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Abstract - Classifying terrain or objects may require
the resolution of conflicting information from sensors
working at different times, locations, and scales, and
from users with different goals and situations. Current
fusion methods can help resolve such inconsistencies,
as when evidence variously suggests that an object is a
car, a truck, or an airplane. The methods described
here define a complementary approach to the
information fusion problem, considering the case
where sensors and sources are both nominally
inconsistent and reliable, as when evidence suggests
that an object is a car, a vehicle, and man-made.
Underlying relationships among classes are assumed
to be unknown to the automated system or the human
user. The ARTMAP self-organizing rule discovery
procedure is illustrated with an image example, but is
not limited to the image domain.

I. INTRODUCTION

Image fusion has been defined as "the acquisition,
processing and synergistic combination of information
provided by various sensors or by the same sensor in
many measuring contexts." [1, p. 3] When multiple
sources provide inconsistent data, such methods are called
upon to select the accurate information components. As
quoted by the International Society of Information Fusion
(http://www.inforfusion.org/terminology.htm):
"Evaluating the reliability of different information sources
is crucial when the received data reveal some
inconsistencies and we have to choose among various
options." For example, independent sources might label
an identified vehicle car or truck or airplane. A fusion
method could address this problem by weighing the
confidence and reliability of each source, merging
complementary information, or gathering more data. In
any case, at most one of these answers is correct.

The methods described here address a complementary
and previously unexamined aspect of the information
fusion problem, seeking to derive consistent knowledge
from sources that are inconsistent - yet accurate. This is a
problem that the human brain solves naturally. A young
child who hears the family pet variously called Spot,
puppy, dog, dalmatian, mammal, and animal is not only
not alarmed by these conflicting labels but readily uses

them to infer functional relationships. An analogous
problem for information fusion methods seeks to classify
the terrain and objects in an unfamiliar territory based on
intelligence supplied by several reliable sources. Each
source labels a portion of the region based on sensor data
and observations collected at specific times and based on
individual goals and interests. Across sources, a given
pixel might be correctly but inconsistently labeled car,
vehicle, and man-made. A human mapping analyst would,
in this case, be able to apply a lifetime of experience to
resolve the paradox by placing objects in a knowledge
hierarchy, and a rule-based expert system could be
constructed to codify this knowledge. Alternatively, an
analyst could be faced with complex or unfamiliar labels,
or the structure of object relationships may vary from one
region to the next.

The current study shows how an ARTMAP neural
network can act as a self-organizing expert system to
derive hierarchical knowledge structures from nominally
inconsistent training data. This ability is implicit in the
network's learning strategy, which creates one-to-many,
as well as many-to-one, maps of the input space. During
training, the system can learn that disparate pixels map to
the output class car; but, if similar or identical pixels are
later labeled vehicle or man-made, the system can
associate multiple classes with a given input. During
testing, distributed code activations predict multiple
output class labels. A rule production algorithm uses the
pattern of distributed network predictions to derive a
knowledge hierarchy for the output classes. The resulting
diagram of the relationships among classes can then guide
the construction of consistent layered maps.

IL. MULTI-CLASS PREDICTIONS BY ARTMAP
NEURAL NETWORKS

While the earliest unsupervised ART [2] and supervised
ARTMAP networks [3] feature winner-take-all code
representations, many of the networks developed since the
mid- 1990s incorporate distributed code representations.
Comparative analyses of these systems have led to the
specification of a default ARTMAP network, which
features simplicity of design and robust performance in
many application domains [4]. Selection of one particular
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Fig. 1. Testbed Boston image for ARTMAP
information fusion methods, in grey scale
representation of preprocessed inputs. The city of
Revere is at the center, surrounded by (clockwise
from lower right) portions of Winthrop, East Boston,
Chelsea, Everett, Malden, Melrose, Saugus, and
Lynn. Logan Airport runways and Boston Harbor are
at the lower center, with Revere Beach and the
Atlantic Ocean at the right. The Saugus and Pines
Rivers meet in the upper right, and the Chelsea River
is in the lower left of the image. Dimensions: 360 x
600 pixels (15m resolution) _ 5.4 km x 9 km. The
image is divided into four vertical strips: two for
training, one for validation (if needed), and one for
testing. This protocol produces geographically
distinct training and testing areas, to assess regional
generalization. Typically, class label distributions
vary substantially across strips.

a priori algorithm is intended to facilitate technology
transfer. This network, which here serves as the
recognition engine of the information fusion system, uses
winner-take-all coding during training and distributed
coding during testing. Distributed test outputs have helped
improve various methods for categorical decision-making.
One such method, in a map production application,
compares a baseline mapping procedure, which selects the
class with the largest total output, with a procedure that
enforces a priori output class probabilities and another
one that selects class-specific output thresholds via
validation [5]. Distributed coding supports each method,
but the ultimate prediction is one output class per test
input. This procedure also specifies a canonical
training/testing method which partitions the area in
question into four vertical or horizontal strips. A given
simulation takes training pixels from two of these strips;
uses the validation strip to choose parameters, if
necessary; and tests on the fourth strip. Methods are thus
compared with training and test sets that are not only
disjoint but drawn from geographically separate locations.
This separation tests for generalization to new regions,
where output class distributions could typically be far
from those of the training and validation sets.

