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ART-EMAP: A Neural Network Architecture
for Object Recognition by Evidence Accumulation

Gail A. Carpenter, Member, IEEE, and William D. Ross

Abstract— A new neural network architecture is introduced
for the recognition of pattern classes after supervised and un-
supervised learning. Applications include spatio-temporal image
understanding and prediction and three-dimensional (3-D) ob-
ject recognition from a series of ambiguous two-dimensional
views. The architecture, called ART-EMAP, achieves a synthesis
of adaptive resonance theory (ART) and spatial and temporal
evidence integration for dynamic predictive mapping (EMAP).
ART-EMAP extends the capabilities of fuzzy ARTMAP in four
incremental stages. Stage 1 introduces distributed pattern rep-
resentation at a view category field. Stage 2 adds a decision
criterion to the mapping between view and object categories,
delaying identification of ambiguous objects when faced with a
low confidence prediction. Stage 3 augments the system with a
field where evidence accumulates in medium-term memory. Stage
4 adds an unsupervised learning process to fine-tune performance
after the limited initial period of supervised network training.
Each ART-EMAP stage is illustrated with a benchmark simula-
tion example, using both noisy and noise-free data. A concluding
set of simulations demonstrate ART-EMAP performance on a
difficult 3-D object recognition problem.

1. INTRODUCTION: OBJECT RECOGNITION BY SPATIAL
AND TEMPORAL EVIDENCE ACCUMULATION

RT-EMAP (adaptive resonance theory with spatial and
temporal evidence integration for dynamic predictive
mapping) is a neural network architecture that accumulates
spatial and temporal evidence to recognize target objects and
pattern classes in noisy or ambiguous input environments.
During performance, ART-EMAP integrates spatial evidence
distributed across coded recognition categories to predict a
pattern class. When a decision criterion determines the pattern
class choice to be ambiguous, additional input from the
same unknown class is sought. Evidence from multiple inputs
accumulates until the decision criterion is satisfied, and a high
confidence prediction can be made. Accumulated evidence can
also be used by the predictive mapping to fine-tune the system
during unsupervised rehearsal learning.
In four incremental stages, ART-EMAP both improves
performance accuracy and extends the domain of the fuzzy
ARTMAP (adaptive resonance theory-supervised predictive
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Fig. 1. Fuzzy ARTMAP architecture. The ARTa complement coding pre-
processor transforms the vector a into the vector A = (a,a®) at the ART,
field F¢. A is the input to the ART, field F{*. Similarly, in the supervised
mode, the input to the ART, field F? is the vector (b, b®). When a prediction
by ART,, is disconfirmed at ART}, inhibition of the map field F%° induces
the match tracking process. Match tracking raises the ART,, vigilance (pa)
to just above the F¥-to-F¢ match ratio [x?|/|A|. This triggers an ART,
search, which leads to activation of either an ART, category that correctly
predicts b or to a previously uncommitted ART, category node.

mapping) [1] neural network (Fig. 1) to include spatio-
temporal recognition and prediction. Applications include a
vision system capable of sampling different two-dimensional
(2-D) perspectives of three-dimensional (3-D) objects. In this
scenario, a sensor generates an organized database of inputs
which could be either views of an object from different
perspectives or noisy samples of single views. This approach
to 3-D object recognition has been successfully used in
neural network machine vision applications, particularly the
aspect network [2] and [3]. ART-EMAP further develops this
strategy.

Each stage of the ART-EMAP network is illustrated on
an ARPA benchmark simulation problem, circle-in-the-square
[4]. This problem requires a system to identify which points
of a square lie inside and which lie outside a circle whose
area is half that of the square. In the simulations, a single
set of training/test exemplars is used to evaluate each of
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the four ART-EMAP stages and to compare performance
with that of fuzzy ARTMAP. A training set consists of 100
randomly chosen circle-in-the-square points. Each simulation
begins with a supervised learning phase in which these points
are presented once, each time in the same order. At each of
the four ART-EMAP stages, performance is evaluated on both
noise-free and noisy test sets. The noise-free test set consists
of a discrete sampling of 11000 points. The noisy test set
is generated by adding random noise to each of these 11000
inputs. The random noise is Gaussian with standard deviation
equal to 0.1 times the length of one side of the square.

To make the discussion of ART-EMAP self-contained,
Section II includes a summary of the fuzzy ART and fuzzy
ARTMAP neural network architectures. During training,
ARTMAP improves its pattern class prediction incrementally
through unsupervised clustering of view, or input, categories
and supervised learning of a predictive mapping from
categories to output classes. On the circle-in-the-square
benchmark, fuzzy ARTMAP performs at 93.1% accuracy
on the noise-free test set and 86.5% on the noisy test set.
ART-EMAP is then introduced as a series of progressive
modifications of the fuzzy ARTMAP system. ART-EMAP
accomplishes test set pattern class prediction by: Stage 1)
the integration of spatially distributed recognition information
across view categories, Stage 2) decision criterion control,
which delays categorization of ambiguous objects, and Stage
3) temporal integration, or accumulation, of evidence from a
sequence of inputs belonging to the same unknown pattern
class.

Section III specifies the equations of the spatial evidence
integration system (Stage 1) and evaluates this system via para-
metric simulations. During performance, spatially distributed
patterns across several coded recognition categories improve
the accuracy of pattern class predictions. An input activates
each category in proportion to a measure of match between
the input and that category’s coded template. This distributed
information yields distributed predictive evidence for each
pattern class. Choice of the most highly activated pattern class
gives a prediction that is more reliable, on average, than the
one made by the most active view category alone. ART-EMAP
with spatial evidence integration performs at 95.7% accuracy
on the noise-free circle-in-the-square test set and at 88.4%
accuracy on the noisy test set. Stage 1 alone is thus seen to
improve ARTMAP predictive accuracy.

Section IV introduces a strategy for predictive control using
a decision criterion (Stage 2). This mechanism allows the
system to seek additional views of the same unknown class
when the spatial evidence resulting from an input is determined
to be ambiguous. The decision criterion provides efficient
control of system input and a reliable means of ensuring
predictive accuracy in a noisy or unfamiliar environment. In
fact, ART-EMAP with a decision criterion performs at 100%
accuracy on the noise-free test set and at 93.1% on the noisy
test set.

