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ABSTRACT

[t is a neural network truth universally acknowledged, that the signal transmitted to a
target node must be equal to the product of the path signal times a weight. Analysis of
catastrophic forgetting by distributed codes leads to the unexpected conclusion that this
universal synaptic transmission rule may not be optimal in certain neural networks. The
distributed outstar, a network designed to support stable codes with fast or slow learning,
generalize: the outstar network for spatial pattern learning. In the outstar, signals from
a source node cause weights to learn and recall arbitrary patterns across a target field of
nodes. The distributed outstar replaces the outstar source node with a source field, of arbi-
trarily many nodes, where the activity pattern may be arbitrarily distributed or (ompressed
Learning proceeds d((ordmg to a principle of atrophy due to disuse whereby a path weight
decreases in joint proportion to the transmitted path signal and the degree of disuse of the
target node. During learning, the total signal to a target node converges toward that node’s
activity level. Weight changes at a node are apportioned according to the distributed pattern
of converging signals. Three types of synaptic transmission, a product rule, a capacity rule,
and a threshold rule, are examined for this system. The ‘three rules are (omputatlonally
equivalent when source field activity is maximally compressed, or winner-take-all. When
source field activity is distributed, catastrophic forgetting may occur. Only the threshold
rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby
leads to the conjecture that the optimal unit of long-term memory in such a system is a
subtractive threshold, rather than a multiplicative weight.

Key words: Spatial pattern learning, distributed code, outstar, adaptive threshold, rectified
bias, atrophy due to disuse, transmission function, neural network
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Figure 1. The product rule postulates that the signal transmitted to a target node at a synapse is proportional
to a path signal (y;) times a weight (w;;). This rule is a feature of nearly all neural network models.

1. Optimal rules of synaptic transmission

When neural networks became popular in the 1980s. researchers struggled to define
neural network with words that include the diverse models in current use. As a step toward
this definition. consider the question: What, if anything. do all the neural networks of the
past fifty years have in common? The answer to this question is, most likely, nothing.
However, the large majority of neural network models, from the M(( ulloch-Pitts (1943)
neuron to the many biological and engineering models at this vear’s conferences, have at
least one thing in common, namely, the rule setting the net signal from a source node to a
target node equal to a path signal times a synaptic weight (Figure 1). This product rule of
Sy Ild])tl( transmission is in such universal use that it is almost always treated as a nameless
fact rather than a hypothesis, although neurophysiology so far neither confirms nor refutes
this rule. Why, then has this pcutlculal process found such widespread use? One answer
is its computational power: the product rule sets the sum of weighted signals equal to the
dot, product of the signal vector and the weight vector. This dot product provides a useful
measure of the snml(mtv between the active path signal vector and the learned weight vector.
However, utility and universality do not necessarily imply optimality.

This chapter describes a neural network learning problem for which the product rule is
not computationally optimal. Solution of the learning problem requires a neural network
design to support stable distributed codes. One such design is the distributed outstar (Car-
penter, 1993, 1994), which solves the distributed code catastrophic forgetting problem when
the product rule is replaced by an equally plausible synaptic transmission rule. This thresh-
old rule postulates that the unit of long-term memory (LTM) is a subtractive threshold.
rather than a multiplicative weight. The computational analysis therefore questions the op-
timality of a fundamental neural network design hypothesis as it solves a particular learning
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problem.

2. Outstar learning and distributed codes

An outstar is a neural network that can learn and recall arbitrary spatial patterns (Gross-
berg, 1968a). Outstar learning and recall occur when a source node transmits a weighted
signal to a target, or border, field of nodes. This network is a key component of various
neural models of cognitive processing. For example, the outstar has been identified as a
minimal neural network capable of ciassical conditioning (Grossberg, 1968b, 1974). In terms
of stimulus sampling theory (Estes, 1955) the source node plays the role of a sampling
cell. When the sampling cell is active, long-term memory traces, or adaptive weights, learn
stimulus sampling probabilities of border field activity patterns. A sequence of outstars,
called an avalanche, forms a minimal network for learning and ritualistic performance of
an arbitrary space-time pattern (Grossberg, 1969). Within the adaptive resonance theory
of self-organizing pattern classification, outstars learn the top-down expectations that are
critical to code stabilization (Grossberg, 1976). All neural network realizations of adaptive
resonance theory (ART models) have so far used outstar learning in the top-down adap-
tive filter (Carpenter and Grossberg, 1987a, 1987b, 1990; Carpenter, Grossberg, and Rosen,
1991a). The supervised ARTMAP system (Carpenter, Grossberg, and Reynolds, 1991) also
employs outstar learning in the formation of its predictive maps. Outstars have thus played a
central role in both the theoretical analysis of cognitive phenomena and in the neural models
that realize the theories, as well as applications of these systems.

An outstar is characterized by one source node sending weighted inputs to a target
field. We will here consider spatial pattern learning in a more general setting, in which an
arbitrarily large source field replaces the single source node of the outstar. This distributed
outstar network (Figure 2a) is similar to the original outstar when the source field F5 contains
a single node. Then, weights in the Fy, — F; adaptive filter track the Fy activity pattern
when the one F, node is active.