The information fusion techniques developed in the
current study modify the baseline mapping procedure by
allowing the system to predict more than one output class
during testing. A given test pixel either predicts the N
classes receiving the largest net system outputs or predicts
all classes whose net output exceeds a designated
threshold r. A preliminary version of the ARTMAP
information fusion system [6] chose a global selection
parameter N or r based on analysis of the validation
strip. This method succeeds when most validation and test
items share a common number of correct output classes.
The preferable procedure used here allows each test
exemplar to choose its own number N of output class
predictions. This per-pixel filtering method thus does not
rely on the strong assumption that the correct number of
output classes per item is approximately uniform across
the test set.

An image testbed demonstrates the robustness of the
ARTMAP information fusion procedure. This example
was derived from a Landsat 7 Thematic Mapper (TM)
data acquired on the morning of January 1, 2001 by the
Earth Resources Observation System (EROS) Data
Center, U.S. Geological Survey, Sioux Falls, SD
(http://edc.usgs.gov). The area includes portions of
northeast Boston and suburbs (Fig. 1), and encompasses
mixed urban, suburban, industrial, water, and park spaces.
Ground truth pixels are labeled ocean, ice, river, beach,
park, road, residential, industrial, water, open space,
built-up, natural, man-made. During training, ARTMAP
is given no information about relationships among the
target classes.
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III. DERIVING A KNOWLEDGE HIERARCHY
FROM A TRAINED NETWORK: PREDICTIONS,

RULES, AND GRAPHS

The ARTMAP fusion system provides a canonical
procedure for assigning to each input an arbitrary number
of output classes in a supervised learning setting.
Information implicit in the distributed predictions of a
trained ARTMAP network, trained with prescribed
protocols [7], can be used to generate a hierarchy of
output class relationships. To accomplish this, each test
pixel first produces a set of output class predictions. The
resulting list of test predictions determines a list of rules
x =Xy which define relationships between pairs of output
classes, with each rule carrying a confidence value. The
rules are then used to assign classes to levels, with rule
antecedents x at lower levels and consequents y at higher
levels. Classes connected by arrows that codify the list of
rules and confidence values form a graphical
representation of the knowledge hierarchy, as follows.

A. Predictions

A critical aspect of the default ARTMAP network
(Fig. 2) is the distributed nature of its internal code
representation, which produces continuous-valued
predictions across output classes during testing. In
response to a test input, distributed activations in the
default ARTMAP coding field send a net signal Sk to
each output class k. A winner-take-all method predicts the
single output class k=K receiving the largest signal (Sk .
Alternatively, a single test input can predict multiple
output classes. The per-pixel filtering method employed
here allows the output activation pattern produced by each
test pixel to determine the number of predicted classes.
Namely, if the net signals Uk projecting to the output
classes k are arranged from largest to smallest, the system
predicts all the classes up to the point of maximum
decrease in the signal size from one class to the next. This
strategy is motivated by the behavior of a hypothetical
system that accurately represents all the output classes. In
such a system, if a pixel should predict three classes (e.g.,
road, pavement, man-made), then the output signals U5k
to each of these classes would typically be large
compared to those of the remaining classes. The
maximum decrease in size would then occur between the
third and fourth largest signal, and the per-pixel filtering
method would predict three classes.

actual
output
class k = K l

a

feature
vector a (al ai ...am)

Fig. 2. Default ARTMAP notation: An M-
dimensional feature vector a is complement coded to
form the 2M-D ARTMAP input A. Vector y
represents a winner-take-all code during training,
when a single category node (=J) is active; and a
distributed code during testing. With fast learning,
bottom-up weights wij equal top-down weights

wji, and the weight vector Wj represents their
common values. When a coding node j is first
selected during training, it is connected to the output
class k of the current input (Wjk = 1). During
testing, a distributed code y produces predictions Urk
distributed across output classes. In all simulations
reported here, the baseline vigilance matching
parameter p =0. [4]
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Fig. 3. For the Boston example, the ARTMAP fusion system correctly produces all class rules and levels. Each rule's
confidence, if less than 100%, is printed on its arrow. Dashed arrows indicate rules with confidence below 90%.