Section V introduces a process that accumulates predictive
evidence over a temporal sequence of inputs until the decision
criterion is satisfied (Stage 3). In applications, multiple inputs
could correspond to noisy images taken from a fixed perspec-
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tive (samples) or to ambiguous images taken from various
perspectives (views). ART-EMAP with evidence accumulation
over simulated multiple views performs at 97.6% accuracy
on the noisy test set. Evidence accumulation over multiple
samples yields 92.2% accuracy.

Section VI describes how unsupervised rehearsal learning
(Stage 4) can use Stage 3 predictions to improve future per-
formance. When spatio-temporal evidence integration makes a
confident prediction, this knowledge is used by the system to
fine-tune its own predictive mapping. Simulations show that
unsupervised rehearsal learning yields improved performance
on both noise-free and noisy test sets.

Section VII illustrates performance of fuzzy ARTMAP
and ART-EMAP, Stage 1 through Stage 4, on a recognition
problem which requires a system to identify three similar 3-D
objects (pyramid, prism, house) from ambiguous 2-D views.
The difficulty of the problem is illustrated by the fact that fuzzy
ARTMAP correctly identifies only 64.7% of the objects from
a noise-free test set. Stage 1 ART-EMARP raises performance
accuracy to 70.6%, while Stage 2 and Stage 3 both boost
performance to 98.0%.

Finally, Section VIII compares the structure and dynamics
of ART-EMAP with those of the aspect net [2], of Seibert and
Waxman, who introduced the use of evidence accumulation
processes in ART-based neural network architectures.

II. ARTMAP: A NEURAL NETWORK ARCHITECTURE
FOR SELF-ORGANIZING RECOGNITION AND PREDICTION

ARTMAP (Fig. 1) is a neural network architecture that
performs incremental supervised learning of recognition cate-
gories and multidimensional maps in response to input vectors
presented in arbitrary order. The first ARTMAP system [5]
and [6] was used to classify inputs by the set of features they
possess, that is, by a vector of binary values representing the
presence or absence of each feature. The more general fuzzy
ARTMAP system [1] learns to classify inputs by a fuzzy set
of features or a pattern of fuzzy membership values between
zero and one that indicate the extent to which each feature is
present. This generalization is accomplished by replacing the
ART 1 modules {6] and [7] of binary ARTMAP with fuzzy
ART modules [8]. Where ART 1 dynamics are described in
terms of binary set-theoretic operations, fuzzy ART dynamics
are described in terms of analog fuzzy set-theoretic operations
{91 and [10] (Fig. 2). Fuzzy ARTMAP accomplishes accuracy,
speed, and code compression in both on-line and off-line
settings. It has a small number of parameters and requires
no problem-specific crafting or choice of initial weights or
parameters. In addition, in a growing number of applications,
fuzzy ARTMAP has shown better performance than various
other neural networks. Examples include automatic analysis of
electrocardiogram traces [11], diagnostic monitoring of nuclear
plants [12], and prediction of protein secondary structure [13].

Each ARTMAP system includes a pair of ART modules
(ART, and ART}) that creates stable recognition categories
in response to arbitrary sequences of input patterns (Fig. 1).
During supervised learning, ART,, receives a stream of input
patterns {a)} and ART} receives a stream {b{)} of input
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Fig. 2. Comparison of ART 1 and fuzzy ART logic.

patterns, where b(®) is the correct prediction given al)). These
modules are linked by an associative learning network and an
internal controller that ensures autonomous system operation
in real time. The controller is designed to create the minimal
number of ART, recognition categories, or “hidden units,”
needed to meet accuracy criteria. It does this by realizing a
minimax learning rule that enables ARTMAP to conjointly
minimize predictive error and maximize code compression.
Predictive success is automatically linked to category size
on a trial-by-trial basis using only local operations through
increasing the matching criterion, or vigilance parameter (p,),
of ART, by the minimal amount needed to correct a predictive
error at ART;,. Vigilance p, calibrates the minimum confidence
that ART, must have in a recognition category, or hypothesis,
activated by an input al) for ART, to accept that category,
rather than search for a better one (and perhaps establish a
new category). Lower values of p, enable larger categories to
form, leading to a higher degree of code compression. A pre-
dictive failure at ART}, increases p, by the minimum amount
needed to trigger alternative hypothesis testing at ART,, via a
mechanism called match tracking [5]. Match tracking sacrifices
the minimum amount of compression necessary to correct
a predictive error. The combination of match tracking and
fast learning allows an ARTMAP system to learn a correct
prediction for a rare event embedded in a cloud of featurally
frequent events that make a different prediction.

A. Fuzzy ART Summary

The fuzzy ARTMAP system incorporates two fuzzy ART
modules, ART, and ART,. Each fuzzy ART subsystem in-
cludes a field, Fj, of nodes that represent a current input
vector; a field, F}, that receives both bottom-up input from
Fy and top-down input from a field; F», that represents the
active code, or category (Fig. 1). The Fp activity vector is
denoted I = (Iy,---,Ip), with each component I; in the
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interval [0, 1] G = 1,---,M). The Fj activity vector is
denoted x = (21,+++,7n), and the Fy activity vector is
denoted y = (y1, - -, y~ ). The number of nodes in each field
is arbitrary.

Weight Vector: Associated with each F, category node
j(G=1,---,N)isavectorw; = (wj1,- -, w;nm) of adaptive
weights, or LTM (long-term memory) traces. Initially, when
each category is said to be uncommitted

le(O):"-:ij(0)=1. (1)

After a category is selected for coding it becomes committed.
Each LTM trace w;; is monotonically nonincreasing through
time and hence converges to a limit. The fuzzy ART weight
vector w, formally represents both the bottom-up and top-
down weight vectors of ART 1.

Parameters: Fuzzy ART dynamics are determined by a
choice parameter a > 0 a learning rate parameter 3 € [0,1]
and a vigilance parameter p € [0,1].

Category Choice: For each input I and F; node j, the
choice function T is defined by

|I/\W]'|

LM =~ T w, |

(€3]

where the fuzzy AND, or intersection, operator (A) is defined
by

(p A q)i = min(p;, ¢;) 3)
and where the norm | - | is defined by
M
bl = Inil )
=1

for any M-dimensional vectors p and g. For notational
simplicity, T;(I) is written as 7; when the input I is fixed.

