motiva-

does not learn to predict b(2) However if the input tlonal theory. In R. Karrer, J. Cohen, and P. Tuetmg (Eds.),

.'. Brain and Information: Event Related Potentials (pp. 58-151).
paIrs are presen.ted repeatedly, match trackIng allows New York: New York Academy of Sciences.

ARTa to establIsh 3 category nodes and an accurate Grossberg, S. (Ed.) (1987a). The adaptive brain, I: Cognition,

mapping. learning, reinforcement, and rhythm. Amsterdam: Elsevier/

With complement coding, the correct map can be North-Holland. learned on-line for any p-;; > O. The critical difference Grossberg, S. (Ed.) (1987b). The adaptIve bram, II: VISI.On,

. d t th f h 1 (2) n a
il (2) 1 -1 I speech, language, and motor control. Amsterdam: Elsevler/

IS ue 0 e act t at 8 Zl 8 now equa s North-Holland.

5/6 when 8(2) is first presented, rather than equaling Grossberg, S. (1988a). Nonlinear neural networks: Principles,

1 as before. Thus either ARTa reset (if P-;; > 5/6) or, mechanisms, and architectures. Neural Networks, I, 17-61.

match tracking (if P-;; S 5/6) establishes a new ARTa Gro~sberg, S. (Ed:) (1988b). Neural networks and natural intel-

node rather than shutting down on that trial. On the hgence. Ca~bndge, MA: MIT Press. .1 (1)

1 .Iba, W., Woguhs, J., & Langley, P. (1988). TradmgoffslmphClty
next tral , 8 a so establishes a new ARTa category and coverage in incremental concept learning. In Proceedings

that maps to b(I). of the 5th International Conference on Machine Learning. Ann

The Appendix outlines ARTMAP system re- Arbor, MI: Morgan Kaufmann, 73-79.

sponses to various input situations, namely, combi- Kendal!, .M. G., & Stuart, A. (1966). The advanced theory of
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APPENDIX ART. and ART.
AI. Simulation Algorithms ART. and ARTb are fast-learn ART 1 modules. Inputs to

ART. may, optionally, be in the complement code form. Embed-
AI.I. ART I al~orit.hm. .ded in an ARTMAP system, these modules operate as outlined

Fast-learn. ART 1 with blnar~ F;,-+ FI Input vector ~ and choIce above, with the following additions. First, the ART, vigilance
at F2 can be sImulated by following the rules below. Fields Fo and parameter p, can increase during inter-ART reset according to
F, have"! .nodes and field F2 has N nodes. the match tracking rule. Second, the Map Field F'b can prime

.~nltlal values. ..ARTb. That is, if F,b sends nonuniform input to F~ in the absence
.Irntlally all F2.n?~es are .sald to be uncommitted. WeIghts Zij of an F* -+ Ft input b, then F~ remains inactive. However, as
In F, -+ F2 paths initially satisfy soon as an input b arrives, F~ chooses the node K receiving the

Z,(O) = a, (AI) ~argest F,b-+ F~ input. Node K, i.n turn, sends to Ft the top-down
I I Input z~. Rules for match tracking and complement coding are

where Zj 5 (Z'j' ...,ZM) denotes the bottom-up F,-+ F2 weight specified below.
vector. Parameters aj are ordered according to Let x' 5 (xr ...X1t.) denote the F1 output vector; let y' 5

> > > ( ) (yr. ..y~,) denote the F~ output vector; let xb 5 (xt ...Xtb)
a, a2 ...aN, A2 denote the Ft output vector; and let yb 5 (yt ...y~b) denote the

where F~ output vector. The Map Field F.b has Nb nodes and binary
output vector x. Vectors x', y', xb, yb, and x are set to 0 between

0 < a < 1 (A3) input presentations.
I (P + III) Map Field learning

f p>O df d .. bl F. F . II h . I .Weightsw,.,wherej=l...N,andk=l...Nb,inF~-+

.or. ~n or any a mlssl e 0-+ ,Input. n t e slmu atlons F'b paths initially satisf