At first, distributed outstar learning would appear to be modeled already in the ART top-
down adaptive filter (Figure 3a). However, to date, networks that explicitly realize adaptive
resonance assume the special case in which Fj is a choice, or winner-take-all, network. In this
case, only one Fy node is active during learning, so each Fy node acts, in turn, as an outstar
source node. We will here consider how to design a spatial pattern learning network which
allows the activity pattern at the coding field F; to be arbitrarily distributed (Section 3).
That is, one, several, or all of the F» nodes may be active during learning.

One possible design is simply to implement outstar learning in each active path. However,
such a system is subject to catastrophic forgetting that can quickly render the network
useless, unless learning rates are very slow (Section 4). In particular, if all F, nodes were
active during learning, all Fy — F} weight vectors would converge toward a common pattern.

A learning principle of atrophy due to disuse leads toward a solution of the catastrophic
forgetting problem (Section 5). By this principle, a weight in an active path atrophies, or
decays, in joint proportion to the size of the transmitted synaptic signal and a suitably
defined “degree of disuse” of the target cell. During learning, the total transmitted signal
from F, converges toward the activity level of the target F; node. Atrophy due to disuse
thereby dynamically substitutes the total Fy — F} signal for the individual outstar weight.
This seems a plausible step toward spatial pattern learning by a coding source field instead
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Figure 2. Distributed outstar network for spatial pattern learning. During adaptation a top-down weight
wj;, from the j‘h node of the coding field Fy to the it" node of the pattern registration field Fy, may decrease
or remain constant. An atrophy-due-to-disuse learning law causes the total signal o; from Fy to the i** F)
node to decay toward that node’s activity level x;, if ¢; is initially greater than z;. Within this context,

three synaptic transmission rules are analyzed.
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of by a single source node. Unfortunately, this development is, by itself, insufficient. The
network still suffers catastrophic forgetting if signal transmission obeys a product rule. This
rule, now used in nearly all neural models, assumes that the transmitted synaptic signal from
the jt* F3 node to the i** Fy node is proportional to the product of the path signal y; and the
path weight w,;. An alternative transmission process, used in a neural network realization
of fuzzy ART (Carpenter, Grossberg, and Rosen, 1991b; Carpenter and Grossberg, 1993),
obeys a capacity rule (Section 6). However, catastrophic forgetting is even more serious a
problem for the capacity rule than for the product rule.

Fortunately, another plausible synaptic transmission rule solves the problem (Sections 7-
9). This threshold rule postulates a transmitted signal equal to the amount by which the
Fy — Fy signal y; exceeds an adaptive threshold 7;;. Where weights decrease during atrophy-
due-to-disuse learning thresholds increase: formally, 7;; is identified with (1 — wj;). When
synaptic transmission is implemented by a threshold rule, weight/threshold changes are
bounded and automatically apportioned according to the distribution of Fy activity, with fast
learning as well as slow learning. When F% makes a choice, the three synaptic transmission
rules are computationally identical, and atrophy-due-to-disuse learning is essentially the
same as outstar learning. Thus functional differences between the three types of transmission
would be experimentally and computationally measurable only in situations where the F,
code is distributed.

Computational analysis of distributed codes hereby leads unexpectedly to a hypothesis
about the mechanism of synaptic transmission in spatial pattern learning systems. That is,
the unit of long-term memory in these systems is conjectured to be an adaptive threshold,
rather than a multiplicative path weight. Historically, early definitions of the perceptron
specified a general class of synaptic transmission rules (Rosenblatt, 1958, 1962). However,
the electrical switching circuit model, which realizes multiplicative weights as adjustable
gains, quickly became the dominant metaphor (Widrow and Hoff, 1960). Over the ensuing
decades, efficient integrated hardware realization of the linear adaptive filter has remained a
challenge. In opto-electronic neural networks, the adaptive threshold synaptic transmission
rule, realized as a rectified bias, may be easier to implement than on-line multiplication
(T. Caudell, personal communication). Thus, even in networks where the product rule and
the threshold rule are computationally-equivalent, their diverging physical interpretations
may prove significant, in both the neural and the hardware domains.

The adaptive threshold hypothesis completes the distributed outstar learning law, sum-
marized in Section 10. Section 11 explicitly solves the distributed outstar equations, Sec-
tion 12 illustrates distributed outstar dynamics with a network that has two nodes in the
source field, and Section 11 concludes with a consideration of the physical unit of memory.

3. Spatial pattern learning

The distributed outstar network (Figure 2a) features an adaptive filter from a coding,
or source, field Fy to a pattern registration, or target, field Fy. This filter carries out spatial
pattern learning, whereby the adaptive path weights track the activity pattern of the target
field, F;. When F; consists of just one node (N = 1) the network is a type of outstar. During
outstar learning, weights in the paths emanating from an F, node track Fj activity. That
is, when the j** F, node is active, the weight vector w; = (wj1,...wj;,...w;py) converges
toward the Fj activity vector x = (xq,...2;,...2) of the target, or border, nodes at the
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outer fringe of the filter (Figure 3).
While many variants of outstar learning have been analyzed (Grossberg, 1968a, 1972),
the essential outstar dynamics are described by the equation:

Basic outstar ;
a
EZU)],‘ = y]‘(l',' - U)]i). (1)

This is the learning law used in the top-down adaptive filters of ART 1 (Carpenter and
Grossberg, 1987a), ART 2 (Carpenter and Grossberg, 1987b), and fuzzy ART (Carpenter,
Grossberg, and Rosen, 1991a). By (1), w;; — z; when y; > 0. When y; = 0, w;; remains
constant. The term y;z, in (1) describes a Hebbian correlation whereby the weight tends to
increase when both the presynaptic F, node j and the postsynaptic F; node 7 are active.
The term —y;w;; describes an anti-Hebbian process whereby the weight w;; tends to decrease
when the presynaptic node j is active but the postsynaptic node 7 is inactive (“pre- without
post-").