The system is said to make a category choice when at most
one F, node can become active at a given time. The category
choice is indexed by J, where

Ty =max{T;: j=1---N} 5)
If more than one 7} is maximal, the category j with the small-
est index is chosen. In particular, nodes become committed in
order j = 1,2,3, - - -. When the Jth category is chosen, y; = 1
and y; = 0 for j # J. In a choice system, the Fy activity
vector X is characterized by the equation

if F, is inactive

if the Jth Fy node is active. O

= 1
T \IAwg
Resonance or Reset: Resonance occurs if the match func-
tion LA wz|/|I| of the chosen category J meets the vigilance
criterion
[TAw J| >

)
I

That is, when the Jth category is chosen, resonance occurs if

|x| = TAw;s| > plI]. ®8)
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Learning then ensues, as defined below. Mismatch reset occurs
if

|I A WJl
—_—< )
|
That is, when
[xj =TAws| < plI (10)

the value of the choice function T; is set to zero for the
duration of the input presentation to prevent the persistent
selection of the same category during search. A new index
J is then chosen by (5). The search process continues until
the chosen J satisfied (7).

Learning: Once search ends, the weight vector w; is
updated according to the equation

(new)

wie = BIAwWED) + (1 - gwdY.

Fast learning corresponds to setting 8 = 1.0.

B. ARTMAP Summary

In the ARTMAP system, ART,, and ART, are linked via an
inter-ART module, F'*®, called a map field, as follows.

ART, and ARTy: Inputs to ART, and ART, are in the
complement code form: for ART,, input I =A = (a, a%);
and for ART;, input I = B = (b,b") (Fig. 1). Variables in
ART, or ART, are designated by superscripts a or b. For

ART,,x* = (x,--,x%,,, ) denotes the FY output vector;
v = (yf, -, y%,) denotes the Fiy' output vector; and wj =
(w$, - -w}ay,) denotes the jth ART, weight vector. For

ART,, x* = (a8,---,28,,) denotes the F} output Vector
y' = (4, ,yﬂ’vb) denotes the F¥ output vector; and wh =
(why,-+, W opr,) denotes the kth ART, weight vector. For

the map field, x“b = (z%, 4% ) denotes the F** output
vector and wj (wﬂ, co, W Nb) denotes the weight vector
from the jth F ' node to F“b Components of vectors x%, y°,
and x°® are reset to zero between input presentations. Initially,
each weight is set equal to one. Note, that |A| = M, and
|B| = M, for all input vectors a and b.

Map Field Activation: Map field F% is activated when one
of the ART, or ART, categories becomes active. When the
Jth F¢ node is chosen, F2 — F4® input is proportional to
the weight vector w3®. When the Kth FY node is chosen, the
F node K is activated by one-to-one pathways between
F? and F°. If both ART, and ART, are active, as in
supervised learning, then Feb activity reflects the degree
to which a correct prediction has been made. With fast
learning, F*® remains active only if ART, predicts the same
category as ART}, via the weight vector w4 J , or if the chosen
ART, category J has not yet leamed an ART} prediction. In
summary, the F°® output vector x®* obeys

ab _

x*
y° A w2 if the Jth F§ node is active and FY is active
wab if the Jth FZ node is active and F} is inactive
y° if F¢ is inactive and FY is active
0 if F$ is inactive and F? is inactive.

(12)
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If the prediction w4 is disconfirmed by y®, this mismatch
event triggers an ART,, search for a new category, as follows.
Match Tracking: At the start of each input presentation the
ART, vigilance parameter p, equals a baseline vigilance, pq.
The map field vigilance parameter is pqs. Match tracking is
triggered by a mismatch at the map field Fob that is, if
x| < pasly’| = pas (13)
as in (10). Match tracking increases p, until it is slightly larger
than the ART, match value, |[A A w%||A|~!, where A is the
input to F{ and J is the index of the active F§ node. After
match tracking, therefore
X% = |A A WG| < pa|Al = paMa. (14)
When this occurs, ART, search leads either to ARTMAP

resonance, where a newly chosen F3 node J satisfies both
the ART, matching criterion

|x?] = |A AWS| > pa|Al (15)
and the map field matching criterion
x| = [y* AWS| > pas|y’| = pab (16)

or, if no such F§ node exists, to the shutdown of F3 for the
remainder of the input presentation. Since w;(0) = w§ 2(0) =
1 and 0 < pg, pap < 1, ARTMAP resonance always occurs if
J is an uncommitted node.

Map Field Learning: A learning rule similar to (11) deter-
mines how the map ﬁeld weights w2 change through time, as
follows. Weights w7y b in F¢ — F4° paths initially satisfy

wi(0) = 1. (17

During resonance with the ART, category J active, weab
approaches the map field vector x*®. With fast learning, once
J learns to predlct an ART, category K, that association is
permanent; i.e., w3 = 1 and w3, = 0(k # K) for all time.

C. ART-EMAP

ART-EMAP augments ARTMAP to improve recognition of
a target object in noisy or ambiguous situations by integrating
information across space and time. During performance, F3
activity that is spatially distributed across several coded ART,
categories helps disambiguate a noisy view or input. ART-
EMAP can also perform temporal integration of information
across multiple views until a target object is recognized with
confidence. Multiple inputs might correspond to noisy images
from a fixed perspective or to ambiguous images from various
perspectives. Expansion of the map field into a multi-field
EMAP module (Fig. 3) enables the accumulation of evidence
from distributed patterns of activation across a series of
input patterns. This capability allows ART-EMAP to make
an accurate class prediction from a sequence of individually
ambiguous input patterns, as follows.
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ART - EMAP

a
Fy

Fig. 3. ART-EMAP architecture. The ARTMAP map field F® is replaced
with a multi-field EMAP module. During testing, a distributed Fi¥ output
pattern y?, resulting from partial contrast enhancement of F{* — FJ input
T4, is filtered through EMAP weights w¢ to determine the F® activity x*°.
If a predictive decision criterion is not met, additional input can be sought,
until the decision criterion is met at F$°.

III. STAGE 1: SPATIAL EVIDENCE ACCUMULATION

ART-EMAP employs a spatial evidence accumulation
process that integrates a distributed pattern of activity across
coded category nodes to help disambiguate a noisy or novel
input. In contrast, previous ART [6]-[8] and ARTMAP [1],
[5] simulations chose only the most highly activated category
node at the field iy (Fig. 1) as the basis for recognition and
prediction.