In thIs article, aj and P are small. y
Weights Zji in F2 -+ F, paths initially satisfy Wjk(O) = 1. (All)

Z'i(O) = 1. (A4) Each vector (Wi" ..., WjNb) is denoted wi' During resonance
..with the ART, category J active, WI -+ x. In fast learning, once

The top-down, F2 -+ FI weIght vector (Zjl' ..., ZjM) IS denoted J learns to predict the ARTb category K, that association is per-
Zj' . 1 f II 'F . t.manent; I.e., WIK = or a times.

I .actlva Ion -..Map Field activation
The binary F, output vector x = (XI' ..., XM) IS gIven by The F,b output vector x obeys

x = {I ~f F2 is inactive.. (A5) {Yb n WI if the Jth F~ node is active and F~ is active
I n ZI If the Jth F2 node IS active. W if the Jth F' node is active and Fb is inactive

x- I 2 2

F I -+ F, input -yb if F~ is inactive and F~ is active
The input Tj from F, to the jth F2 node obeys 0 if F! is inactive and F~ is inactive.

T = { lllaj if j is an uncommitted node index (A12)
I II n Zjl/(P + Izjl) if j is a committed node index. Match tracking

(A6) At the start of each input presentation the ART, vigilance
.parameter p" equals a baseline vigilance p;;. The Map Field vigi-

The set of committed F2 nodes and update rules for vectors Zj and lance parameter is p. If
Zi are defined iteratively below.

F, choice Ixl < plybl, (A13)
.If F;, is ~cti~e (III > 0), the initial choice at F2 is one node with then p, is increased until it is slightly larger than la n z,"al-l.
Index J satisfYing Then

TI = max( 1;). (A7) Ix'i = la n z,1 < p,lal, (A14)
I

If more than one node is maximal one of these is chosen at where a is the current ART, input vector and J is the index of
random. After an input presentatiod on which node J is chosen, the a~tiv~ F~ node. When this occ~rs, ART, search leads either
J becomes committed. The F2 output vector is denoted by y 5 to activation of a new F~ node J with

(y"'..'YN)' Ixi=lanz,l~p,lal (A15)
Search and resonance

ART 1 search ends upon activation of an F2 category with and
~ndex j .= J that has the largest 1; value and that also satisfies the Ixl = Iyb n WI! ~ plybl; (A16)

inequality
I I I I (A8) or, if no such node exists, to the shut-down of F~ for the remainder
I n ZI ~ P I of the input presentation.

where p is the ART 1 vigilance parameter. If such a node J exists, .Com!,lement coding .
that node remains active, or in resonance, for the remainder of This optional feature arranges ART, Inputs as vectors
the input presentation. If no node satisfies (A8), F2 remains in- (a, a') = (a, ...aM" af ...a~.), (A17)
active after search, until I shuts off.

Fast learning where
At the end of an input presentation the F2 -+ F, weight vector af 5 1 -a. (A18)

ZI satisfies ' ,

-I lold) (A9 ) Complement coding may be useful if the following set of circum-
ZI -n ZI stances could arise: an ART, input vector a activates an F~ node

where Z~Old) denotes ZI at the start of the current input presentation. J pr~viously ass~ciated wit.h an F~ node K; ;he curren~ ART b input
The F -+ F weight vector Z satisfies b mIsmatches ZK; and a IS a subset of Z/. These circumstancesI 2 I never arise if allial 5 constant. For the simulations in this article,

Z = I n Z~OIdI (AlO ) lal 5 22. With complement coding, I(a, a')1 5 M..
I P + II n z~OId)I.