The distributed outstar network does not constitute a stand-alone pattern recognition
system. Like the outstar, this module would typically be embedded within a larger neural
network architecture for supervised or unsupervised pattern learning and recognition. For
example, in an ART system the top-down Fy — F} filter plays a crucial role in ART code sta-
bilization. Additional network elements determine which F; code will be selected by an input
I in the first place and implement search and other mechanisms of internal dynamic control
(Carpenter and Grossberg, 1987a). This chapter focuses only on design issues pertaining to
the top-down adaptive filter. ‘

4. Catastrophic forgetting

The distributed outstar network for spatial pattern learning (Figure 2a) needs to solve
a potential catastrophic forgetting problem. Suppose, for example, that all Fy nodes are
active (y, > 0) at some time when the 7" F} node is inactive (z; = 0) due, say, to the
fact that there is no input to that node at that moment (/; = 0). With fast learning, an
outstar (1) would send all weights w;; (j =1,...,N) to 0. Within an ART system, stability
requirements imply that these weights then remain 0 forever. Moreover, no future input [;
to the i** Fy node could even activate that node, once Fy became active. If similar weight
decays occurred at each Fj node, all weights would decay to 0. The network would thus
quickly become useless, quenching all Fy activity as soon as any Fy code was selected.

The special class of F, networks called choice, or winner-take-all, systems sidestep this
catastrophic forgetting problem. A code representation field Fy is a choice network when
internal competitive dynamics concentrate all activity at one node (Grossberg, 1973). An
F, code that chooses the J** node is described by:

F, choice
1 ifj=J .
yf:{o £ (2)
In this case, each F, node is identified with a class, or category, of inputs I. Outstar learning

(1) permits a weight w,; to change only if the j** F, node is active. When F, chooses the
node J, all other nodes (5 # J) are inactive. Only the weight w/,; tracks activity at the
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ith F} node, so:
W) — X. (3)

Even if w; decays to 0, all other weights to the 7** F} node remain unchanged when the Jt
category is selected. These other weights w;; (j # J) are thus reserved and can learn their
own Fj patterns when they later become active.

Choice represents an extreme form of short-term memory (STM) competition at F,. By
confining all weight changes to a single category, Fy choice protects the learned codes of
all the other categories during outstar learning. However, outstar learning poses a problem
when F, category representations can be distributed. If a code y were highly distributed,
with all y; > 0, then the outstar learning law (1) would imply that all weight vectors w,
would converge toward the same Fy activity vector x. The size of y; would affect the rate
of convergence, but not the asymptotic state of the weights. The severity of this problem
can be reduced if learning intervals are extremely short. Then, since the rate at which
w; approaches x is proportional to y,, little change will occur in weights w;; with small
y,. If, however, many of the y, values are nearly uniform or if learning is not always slow,
catastrophic forgetting will occur as all weight vectors approach one common pattern that
is independent of all prior learned differences.

An adaptation rule called the distributed outstar learning law solves this problem. Even
with fast learning, where weights approach asymptote on each input presentation, the dis-
tributed outstar apportions weight changes across active paths without catastrophic forget-
ting. In the distributed outstar, the rate constant for an individual weight w;; is an increasing
function both of y,, as in the outstar equation (1), and also of wj; itself. When w;; becomes
too small, further change is disallowed. Weights, initially large, can only decrease during
learning. Small weights can decrease further only when y; is close to 1, which occurs when
most of the F, STM activity is concentrated at node j. When Fy activity is highly dis-
tributed only large weights, close to their initial values, are able to change. Moreover, for
highly distributed codes, the maximum possible weight change in any single path is small.

The distributed outstar is derived from the notion that the sum of all F» — F} transmitted
signals, rather than individual path weights, tracks target node activity during learning. A
principle of atrophy due to disuse governs weight change, as described in the next section.
Within this context, three signal transmission rules are examined (Section 6). An adaptive
threshold rule for synaptic transmission is more computationally successful than either of
the other two rules.

5. Learning by atrophy due to disuse

The principle of atrophy due to disuse postulates that the strength of an active path
decays when the path is disused. Active “dis-use” is distinct from passive “non-use” (Fig-
ure 2b), where the strength of an inactive path remains constant, as in outstar learning (1)
(Figure 3b). To define disuse, a specific class of target fields F; are considered. So far, no
assumptions about the F} activity vector x have been made. The main hypothesis on Fj is
that, when Fj is active, the total top-down input from F; to F; imposes an upper bound, or
limit, on the maximum activity at an F node. In addition to a bottom-up input I; to the
ith Fy node, a top-down priming input o; from F), is assumed to be necessary for that node
to remain active, once Fy becomes active. This hypothesis is realized by the inequality:
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Top-down prime

0< xr, <oy, (4)

where o; is the sum of all transmitted signals S,; from F} to the i** F} node:

N
g, = Z Sji (5)
=1

(Figure 2a). In particular, when Fj is active but o; = 0, no activity can be registered at the
ith Iy node, for any bottom-up input I; ¢ [0, 1].