In the fast-learn fuzzy ARTMAP system, the input from F}
to the jth F3 node is given by

o_ |[A A WE
7

rr— 18
o (18)
as in (2). Fuzzy ARTMAP uses a binary choice rule (5), so
only the F3 category J that receives maximal F* — F§
input T¢ delivers output to Fo?

for all j # J

@ {1 itT§ > Tj (19)

Y7=10 otherwise.

ART-EMAP also uses binary choice rule (19) during the
initial period of supervised training. During performance,
however, F'} output y? is determined by less extreme contrast
enhancement of the Ff — F3 input pattern T* (Fig. 4).
Limited contrast enhancement extracts more information from
the relative activations of Fy categories than does the all-
or-none choice rule (19). To make consistent comparisons
across ART-EMAP Stages 14, the algorithm that determines
F3 activation y* was held fixed across all simulations. The
following discussion shows how this algorithm was selected.
Parameter selection is also shown to be robust under wide
perturbations. This procedure typifies all parameter selection
methods: systems are specified completely, so that simulations
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Fig. 4. Partial contrast enhancement of F — Fj input T%results in a
distributed F3' output pattern y“. Filtered through EMAP weights ur?ﬁ, ye
determines a distributed F2® pattern x*® = S%®. Choice at the EMAP field
F2* predicts a pattern class K at ARTj.

may be replicated, but parameter selection is also determined
to be robust throughout.

A. Contrast Enhancement Algorithm

Two algorithms that approximate partial contrast enhance-
ment for spatial evidence accumulation at Fi are a power rule
and a threshold rule as outlined below.

Power Rule: Raising the input 77 of the jth F3 category
to a power p > 1 is a simple way to implement contrast
enhancement. Equation (20) defines a normalized power rule

(T]‘?)P
Sz (Ta)r
Normalization constrains the Fj output values to a man-
ageable range without altering relative values or subsequent
predictions. Power rule (20) approximates the dynamics of a
shunting competitive short-term-memory (STM) network that
contrast-enhances its input pattern [14]. The power rule is
equivalent to choice rule (19) when p is large. For smaller
p, distributed activity pattern (20) uses information from the
relative F§ category activations to improve test set predictive
performance at ART.

Threshold Rule: An alternative contrast enhancement algo-
rithm introduces a threshold T'

[1e - 1]"
Yoy [Te - TI

a

yf = 20)

ye = @21

where [z]* = max{z,0}.
After contrast enhancement by either (20) or (21), the Fy
output y* is filtered through the weights w;,’j to activate the
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EMAP field F#%. The input S¢* from F§ to the kth F* node
obeys the equation

Na
SgP = witys. (22)
j=1
Since distributed Fy activity generally determines distributed
EMAP field F® input, some means of choosing a winning
prediction is required. The simplest method is to choose the
EMAP category K that receives maximal input from F3'. This
can be implemented by letting z{* = S¢* and defining Fg®
activity by

i ab b
e _ J1 ifzR >},

forall k£ # K
YK =10 otherwise.

(23)

Other methods for predicting an ART, category will be
discussed below.

ART-EMAP, using either power rule (20) or threshold rule
(21) for F{ output, was evaluated on the circle-in-the-square
benchmark (Section I). To select a single ART-EMAP system
for further development, parametric comparisons were made
between a fuzzy ARTMAP system with a choice rule at Fg
and ART-EMAP systems with power or threshold rules at
F$. Each system was trained on the 100-sample circle-in-the-
square training set during a single supervised learning epoch,
and then tested on 900 other randomly chosen points. All three
systems are functionally equivalent in the supervised learning
phase. After a single epoch, each performed at 98% accuracy
on the 100-sample training set. Fuzzy ARTMAP, with choice
at Fg, had a 92.9% correct prediction rate on the test set.
ART-EMAP with power rule (20) had a significantly improved
94%-96% correct prediction rate for p between five and 35
[Fig. 5(a)l. A power rule with p set equal to 10 at F was
thus selected and fixed for each subsequent circle-in-the-square
simulation.

Threshold rule (21) did not show comparable performance
improvements [Fig. 5(b)]. It may still be useful for certain
problems, as it is computationally simpler than the power rule,
but is not used here.

B. Stage 1 Simulations

Fig. 6 shows circle-in-the-square simulation response plots
for fuzzy ARTMAP, with the choice rule at F§ and for Stage
1 ART-EMAP, with spatial evidence accumulation at 5. On
both noise-free and noisy test sets, ART-EMAP significantly
outperforms fuzzy ARTMAP. Each system underwent super-
vised learning on the standard 100-point training set, each
input being presented once, always in the same order (Section
I). Each response plot shows a system’s predictions on the
standard 11 000-point test set. A response plot shows the circle
and all point predicted by the given system to be “outside the
circle.”

Response plots in Fig. 6(a)—(b) show fuzzy ARTMAP and
Stage 1 ART-EMAP decision boundaries for a noise-free test
set, in which each test set point was accurately labeled as being
inside or outside the circle. Response plots in Fig. 6(d)—(e)
show performance of the same systems with test set inputs de-
graded by Gaussian noise. Noisy test set inputs were generated
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Fig. 5. Evaluation of F§ contrast enhancing rules power rule (a) and
threshold rule (b) on the circle-in-the-square problem with 100 training points
and 900 test points. Fuzzy ARTMAP choice rule performance of 92.9% is
plotted for comparison. In all subsequent simulations, ART-EMAP uses a

power rule (20) with p = 10 at F3'.

by adding random noise to each ART, input point before the
system made its in/out prediction. If a point a was inside the
circle, the actual input to the ART, system would be another
point selected at random according to a Gaussian distribution
centered at a, with standard deviation 0.1 (Fig. 7). Thus, many
points near the boundary of the circle were actually mislabeled
during testing. As expected, errors are most frequent near the
boundary of the circle. Spatially distributed F§ activation is
seen to correct some of these errors, allowing the system
to accumulate evidence across several categories when the
decision is ambiguous.