B. Rules

Once each test pixel has produced a set of output class
predictions {x,y,... } from its distributed signals Uk,
according to the per-pixel selection method, the list of
multi-valued test set predictions is then used to deduce a list
of output class implications of the form x *y, each
carrying a confidence value %/o. This rule creation method
is related to the Apriori algorithm in the association rule
literature [8, 9].

The five steps listed below produce the list of rules that
label class relationships. The algorithm employs an
equivalence parameter e% and a minimum confidence
parameter c%. Rules with low confidence (C<c) are
ignored, with one exception: if all rules that include a given
class have confidence below c, then the list retains the rule
derived from the pair predicted by the largest number of
pixels. Although this "no extinction" clause may produce
low-confidence rules, these may occasionally correspond to
cases that are rare but important. The user can easily take
these exceptions under advisement, since the summary
graph displays each confidence value. Two classes x and y
are treated as equivalent (x=y) if both rules x =Xy and
y =* x hold with confidence greater than e. In this case, the
class predicted by fewer pixels is ignored in subsequent
computations, but equivalent classes are displayed as a
single node on the final rule summary graph.

Reasonable default values set the equivalence parameter
e in the range 90-95% and the minimum confidence
parameter c in the range 50-70%. In all simulations reported
here, parameter values were set apriori to e=90% and
c=50%. Alternatively, e and c may be chosen by validation.

Step I : List the number of test set pixels predicting each
output class x. Order this list from the classes with the
fewest predictions to the classes with the most.

Step 2 : List the number of test set pixels #(x & y)
simultaneously predicting each pair of distinct output
classes. Omit pairs with no such pixels. Order the list so
that #(x) > #(y): classes x observe the order established in
Step 1; and for each such class x, classes y observe the same
order.

Step 3: Identify equivalent classes, where x=y if
[#(x & y) / #(y)]>e%. Remove from the list all class pairs
that include x (where #(x) > #(y), as in Step 2).

Step 4 : Each pair remaining on the list produces a rule
x =*y with confidence C0/o = [#(x & y) / #(x)]. If Step 3
determined that x _y, record the confidence C. e of each
rule in the pair { x=y, y=*x }.

Step 5 : Remove from the list all rules with confidence
C < c. Exception (no extinction): If all rules that include a
given class have confidence below the minimum
confidence c, then retain the rule x= y with maximal
#(x & y) pixels.

C. Graphs

A directed graph summarizes the list of implication rules.
These rules suggest a natural hierarchy among output
classes, with antecedents sitting below consequents. For
each rule x =>y, class x is located at a lower level of the
hierarchy than class y, according to the iterative algorithm
below. Once each class is situated on its level, a listed rule
xry produces an arrow from x to y. Each rule's
confidence is indicated on the arrow, with lower-confidence
rules (say C<90%) having dashed arrows. For arrows with
no displayed confidence values, C=100%.

The following procedure assigns each output class to a
level.
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Top Level: Items that appear only as consequents y.

Level 1: Classes that do not appear as consequents in any
rule. Remove from the list all rules x =>y where x is in
Level 1.

Next Level: Classes that do not appear as consequents in
any remaining rule. Remove from the list all rules x *y
where x is in this level.

Iterate: Repeat until all rules have been removed from the
list.

Note that Level 1 includes classes that do not appear in
any rule as well as those that appear only as antecedents.

The graph in Fig. 3 depicts the implication rules,
hierarchy levels, and confidence values derived for the
Boston example. ARTMAP information fusion has placed
each class in its correct level and discovers all the correct
rules.

IV. CONCLUSION

The ARTMAP neural network produces one-to-many
mappings from input vectors to output classes, as well as
the more traditional many-to-one mappings, as the normal
product of its supervised learning laws. During training, a
given input may learn associations to more than one output
class. Some of these associations could be erroneous: when
different observers label an image dog, coyote, or wolf, at
most one of these classes is correct. Inconsistent data may,
however, be completely correct, as when observers
variously label the image wolf; mammal, and carnivore. By
resolving such paradoxes during everyday knowledge
acquisition, humans naturally infer complex, hierarchical
relationships among classes without explicit specification of
the rules underlying these relationships. One-to-many
learning allows the ARTMAP information fusion system to
associate any number of output classes with each input.
Although inter-class information is not given with the
training inputs, the system readily derives knowledge of the
rules, confidence estimates, and multi-class hierarchical
relationships from patterns of distributed test predictions.

The Boston image testbed example demonstrates how
ARTMAP information fusion resolves apparent
contradictions in input pixel labels by assigning output
classes to levels in a knowledge hierarchy. This
methodology is not, however, limited to the image domain
illustrated here, and could be applied, for example, to infer
patterns of drug resistance or to improve marketing
suggestions to individual consumers. One such pilot study
has created a hypothetical set of relationships among
protease inhibitors, based on resistance patterns from
genome sequences of HIV patients.
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