The top-down prime inequality (4) is closely related to the 2/3 Rule of ART (Carpenter
and Grossberg, 1987a), which implies that the it* Fy node will be inactive (x; = 0) if either
the bottom-up input /; is small or the total top-down input o; is small when Fj is active. The
2/3 Rule was derived both from an analysis of system requirements for input registration,
priming, and stable, self-organizing pattern learning and classification and from an analysis
of the corresponding cognitive phenomena. In binary ART 1 systems with choice at Fy, the
2/3 Rule is realized by allowing the it F} node to be active, when the Jt* F, node is active,
only if I; =1 and if o; exceeds a criterion threshold, where:

o= Ygwy,. (6)

Fuzzy ART (Carpenter, Grossberg, and Rosen, 1991a), an analog extension of ART 1, realizes

the 2/3 Rule by setting:
x; = I; Awy, = min(1,,wy;) (7)

when the J** F, node is chosen (Figure 3a). The symbol A in (7) denotes the fuzzy inter-
section (Zadeh, 1965). By (2) and (6), when F, makes a choice,

o; =Wy (8)
Equations (7) and (8) suggest setting:
r; = I; A o; (9)

to define one class of Fj systems that realize o; as a top-down prime, or upper bound, on
target node activity x;.
When F, primes Fy, by (4), the degree of disuse D; of the it F} node is defined to be:

Dy =(0;—:) > 0. (10)
When (9) defines Fy activity,
Di = (O‘l‘ - Ii /\O’i)

Gi_Ii if Uizli

= (11)
0 if o; < I,

= [oi- LT,
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where [...]T denotes the rectification operator:
[0]T =0 v 0=max(,0), (12)

where v denotes the fuzzy union (Zadeh, 1965). In this case, the degree of disuse at the
¢th F} node is the amount by which the top-down input o; exceeds the bottom-up input I;
at that node. A learning principle of atrophy due to disuse postulates that a path weight
decays in proportion to the degree of disuse of its target node. We here consider a class of
learning equations that realize this principle in the form:

d

Eiwji =

Weights can then decay or stay constant, but never grow, when S;; > 0 and D; > 0. With
the degree of disuse D, defined by (10), the learning law (13) becomes:

Atrophy due to disuse

d ,
%wﬂ = —.S],'(O'i—.’I?i) (14)
(Figure 2b). In Section 6 three synaptic transmission rules will each define .5;; as a function
of y, and w,;. In Sections 7 and 8 we will analyze atrophy-due-to-disuse learning and
catastrophic forgetting for these three rules.

Initially,

w;;(0) = 1 (15)
fori=1,...,M and j=1,...,N. The learning law (14) implies that a path weight w;; can
decay when the total top-down signal o; to the itk target F; node exceeds the node’s activity
z;. The rate of decay is proportional to a path’s contribution, S;;, to the top-down signal.
By (14), the sum of all weights converging on the it* node obeys the equation:

d & ,
7 (2 wji) = —0i(oi - zi). (16)

J=1

Thus if the Fy pattern x and the F, pattern y are constant during a learning interval, and
if o, > x; at the start of that interval, then one or more weights w;; must continue to decay
until o; converges to z;.

When F, makes a choice, we will see that:
oi =57 =Wy, (17)

while .S;; = 0 (j # J), for all three transmission rules. In this case the atrophy-due-to-disuse
equation (14) reduces to:

dwy; .
5 = —S5i(wyi - i) (18)
{ —wy(wyi—x;) ifj=1J
0 i £,
9
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Comparing (18) with (16) illustrates the sense in which the total weighted signal o; in a
distributed code replaces the weight w;, in a system where F, makes a choice. Note that
w j; approaches z; at a rate proportional to wy,. Equation (18) is thereby slightly different
from the outstar equation (1), which reduces to:

dw,, {_(wJ_z‘_T'i) ifj=J
I ifj#J

(19)

when F, makes a choice. Because w;; = 0; > z;, x; = 0 if wy; = 0. Thus (18) and
(19) both imply that w; — x while other w; remain constant, as long as the J** F, node
remains active (Figure 3b). With fast learning and F;, choice the atrophy-due-to-disuse and
outstar learning laws are equivalent. In this case, neither computational nor experimental
analysis can differentiate outstar learning from atrophy due to disuse. The three synaptic
transmission rules are similarly indistinguishable. However, when Fj activity y is distributed,
qualitative properties of learned patterns depend critically on both the learning law and the
signal transmission rule, as follows.