IV. STAGE 2: EMAP PREDICTIVE DECISION CRITERION

An alternative to Stage 1 predictive choice rule (23) uses a
decision criterion (DC) at the field F#. The decision criterion
may permit ART;, choice only when the most active EMAP
category K becomes a minimum proportion more active than
the next most active EMAP category. Thus

1 if 2% > (DC)zg® forall k # K

ab —
0 otherwise

YK (24
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Stage | ART-EMAP
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Fig. 6. Response plot decision boundaries and performance accuracy for 100/11 000 training/test exemplars. Plotted points are those predicted to be outside
the circle. Plots (a), (b), and (c) show decision boundaries in a noise-free test environment. Plots (d), (e), and (f) show performance with Gaussian noise
(SD = 0.1) added to each test set input vector a. Plots (a) and (d) show fuzzy ARTMAP performance, using the choice rule. Plots (b) and (e) show
Stage 1 ART-EMAP performance, using the power rule with p = 10. Plots (c) and (f) show Stage 2 ART-EMAP performance using the power rule

with p =

where DC > 1 (Fig. 8). When DC = 1, Stage 2 decision
criterion rule (24) reduces to Stage 1 Fg" choice rule (23).
When DC > 1, the decision criterion prevents prediction in
cases in which multiple EMAP categories are about equally
activated at F'?, representing ambiguous predictive evidence.
As the DC increases, both accuracy and the number of required
input samples per decision tend to increase. For computational
convenience, activity at F*® can also be contrast enhanced by
a normalized power rule

zb _ (SI: b)q

=
Pone1(SpP)e

Setting ¢ = 3 in (25) makes performance less sensitive to the

DC value than in the case ¢ = 1 (no contrast enhancement at
F{’b). The value of ¢ does not change system function.

(25)

10, an EMAP decision criterion DC = 2.0, and multiple views.

When the decision criterion fails and (24) implies that
y2> = 0 for all k, additional input is sought to resolve the
perceived ambiguity. In an application, additional input might
be obtained from multiple views or from multiple samples of
a single view, as illustrated in the following simulations.

A. Stage 2 Simulations

Multiple Views: If inputs are noise free, only additional
object views (or their analog) can provide more information
when the decision criterion fails [Fig. 9(a)]. In the case of a
stationary object, this could correspond to moving a sensor to
obtain a new perspective. In the case of a moving object,
a subsequent reading from a fixed sensor could be used.
To emulate a multiple views strategy in circle-in-the-square
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Fig. 7. Gaussian noise contamination of the circle-in-the-square noisy test
set inputs. ART-EMAP spatial and temporal evidence accumulation helps
compensate for input noise.

Stage 2

DECISION CRITERION CONTROL

ab
Fa
ah

EMAP

,’ E
|
e ab ab
;r S Xk Yi
|
|
ART, | ART,
; > N P

‘ Seek Additional Input

Fig. 8. Stage 2 ART-EMAP: If predictive evidence is ambiguous, according
to a decision criterion, then additional ART, input is sought. If the decision
criterion is satisfied, choice at the EMAP field Fig® predicts an ART}, pattern
class.

simulations, a new ART, input would be presented when
decision criterion (24) failed during testing. This new input
would predict the same ART, class as the previous input, but
the identity of that class would be unknown to the system. An
in/out class prediction would be made only when one input
was found that met the decision criterion. For DC = 2.0,
this strategy dramatically improved performance, compared to
Stage 1, where DC = 1.0. In fact, Fig. 6(c) demonstrates
perfect test set prediction on the noise-free test set, and
Fig. 6(f) shows significantly improved performance on the
noisy test set.

Multiple Samples: If a test set input is contaminated by
noise, additional samples of the same view, or view analogue,
can provide new information [Fig. 9(b)]. This might corre-
spond to seeing a single object view under variable conditions,
such as occlusion by fog or by other objects. For circle-in-the-
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Fig. 9. Types of additional input, when the EMAP decision criterion fails.
(a) Multiple views represent different sensor perspective on the same object.
(b) Multiple samples represent different sensor inputs measured from a single

perspective.

square Stage 2 simulations with DC = 2.0, multiple samples
showed improved performance over Stage 1 single samples
(DC = 1.0), but the improvement is not as great as in the
multiple views case. On the other hand, multiple samples may
be available at times when multiple views are not.

Both the multiple views and the multiple samples strategies
for disambiguating information can be simulated in a variety
of database examples. During testing, multiple views require
presentation of data known to belong to the same as yet
unidentified class. Multiple samples can be simulated by
adding noise to the database, producing multiple versions of
each input. Stage 2 requires a certain amount of a priori
knowledge of the structure of database test set input patterns.
In pattern recognition applications this requirement does not
unusually constrain the method: multiple samples can be
obtained in most sensor domains, and multiple views can be
obtained whenever multiple perspectives or multiple sensors
are present. The only constraint is that the still-unknown
identity of the target itself remain constant across multiple
views or samples.

V. STAGE 3: TEMPORAL EVIDENCE ACCUMULATION

The predictive decision criterion strategy (Stage 2 ART-
EMAP) searches multiple views or samples until one input
satisfies the decision criterion. A single noisy input vector a,
however, might produce map field activity that satisfies a given
decision criterion but still makes an incorrect prediction. This
strategy makes no use of the partial evidence provided by
the series of views that failed to meet the decision criterion.
Further performance improvement in a noisy input environ-
ment is achieved through the application of a decision criterion
to time-integrated predictions that are generated by multiple
inputs. Stage 3 ART-EMAP accumulates evidence at a map
evidence accumulation field Fg” (Fig. 10). The time scale of
this medium-term memory (MTM) process is longer than that
of the short-term memory (STM) field activations resulting
from the presence of a single view, but shorter than that of
the LTM stored in adaptive weights.

Additive Evidence Integration: A simple way to implement
evidence accumulation at the EMAP module is to sum a
sequence of F** map activations at the evidence accumulation
field Fgb

(T;Czb) (new)

At F2b evidence accumulating MTM (T,‘c‘b
is reset to zero when the DC is met. Activities yﬁb

= (1) 4 2. 26)

) starts at zero and
at field
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Stage 3

TEMPORAL EVIDENCE ACCUMULATION
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Fig. 10. Stage 3 ART-EMAP evidence accumulation. F2® patterns x2®
are integrated at field F) gb . If the accumulated predictive evidence T°% is
ambiguous according to a decision criterion, additional input is sought. If the
decision criterion is satisfied, choice at F;b predicts an ART}, pattern class K.

Fg® obey

@27

o _ [V if T > (DC)TE? forall k # K
YK 0 otherwise.

A decision will eventually be made if the DC starts large
and gradually decreases toward one. As in Stage 2, larger DC
values tend to covary with both greater accuracy and longer
input sequences.