Al. ARTMAP Processing
AI.2. ARTMAP Algorithm The following nine cases summarize fast-learn ARTMAP system
The ARTMAP system incorporates two ART modules and an processing with choice at F~ and F~ and with Map Field vigilance
inter-ART module linked by the following rules. p > O. Inputs a and b could appear alone, or one before the other.
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Input a could make a prediction based on prior learning or make out the F.b -F~ prime. With learning, z1 -Z7CoId) n a and
no prediction. If a does make a prediction, that prediction may z~ -Z;COld) n b.
be confirmed or disconfirmed by b. The system follows the rules Case 6: a then b, prediction not confirmed. Input a activates a
outlined in the previous section assuming, as in the simulations, matching F~ node, which in turn activates a single Map Field node
that allial = constant and that complement coding is not used. and primes F~, as in Case 5. When input b arrives, (AI9) fails,
For each case, changing weight vectors Z1, z~, and WK are listed. leading to reset of the F~ node via ARTb reset. A new F~ node
Weight vectors Z1 and Zt:change accordingly, by (AI0). All other K that matches b becomes active. The mismatch between the
weights remain constant. F~ -F.b weight vector and the new F~ vector yb sends Map Field

Case 1: a only, no prediction. Input a activates a matching activity x to 0, by (AI2), leading to Map Field reset, by (AI3).
F~ node J, possibly following ART. search. All F~ -F.b weights By match tracking, P. grows until (AI4) holds. This triggers an
WJk = 1, so all Xk = 1. ARTb remains inactive. With learning ART. search that will continue until, for an active F~ node J,
z1- Z7COld) n a. WJK = I, and (AI5) holds. If such an F~ node does become active,

Case 2: a only, with prediction. Input a activates a matching learning will follow, setting z1 -Z7CoId) n a and z~ -Z.tctold) n b.
F~ node J. Weight WJK = 1 while all other WJk = 0, and x = WJ. If the F~ node J is uncommitted, learning sets WJ -yb. If no F~
F~ is primed, but remains inactive. With learning, z1 -Z~Old) n node J that becomes active satisfies (AI5) and (AI6), F~ shuts
a. down until the inputs go off. In that case, with learning, zt: -

Case 3: b only. Input b activates a matching F~ node K, possibly Z~old) n b.
following ARTb search. At the Mag Field, x = yb. ART. remains Case 7: b then a, no prediction. Input b activates a matching
inactive. With learning, z~ -Z~OI n b. F~ node K, then x = yb, as in Case 3. Input a then activates a

Case 4: a then b, no prediction. Input a activates a matching matching F~ node J with all WJk = 1. At the Map Field, x remains
F~ node J. All Xk become 1 and ARTb is inactive, as in Case 1. e~ual to yb. With learning, z1- Z,/Old) n a, WJ -yb, and zt:-
Input b then activates a matching F~ node K, as in Case 3. At the Z~OJd) n b.
Map Field x -yb; that is, XK = 1 and other Xk = O. With learning Case 8: b then a, with prediction confirmed. Input b activates
z1 -Z7(Old) n a, zt: -Z~Old) n b, and WJ -yb; i.e., J learns to a matching F~ node K, then x = yb, as in Case 7. Input a then
predict K. activates a matching F~ node J with WJK = 1 and all other WJk =

Case 5: a then b, with prediction confirmed. Input a activates O. With learning zJ -z7lUld) n a and z~ -Z~Old) n b.
a matching F~ node J, which in turn activates a single Map Field Case 9: b then a, prediction not confirmed. Input b activates
node K and primes F~, as in Case 2. When input b arrives, the a matching F~ node K, then x = yb and input a activates a matching
Kth F~ node becomes active and the prediction is confirmed; that F~ node, as in Case 8. However (AI6) fails and x -0, leading
is, to a Map Field reset. Match tracking resets P. as in Case 6, ART.

search leads to activation of an F~ node (J) that either predicts
Ib n zt:1 2: Pblbl. (AI9) K or makes no prediction, or F~ shuts down. With learning zt:-

Zb(uldl n b I f J exists z' -Zo(uld) n a. and if J initiall y makes noK .,J J ,
Note that K may not be the F~ node b would have selected with- prediction, WJ -yb, i.e., J learns to predict K.