6. Synaptic transmission functions

We will now define three synaptic transmission rules. The Fy path signal vector y =
(Y15---Yj5---yn) is assumed to be normalized:

N
Zy] =1, (20)
=1

but is otherwise arbitrary. Given a signal y; from the jt* F; node to the 7** Fj node, via a
path with an adaptive weight w,;, the net signal S); received by the ith F} node is assumed
to be a function of y, and wj;:

S]z = f(yjaw]i)' (21)

Each of the three rules corresponds to a physical theory of synaptic signal transmission in
neural pathways. The present analysis uses computation alone to select one of these three
rules over the others in a neural system for spatial pattern learning.
The first synaptic transmission rule postulates that the Fy — F} signal is jointly propor-
tional to the path signal y; and the weight w;; :
Product rule
Sji = YWy (22)

(Figure 1). Synaptic transmission by the product rule is an implied hypothesis most neural
network models. The rule implies that ¢;, the sum of all transmitted signals to the 7t F;
node, equals the dot product between the Fy — Fy path vector (y1,...¥;,...yx) and the
converging weight vector (wy;,...wj;,...wy;). That is, the total signal from F) to the ith F;
node is a linear combination of the path signals y;:

N
o; = Z YWy, (23)
J=1
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with the coefficients w,, fixed (McCulloch and Pitts, 1943) or determined by some learning
law. The total transmitted signal o; thereby computes the correlation between the Fy —
F; path vector and the converging weight vector. Rosenblatt (1962) considered synaptic
transmission rules in the general form (21) when defining the perceptron. However, the
product rule (22) and its linear matched filter (23) have since come into almost universal
use.

A second synaptic transmission rule assumes that the path signal y; is itself transmitted
directly to the 7** F} node until an upper bound on the path’s capacity is reached. With
this upper bound equal to the path weight w;;, the net signal obeys the:

Capacity rule

Sji =Y, ANwy = min (yJ’ ’LU]Z'). (24)
A capacity ruleis suggested by the computational requirements of neural network realizations
of fuzzy set theory, as in fuzzy ART (Carpenter, Grossberg, and Rosen, 1991b; Carpenter
and Grossberg, 1993). Figure 4a illustrates how the product rule compares to the capacity
rule. For each, the signal S); grows linearly when y, is small. However, a product rule signal
increases with y, for all y, € [0, 1], while a capacity rule signal ceases to grow when y; reaches
the upper bound w,;.

The geometry of the graph in Figure 4a suggests a third signal function, to complete a
transmission rule parallelogram. The third signal function describes a:

Threshold rule
Syi = [y = (1 —w;i)]* (25)

It is awkward to interpret the transmission rule (25) in terms of the weight w;;. However,
anatural interpretation takes the unit of long-term memory to be a signal threshold 7;; rather
than the path weight w;;. Namely, by setting:

Tj = 1 — w4, (26)

the threshold rule (25) becomes:
' Sji = [yj - Tji]+- (27)

In (27), the transmitted signal from the j** Fy node to the it* Fy node is the amount by
which the path signal y, exceeds an adaptive synaptic threshold ;.

The three rules (22), (24), and (25) are identical if Fy activity is binary, since for each
rule: ” |

o Wy MYy = ‘

5 f‘{O if ) = 0. (28)
In particular, the three synaptic transmission rules are computationally indistinguishable if
F, makes a choice, by (2). However, when a normalized F, code is distributed, an adaptive
system that uses either the product rule or the capacity rule can suffer catastrophic forgetting.
The threshold rule solves this problem.
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Figure 4. (a) A synaptic transmission parallelogram. Sj; is the transmitted signal from the j** F» node to

the 7* F| node. By the product rule, Sji = yjwj;. By the capacity rule, Sj; = y;j A wj;. By the threshold
rule, Sj; = [y; — (1 — w;3)]T = [y; — 755]T. The three rules agree when y is a binary code. (b) Asymptotic
I

weight values for a fully distributed code, where y; = 5. As a function of /;, the dynamic range of wj;(oc)

depends critically upon the choice of synaptic transmission rule. During learning. weights decrease, from an
initial value of w;;(0) = 1, except when [; = 1.



Product rule:S,; = y;w,, (22)
Capacity rule: S, = y; Awj; (24)

Threshold rule: Sj; =[y; - (1 - w;;)]* (25)

Table 1: Synaptic transmission functions

7. Transmission rule computations

When an Fy code y is maximally compressed, the three synaptic transmission rules (Table
1) are computationally identical. Computations in this section demonstrate how the three
rules diverge when the F5 code is maximally distributed. Note that the weight adaptation
equation (14) also learns spatial patterns in a system where x; may sometimes be greater
than ;. Then, the top-down signal vector o would still track the Fy spatial pattern vector
x. However, the top-down prime hypothesis (4) implies that weights can only decrease, and
hence are guaranteed to converge to some limit in the interval [0,1] for arbitrary learning
and input regimes.
Initial values: Consider an atrophy-due-to-disuse system (14) in its initial state, when no
learning has yet taken place. Then, all w;; =1, so:

%i(0) = y;(0). ) (29)

for each of the three synaptic transmission rules (Table 1). Therefore, since the Fy activity
vector y is normalized (20),

0;(0) = Z Sji(O) =1. (30)

J=1
The following computations trace an example in which x; = I; Aoy, as in (9). Then:
J’z(o) =1 € [07 1]7 (31)

by (30). The atrophy-due-to-disuse equation (14) then implies that x; will remain equal to
I; for as long as I remains constant. During that time, as some or all weights w;; decrease,
the total top-down input o; will decay toward the bottom-up input /;, no matter which
transmission rule is selected. For each rule,

d , o
Ewﬁ = ——5]'1'(0',' - I;). (32)
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Choice at Fy: When F, makes a choice, as in (2), o; = wy;, which converges toward I;, by
(32). All other weights w,, (j # J) remain constant. Competition at Fy hereby limits the
maximum total weight (hdnge at each Fy node. In fact, when F, makes a choice,

N N

Z )= Z w,;(0) — wj;(o0))

1=l =1 (33)
sz(O) sz( ))

for all three signal transmission rules.