A. Stage 3 Simulations

In simulations, the DC decreased exponentially from 6.0 to
1.0

DC(l) = 5.0(1.0 — )" 1 + 1.0 (28)
where a(l) is the [th input in a same-class sequence (I =
1,2,---). The decay rate (r) was set equal to 0.2. Additive
integration is equivalent to applying the decision criterion to
a running average of map field activations x2® rather than to
x itself, as in Stage 2 (24). This averaging process tends to
factor out random noise over multiple inputs.

In the circle-in-the-square problem, an average of 3.1 noisy
samples of a given input a were needed to exceed the decision
criterion, using Stage 3 ART-EMAP with DC function (28)
and additive integration rule (26). Fig. 11 shows response
plots for the circle-in-the-square problem with multiple view
[Fig. 11(b)} and multiple sample [Fig. 11(c)] strategies for
noisy test set inputs. Comparing Fig. 11(b) (Stage 3) with
Fig. 6(f) (Stage 2), which uses a fixed DC =2.0, shows that
evidence accumulation can significantly reduce test set errors
in a noisy environment; in this case the error rate is reduced
from 6.9% to 2.4%.
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Stage 1 Stage 3 Stage 3
Single view Multiple views Multiple samples
88.4% on test set Decreasing DC Decreasing DC
97.6% on test set 92.2% on test set
(a) (b) ©)

Fig. 11. ART-EMAP response plots for 11 000 noisy test set points. In each
simulation, Fi§' activity is distributed, with p = 10. (a) Stage 1: Single view
with DC = 1.0. (Fig. 6(e) shows the same simulation.) (b) Stage 2: Multiple
views. (c) Stage 3: Multiple samples. In (b) and (c), the DC decreases from
6.0 toward 1.0 by (28), as evidence accumulates.

Stage 4

UNSUPERVISED REHEARSAL LEARNING
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Fig. 12. Stage 4 ART-EMAP, with unsupervised rehearsal learning. During

rehearsal, after ART-EMAP determines object identity from a sequence of

input patterns, weights u“f; are trained to improve future performance on

individual input patterns of the sequence.

VI. STAGE 4: UNSUPERVISED REHEARSAL LEARNING

Temporal evidence accumulation allows the Stage 3 ART-
EMAP system to recognize objects from a series of ambiguous
views. The system learns nothing from the final outcome
of this decision process, however. If, for example, an input
sequence a(t),... all) predicts an ART, category K, by
(26)—(27), the entire sequence would need to be presented
again before the same prediction would be made.

Unsupervised rehearsal learning (Stage 4) fine-tunes perfor-
mance by feeding back to the system knowledge of the final
prediction. Specifically, after input a(Z) allows ART-EMAP
to choose the ART}, category K, the sequence a‘l), ... a(b)
is re-presented, or rehearsed. Weights in an adaptive filter u;b
from F¢ to Fg¥ (Fig. 12) are then adjusted, shifting category
decision boundaries so that each input al®) in the sequence
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Fig. 13. Stage 4: Unsupervised rehearsal learning during presentation of
input a(?, part of a sequence that led to prediction of ART, category K.
Selected category I, clamped on at FQ"‘", acts as a self-generated training

input to Fg°. Weights ul} increase, and weights ul} to one or more

F2 nodes with maximal input Ry® decrease. Learning ceases when a)
would predict K on its own, with DC = 1.0. When weights stop changing,
RS = max{Rg®} for as long as a!) is active.

becomes more likely, on its own, to predict category K. That
is, at Fgb

aby (new) aby (old) a
(1e0) ") = (1er) 'Y 4 Rg (29)
where
N,
R =2+ yiuil. (30)
j=1

Weights w7, wi, and w;‘b, trained during the supervised learn-
ing interval, remain constant during unsupervised rehearsal
learning.

Weights uy in the F§ — b adaptive filter are up-
dated as follows. After decision criterion (27) is met and the
ART, category K is predicted, the sequence alV),---,a(f)
is re-presented to ART,. This time, however, activity ng is
clamped at prediction K

1
ypt = {0

(Fig. 13.) During the rehearsal of each input pattern
a® ... all) activity T at the field FZ® obeys a binary

equation
ab 1
T = {0

During rehearsal learning, some weights u% can decrease
while others increase. Equation (32) can then allow more than
one Fg" node to become active, as follows.

Weights u‘;f; start at zero and adapt according to the equation

d ab __

ifk=K

otherwise. @D

if RE® = max{R&}

otherwise. (32)

Tk = (i = T (33)
By (31)
1 ifk=Kand TP =0
Yt — T ={ -1 ifk#KandTg*=1 (34

0 otherwise.
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By (27) and (30)—(34), each weight u‘]‘}} to the correct ng
category node K increases at a rate proportional to F§' activity
y§ just until the active input a¥) would have predicted K on
its own, with DC = 1.0. Thereafter, T&® = 1 and weights
u‘;’,’( remain constant until the next input is presented. At
the same time, each weight u?,bc to an incorrectly predicted
F2 node, where T2 = 1 and k # K, decreases (Fig. 13).
Rehearsal learning ceases when total input Rg® to each such
node becomes slightly less than R2%. Note that, as weights
u‘;,’; decrease, an increasing number of F'&® nodes may come
to receive maximal total input R$®, by (32)—(34). Weights to
these nodes then also begin to decrease, until K becomes the
system prediction for input a(®).

By (33), the rate of adaptation for each weight uj,’; is pro-
portional to y7. Thus, more active portions of the distributed
F$ pattern y* are assigned more credit as predictors of the
boundary shift. Parametric simulations show that this credit-
assignment strategy eliminates most unstable learning and
wide oscillations in u%®. Learning at ug® shifts the EMAP
decision boundary just enough to include each input pattern in
the predicted class K. Basic prediction rules, embodied in the
ART,, ART,, and F§ — F¢?* weights, are held fixed follow-
ing the supervised learning interval. Unsupervised rehearsal
learning allows the system to learn from its own experience
“in the field,” adapting to local statistics or correcting errors
due to gaps in the training set. This type of adaptation
can improve performance marginally, while basic system
predictions remain stable. The following Stage 4 simulations
show that this boundary shift improves test performance on
single input patterns when DC = 1.0 (Stage 1).

A. Stage 4 Simulations

Fig. 14 shows Stage 4 ART-EMAP test set response patterns
for both noise-free and noisy test sets. Each simulation has
an initial supervised training on 100 inputs, and each uses
distributed F§ activity during performance, with p =10. As
in Fig. 6, no evidence is accumulated during performance,
except during unsupervised rehearsal learning. Test set inputs
are noise-free in Fig. 14(a)~(c) and noisy in Fig. 14(d)—(f).
In Fig. 14(b) and (e), rehearsal learning adapted weights ugf,’;
after temporal evidence accumulation resulted in identification
of 50 randomly chosen test sequences. On average 3.1 inputs
were necessary to exceed decision criteria (27)—(28). Note
the small shift in the decision boundary from Fig. 14(a)-
(b). Similarly, Fig. 14(c) and Fig. 14(f) show that rehearsal
learning on 900 randomly chosen test sequences can further
improve performance on the remaining test set.

VII. 3-D OBJECT RECOGNITION SIMULATIONS

Circle-in-the-square simulations illustrate incremental per-
formance improvements, from fuzzy ARTMAP to ART-EMAP
Stages 1—4, on a benchmark problem. ART-EMAP perfor-
mance in a more realistic setting will now be demonstrated.
Simulations of a 3-D object recognition problem take as
inputs 2-D image views of a geometric object, observed from
various angles. During performance a system, presented with
a previously unseen view, is required to identify an object as
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Stage 1 Stage 4
No rehearsal learning Rehearsal learning
p=10, DC=1.0 on 50 test sequences
95.7% on test set 96.2% on test set
(a)

Stage 4
Rehearsal learning
on 900 test sequences
96.6% on test set

Stage 1 Stage 4
No rehearsal learning Rehearsal learning
p=10, DC=1.0 on 50 test sequences
88.4% on test set 88.5% on test set
@

Stage 4
Rehearsal learning
on 900 test sequences
88.7% on test set

®

Fig. 14. Each plot shows ART-EMAP performance from 100 training and 11000 test exemplars. During testing, Fi§' activity is distributed, with p = 10
and DC = 1.0. Plots (a), (b), and (c) show decision boundaries for the noise-free test set. Plots (d), (e),and (f) show performance for the noisy test set. (a)
No unsupervised rehearsal learning. (Fig. 6(b) shows the same simulation.) (b) Unsupervised rehearsal learning on 50 randomly chosen test set sequences. ©)
Unsupervised rehearsal learning on 900 randomly chosen test set sequences. (d) No unsupervised rehearsal learning. [Fig. 6(e) shows the same simulation.]
(e) Unsupervised rehearsal learning on 50 randomly chosen test set sequences. (f) Unsupervised rehearsal learning on 900 randomly chosen test set sequences.

a pyramid, a prism, or a house (Fig. 15). The problem is made
difficult by the similarity of several views across objects and
by the fact that several test set views do not resemble any
training set views of the same object.

Database Inputs: The simulation database was constructed
using Mathematica to generate shaded 2-D projections of 3-
D objects illuminated by an achromatic point light source.
For each of the three objects, 24 training set views were
obtained from perspectives spaced 30-60 degrees apart around
a viewing hemisphere [Fig. 15(a)). For each object, 17 test
set views, spaced at 45-degree intervals, were obtained from
perspectives between those of the training set [Fig. 15(b)].
Each 2-D view was then preprocessed, using Gabor filters [15],
[16] to recover boundaries, competitive interactions to sharpen
boundary locations and orientations [17], and coarse coding,

yielding a 100-component input vector a. The preprocessing
algorithm is a typical feature extractor, chosen to illustrate
comparative performance of different recognition systems and
was not selected to optimize performance of any one of these
systems.

As in the circle-in-the-square simulations, fuzzy ARTMAP
and ART-EMAP Stages 1-4 were evaluated using both a
noise-free test set and a noisy test set. The noisy test set
was constructed by adding Gaussian noise (SD = 0.2) to
each input component. Each system was initially trained under
one standard supervised learning regime, with the training set
presented once. Since the training set views were deliberately
selected to be sparse and nonredundant, a situation of minimal
code compression was simulated during training. This was
achieved by assigning a high value to the baseline vigilance
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Fig. 15. 3-D object database images. (a) The training set consisted of 24
views spaced 3060 degrees apart within the front viewing hemisphere of
each object. The topmost training images for each ordered set are views taken
from above the object, the bottommost from beneath the object, etc. (b) The
test set was constructed of 17 views from within the front hemisphere, between
the training set views, spaced 45 degrees apart.

(5o = 0.9), which established 58 ART, recognition categories
for the 72 training set pairs.

Fuzzy ARTMAP: Performance measures of fuzzy ARTMAP
and ART-EMAP on the 3-D object recognition database the
summarized in Fig. 16, for noise-free test set inputs [plots
(2)~(c)] and for noisy set inputs [plots (d)-(f)]. The prediction
of each test set view is represented graphically, on shaded
viewing hemispheres. Each hemisphere shows 17 faces, which
correspond to the 17 test set viewing angles [Fig. 15(b)]. For
each simulation, three hemispheres show object class predic-
tions made by the system in response to the corresponding
input, with shading of a face indicating a prediction of pyramid
(black), prism (gray), or house (white).

Fuzzy ARTMAP made only 64.7% correct object class pre-
dictions on the noise-free test set and 60.8% correct predictions
on the noisy test set. This poor performance indicates the
difficult nature of the problem, when prediction must be made
on the basis of a single view. Note, for example, that many
of the test set inputs from the lower left part of the pyramid
view hemisphere were incorrectly identified as prism views
[Fig. 16(a)-16(d)]. The reason for these errors can be inferred
by observing the close similarity between the corresponding
pyramid and prism 2-D views in the test set [Fig. 15(b)].

Stage I: Like fuzzy ARTMAP, Stage 1 ART-EMAP, with
its spatially distributed activity pattern at F3 (Fig. 4), is
required to make a prediction from each single test set view.
Nevertheless, predictive accuracy is significantly improved,
from 64.7% to 70.6% on the noise-free test set [Fig. 16(b)]
and from 60.8% to 64.7% on the noisy test set [Fig. 16(e)]. As
in circle-in-the-square simulations, power rule algorithm (20)
was used to approximate contrast enhancement at Fiy'. With the
input dimension M, = 2 in the circle-in-the-square, a power
rule with p = 10 gave adequate contrast enhancement. For the
3-D object recognition simulations, where M, = 100, a higher
power (p = 24) approximated contrast enhancement at F3.