Distributed code at Fy: An F, code is maximally compressed when the system makes
a choice. Consider now the opposite extreme, when an Fy code is maximally distributed.
That is, let:

=5 (34)
for j =1,...,N. All weights wy;,...,wy; obey equation (32) and all are initially equal, by
(15). Therefore the weights w,, (j =1,...,N) to a given F; node will remain equal to one
another during learning, for any transmission function S;;. However, these individual weight
changes under the three transmission rules show significant qualitative differences, despite
the fact that the total Fy, — Fy signal vector o correctly learns the Fy activity vector x = I
for all three. In particular, the nature of the pattern encoded by a given weight vector and
the size of the total weight change at each Fj node clearly distinguish the three rules, as
follows.

Product rule: With the product rule (22),

S %w]z (35)
Therefore:
1 1 Y
=Y Wi = Z wij; (36)
1=l J=1
and
d 1 1 Y / .
W5i = =~y Wiil 5 2 wei — Ii). (37)
k=1

Since all weights w;; to the itk F} node remain equal during learning,

for y=1,...,N. Thus the maximum total weight change at an F; node ¢ is:
N
A(Y wyi) = N(1-T), (39)
j=1

which could be anywhere from 0 (when I; =1) to N (when I; =0).
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Capacity rule: With the capacity rule (24),

] flh<w;<l
: 1 v U N =W
A_Si]‘ = N A 'lU]l = (40)
Wy if 0 < Wy; < 71V
Therefore:
1 if & <w;;<1 for all
g, = (41)
SN wy f0<wy, <4 for all j
Equation (41) accounts for all cases since wy; = ... = wy,; during learning. Weights adapt
according to:
d —71;7.(1 — ]z) if 7%7 < Wy, <1 )
i = N | 1 (42)
' —wy(Yimiwki— L) i 0<wy; < 5.
By (42), unless I; = 1, all weights w,; shrink until they enter the interval [0, &]. Thus:
I .
¢ if0<l; <1
W, — { N ' (43)
for each j =1,..., N. The maximum total weight change at the it* F} node is:
N (N-I) ifo<], <1
AN wy,) = (44)
j=1 0 if ;=1

which lies between (N — 1) and N, unless I; = 1.
Threshold rule: With the threshold rule (25),

(F-(Q=wp) f(1-F)<w;<1

S = { (45)

0 ingwjig'(l—Ylv).

By (14) and (45), weight w;; ceases to change as it falls toward (1 - 4). Thus, since all
w;i(0) =1,

N
aizl—Z(l—wﬁ). (46)
J=1
During learning,
iy = (e~ (1= w1 - (1 =) - 1) (47)
dt N I ke v

S0:




Therefore, since weights to the i** node remain equal as they decay:

1-1;

wy; — 1 - (T) (49)
In other words, the threshold 7;; =1 - w); rises from 0 until:
i — (121 (50)
Thus 7j; € [0, 4] after learning. The total weight change at the :** node is:
N
A(;wﬂ) =(1-1;). (51)

Like the weights, the sum of all threshold changes at the ** node is less than or equal to
(1 - ]z)'
8. Transmission rules, catastrophic forgetting, and stable coding

Compare now the different asymptotic weights learned under the maximally distributed
F5 code (34) using the three synaptic transmission rules. For all three rules the total top-
down signal o; converges to the bottom-up signal I; at each F; node :. However, the total
weight changes vary dramatically (Figure 4b), in contrast to the Fy choice case, where the
maximum total weight change at a given node equals (1 - I;) € [0, 1] for all three rules.

Product rule - Catastrophic forgetting: With distributed F; activity and a product
rule, all weights w,; converge to /; and the maximum total weight change is N(1-1;) € [0, N].
The full range of all weight values is thus spanned upon presentation of the very first input.
In particular, all weights w,; (j = 1,...,N) to the itk Fy node decay to 0 if I, = 0. Since
weight values can only decrease during learning, these weights would remain equal to 0 for
all time. Moreover, the top-down prime hypothesis (4) implies that F; activity z; would
then always be zero for any future input I and any F3 code y. Thus, the fact that a given
component was zero on just one input interval would render that component useless for all
future input presentations, unable to be registered in LTM or even in STM. Similarly each

I, = [i(]) value of the first input would set an upper bound on all future z; values, since

N
ri< o= Yjwj
=1 . (52)
N
S
i=1

for any F, code y. If a sequence of inputs I(1), I(2) ... were to activate the fully distributed
code (34), each weight w;; would converge toward the minimum of Il.(l), 11(2)’ .... Within a few
input presentations, all weights w,, would in, all likelihood, decay toward zero. This problem
occurs for any distributed code y. In this sense, the product rule leads to catastrophic
forgetting.