Stage 2: Stage 1 spatial evidence accumulation improves
performance by causing a novel view to activate categories of
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TABLE 1
STAGE 2 ART-EMAP 3-D OBJECT RECOGNITION SIMULATION
RESULTS AS THE FIXeD DECISION CRITERIA (DC) DECREASE FROM
FIVE To ONE. WHEN DC = 1, STAGE 2 REDUCES TO STAGE 1

Noise-free test set Noisy test set
DC | Percent | Average # views || Percent | Average # views
5 98.0 4.3 90.2 6.8
4 92.2 4.3 96.1 6.0
3 92.2 4.2 94.1 4.1
2 882 | 2.7 80.4 32
I 706 | 1.0 647 | L0

two or more nearby training set views, which then strongly
predict the correct object. Many single view errors, caused by
similar views across different objects, however, remain. Most
of these errors are corrected at Stage 2 or Stage 3, when mul-
tiple views of the unknown object are made available. With a
high fixed decision criterion (DC = 5.0) and an average of 4.8
test set views, Stage 2 ART-EMAP achieves 98.0% accuracy
on the noise-free test set. Even on the noisy test set, object
identification remains at 90.2% accurate, with an average of
6.8 test set views. Table I shows how both performance and the
average number of views decrease continuously as the fixed
decision criterion decreases from five to one.

Stage 3: For a two-class prediction problem such as circle-
in-the-square, evidence accumulation improves performance
primarily by averaging across noisy inputs. Stage 3 ART-
EMAP becomes increasingly useful as the number of predicted
classes increases, since evidence accumulation can also help
solve the difficult problem of disambiguating nearly identical
views of different objects. With three or more object classes,
when equal predictive evidence exists for both the correct
object and an incorrect one, the identity of the erroneous class
tends to vary. As the sequence of views grows, erroneous
evidence is quickly overwhelmed by evidence for the correct
object. In the Stage 3 ART-EMAP three-object simulations,
with decreasing DC function (28), an average of 9.2 views
were needed to reach 98.0% correct performance on the noise-
free test set [Fig. 16(c)]. On the noisy test set, an average
of 11.3 views allowed the system to reach 92.2% correct
performance [Fig. 16(f)].

ART-EMAP performance is consistently robust across wide
variations in parameters as shown, for example, in Fig. 5(a)
and in Table I This robustness is now also illustrated for
Stage 3 noise-free simulations. Fig. 17 shows increasing per-
formance accuracy as the DC curve shifts up, which causes the
average number of required views to increase as well. In the
limiting case, where DC =1.0, Stage 3 reduces to single-view
Stage 1, where performance is just 70.6% [Fig. 16(b)]. The
trade-off between the number of required views and criterion
predictive accuracy can be adjusted for different applications.

Stage 4: Unsupervised rehearsal learning improves single
view test set performance only marginally on the 3-D object
simulations. Stage 4 rehearsal learning was conducted on the
51 noise-free test set views. Temporal evidence accumulation
drew from an enlarged test set that included 72 additional
views. Accessing exemplars from this larger test set allows
stable fine-tuning by decreasing the percentage of ambiguous
test views. After this fine-tuning, performance on individual
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Fig. 16. 3-D object simulations: Response viewing hemispheres for each object show object predictions from each test set view. Each window in the
hemisphere corresponds to one of the 17 test views [Fig. 15(b)]. Plots (a), (b), and (c) show noise-free test set results, and plots (d), (e), and (f) show noisy
test set results. Plots (a) and (d) show fuzzy ARTMAP performance, using the Fj choice rule. Plots (b) and (¢) show Stage 1 ART-EMAP performance using
the power rule (20) with p = 24. Plots (c) and (f) show Stage 3 ART-EMAP performance using power rule (20) with p = 24, temporal evidence

accumulation with the decreasing decision criterion (28) and multiple views.

1
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VIEWS

Fig. 17. Stage 3 ART-EMAP—Parametric comparison of system perfor-
mance for four DC functions. On noise-free 3-D image simulations, test set
performance is seen to degrade as the average number of views needed to
exceed the DC decreases.

views from the original 51 test set inputs was 73%, compared
to 70.6% at Stage 1 [Fig. 16(b)].

VIII. THE ASPECT NETWORK

Seibert and Waxman [2], [18], and [19] were the first to use
temporal evidence accumulation in an ART-based network for
3-D object recognition. Aspect network learning strengthens

TABLE II
COMPARISON OF THE ASPECT NETWORK [2] AND ART-EMAP

Aspect Network

ART-EMAP

]

Preprocessing

Boundary detection
Coarse coding

Boundary detection
Cparse coding

View categorization ART 2 Fuzzy ART

Connectivity/ second-order first-order
Complexity NEx M Nx M
Learning view transition to view to
object object

View field output
(performance)

winner-take-all
(competitive choice)

distributed
(partial contrast enhancment)

Spatial evidence
accumulation

none

across view categories

Predictive control

confidence threshold

decision criterion

Temporal evidence
accumulation

across transitions

ACTOSS views

Problem domain

structured
input sequences

single inputs or
input sequences

a second-order weight when a transition between two view
categories occurs (Fig. 18). As a 3-D object is examined, ob-
served view transitions provide accumulating evidence leading
to object identification. ART-EMAP uses different evidence
accumulation processes (Table II). In particular, ART-EMAP
spatial evidence accumulation allows the network to retain
the first-order connectivity of fuzzy ARTMAP, rather than the
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Fig. 18. The Seibert-Waxman aspect network [2]. ART 2 recognition
(choice) of a view category i followed by category j causes transition
activation of aspect nodes i and j. Evidence accumulates until the object
network chooses a category k, which allows the second-order weights W,'}
to be strengthened.

second-order learned view transition structure of the aspect
network.

IX. CONCLUSION

Spatial and temporal evidence accumulation by ART-EMAP
has been shown to improve fuzzy ARTMAP performance
on both the circle-in-the-square benchmark and on a 3-D
object recognition problem. Unsupervised rehearsal learning
illustrates how self-training can fine-tune system performance.
ART-EMAP is a general purpose algorithm for pattern class
prediction based on the temporal integration of predictive
evidence resulting from distributed recognition across a small
set of trained categories. The system promises to be of use in
a variety of applications, including recognition of 3-D objects
from ambiguous 2-D views and spatio-temporal image analysis
and prediction.
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