Capacity rule — Even-more-catastrophic forgetting: The situation with the capacity
rule is even worse (Figure 4b). When the F3 code is fully distributed, all weights w,, decay
to 4 ¢ [0,4], unless I, = 1; and the maximum total weight change at the i* node is
N(1-1,). Thus, unless I is a binary vector, the entire dynamic range of weight values is

nearly exhausted upon the first input presentation.

Threshold rule — Stable coding: It is the adaptive threshold rule alone that limits
the total weight change to (1 — I;) € [0,1] for maximally distributed as well as maximally
compressed codes y. In fact, if y is any Fy code that becomes active when all w;; are initially
equal to 1, then:

wj; — 1 —y;(1-1;), (53)

as in (49). Equivalently:
7ji = y;(1 = L), (54)

by (26). Thus the total weight/threshold change at each Fj node i is bounded by (1 - I;)
for any code, provided only that y is normalized. An F, code y would typically be highly
distributed, with all y, close to 7}/-, when a system has no strong evidence to choose one
category j over another. In this case, the change of each threshold 7;; is automatically
limited to the narrow interval [0,y,], reserving most of the dynamic range for subsequent
encoding. Only when evidence strongly supports selection of the Fy category node J over
all others, with y; therefore close to 1, would weights be allowed to vary across most of their
dynamic range. In particular, it is only when y; is close to 1 that a weight wy; is able to
drop, irreversibly, toward 0, if /, is small. Even with fast learning, other weights wj; to the
" node then remain large, even if all y; > 0. This is because, by (14) and (25), weight
changes cease altogether when:

Y <1 —wy =75 (55)

The adaptive threshold 7;; thereby replaces strong F, competition as the guardian, or sta-
bilizer, of previously learned codes.
9. Confidence-plasticity tradeoff

Figure 5 illustrates why the product rule and the capacity rule cause catastrophic forget-
ting and how the threshold rule solves this problem. During atrophy-due-to-disuse learning,
if the it Fy target node is disused (o; > r;) then the weight wj; will decay in any path that
sends a signal to the 7** node (S,; > 0) (Figure 5a). When F, makes a choice, each of the
three synaptic transmission rules allows weight change in only one path to each target node.
However, if y; is even slightly positive, both the product rule (Figure 5b) and the capacity
rule (Figure 5¢) allow weights w;; to decay without limit, unless learning rates are very slow.
In contrast, the threshold rule (Figure 5d) implies that, even if the J** F, node is active, the
signal S;; is still zero if the path threshold is large (7;; > y;); or, equivalently, if the path
weight is small (w;; < 1-y;). Only the positive signals S;; sum to o; and only these signals
can atrophy due to disuse. Threshold 7, remains small, and therefore plastic, if y; is always
small when o; > x;. If y; is large, 7;; may increase toward 1. Once this occurs, however,
S ;=0 for all Fy codes y except those which compress most activity at the Jt* node. Thus
in a recognition system that allows an F, node to become highly active only when it is
highly confident of its choice, the threshold rule automatically links confidence to stability.
Conversely, when category selection is uncertain, distributed codes retain plasticity.
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(a) | (b)

A
; roduct rule
atrophy-due-to-disuse 14 p

learning Sji =YW

(c) (d)

1 A capacity rule : ‘ threshold rule

Si = Y AW s;=[y;-(1-w,)],

W..
ji

Figure 5. (a) Atrophy-due-to-disuse learning causes a weight w;; to decay at a rate proportional to (i) the
signal from the j** Fy node to the #** F| node and (ii) the degree of disuse, which equals to the difference
between the total Fy — Fy signal to the i** node and the activity of that node. (b) When the J** F» node is
active, the product rule implies that that signal Sy; to the /* F| node is positive. All weights wy; therefore
decay when a; > x;, even if those weights are already small. This causes catastrophic forgetting. (c¢) The
capacity rule leads to catastrophic forgetting for the same reason as the product rule. (d) The threshold rule
buffers learned codes against catastrophic forgetting by allowing only paths with sufficiently large weights

(small thresholds) to contribute to the recognition code and hence to be subject to change during learning.
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10. Distributed outstar learning

Computational analysis of distributed spatial pattern learning leads to the selection of
a synaptic transmission rule with an adaptive threshold. In terms of the threshold 7;; in the
path from the j** F, node to the it" F} node, a stable learning law for distributed codes is
defined as the:

Distributed outstar s

dT',’ . o
di = Si(o; —1;), (56)

where S, is the thresholded path signal [y; — 7;;]* transmitted from the j** F, node to the
it Fy node and o, is the sum:

Initially,
T]Z(O) =0. (58)

In a system such as ART 1 or fuzzy ART, the total top-down signal primes F;. That is, o;
is always greater than or equal to z;. The distributed outstar then allows thresholds 7;; to
grow but never shrink. The principle of atrophy due to disuse implies that a threshold 7;;
is unable to change at all unless (i) the path signal y; exceeds the previously learned value
of 7;;; and (ii) the total top-down signal o; to the ith node exceeds that node’s activity z,.
In particular, if 7;; grows large when the node j represents part of a compressed Fy code,
then 7;; cannot be changed at all when node j is later part of a more distributed code, since
threshold changes are disabled if y; < 7;; (Figure 5d).

[

11. Distributed outstar solution

The form of the distributed outstar system (56) — (58) is so simple that the equations
can be solved in closed form. The formulas below give an explicit solution for an arbitrary
input sequence with either slow or fast learning. Section 12 illustrates the geometry of this
solution.

Assume that an input I activates a distributed outstar field Fy at some time ¢ = ¢ and
that Iis held fixed for some ensuing interval. If o; < r; at t = ¢y, then 7;; will remain constant
during that interval, for all j = 1,..., N. Similarly, 7;; will remain constant if y; < 7;; at
t = ty. Consider now a fixed Fy index ¢ such that o; > x; at ¢t =¢;. Let:

;= {j 1 y;(to) > 15:(t0)}- (59)
For j € ®,,

d

77 = (W5 = i) (oi — 7)), (60)

until y; and r; change. Geometrically, by (60), the projected vector of 7;; values with j € &;
follows a straight line toward the corresponding projected vector of y; values. If all such 7;;
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were to approach y, then o, would converge to 0, by (57). Progress halts, however, as the
7;, vector approaches the set of points where o, = x,, by (60).

Explicitly, for ¢ > #3, while y, and z; are constant:

(t .
i) = rtt) + 00 PO g o, NG
where «(t) is an exponential that goes from 0 to 1 as ¢ goes from ¢y to co.

By (61), 7;;(t) remains constant if o;(tg) < x; or if y; < 7;;(tg). If o;(tp) > x; and if
J € ®;,7;:(t) moves from 7;,(¢) toward:

o;(ty) —x; .
T]‘z‘(OO)ZTﬁ(fo)+%(%—Tﬁ(to)) (62)
as t goes from t; to co. In particular:
gi(o0) = Y (y, = 7j(c0))
JEPD;
_ (oi(tg) — )

= Yy = T5i(te)) = == > (y; — 75i(t0))

% n ai(to) %; T (63)
_ iy (oilte) —x)
- Uz(tﬂ) Uz‘(tO) Uz(tﬂ)
=r,;.

For the unbiased case where ¢, =0, so all 7;,(0) =0,

$,i(0) =y, - 7;:(0) =y, : (64)
and ‘
O,(O) = Z S‘]i(o) = Zy] =1 (65)
j J

Thus:




as t — oco. By (68), when the system begins with no initial bias, the signal S}; from the
jth Fy node to the 7t F| node begms as y, and converges toward the Hebbian pre- and
post synaptic correlation term y,x; :

12. Distributed outstar dynamics

The dynamics of distributed outstar learning will now be illustrated by means of a low-
dimensional example. Consider a coding network with just two F, nodes (Figure 6a). Two
top-down paths, with thresholds m; and 7y;, converge upon each F; node. Assume that
x; = I; Aoy, as in (9), and fix an Fy code y = (y1,ys), with :

O<yp<yi <L (69)

By the Fy normalization hypothesis (20), y1 +yo = 1. By (11), (27), and (56), for j =1,2:

(;—lt‘sz = [y, - 7| [os - I,]T, (70)
where, by (57),
oi = y1— T+ [y2 — Tt (71)

Figure 6b-d shows the 2-D phase plane dynamics of the threshold vector (7y;,7;) for
a fixed input I,. In each plot, trajectories that begin in the set of points where o; > I,
approach the set where o, = I;. Where 7;(0) < y; and 79;(0) < yo, the point (7;(2), 79:(?))
moves along a straight line from (71;(0), 79;(0)) toward (y1,ys), slowing down asymptotically
as:
oi = [y1 = T (@O]F + [y2 - ()] T (72)
=1 (r;(¢) + 72:(1)) — 1.

Only if I; = 0 does (7y;,79;) approach (y;,y;). Larger thresholds 7;;, which make o; < I},
are unchanged during learning. Smiall /; allow the greatest threshold changes (Figure 6b).
If ;,=0,

Ty — Yy (73)
as o; decreases to 0.

Both thresholds grow if both are initially small. However, if one threshold is so large as
to prevent Fy — Fp signal transmission in the corresponding path, the other F» node “takes
over” the code. For example, if 79,(0) > yo there is no signal from the F node j = 2 to
the 7* F} node, and hence no threshold change in that path. If, then, 71;(0) < y; - I;, 7;
increases until:

o;=y1 -7 — ¥ = 1. (74)

Larger I; values permit threshold changes only for smaller initial threshold values. In
Figure 6c, 7o; can change only if 7y; changes as well, when both are initially small. In
contrast, since y; is greater than I;, 7; may increase, by itself, toward (y; — ;). Finally,
for I; close to 1 (Figure 6d) adaptive changes can occur only if both 71; and 7y; are initially
small, as they are before any learning has taken place.

13. The unit of memory
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Figure 6. (a) A distributed outstar whose coding field F» has just two nodes (N = 2). For each code y,
yi +y» = 1, and &; = I; Ao;. When thresholds start out small enough. r; and/or 7; increase toward
{(m15.79;) &y = I;}. (b) Threshold changes are greatest for small ;. (¢) When I; > y;. the jt* node cannot
dominate learning. Here, I; > yu. so m; can change only when 7; also changes. (d) When /; is large, only

stall thresholds can change at all.

[
1o




L

(a) multiplicative weight

(b) fuzzy capacity (sieve)

|/
W yne
C..
ji

Yi

(c) subtractive threshold

v rjiy///' [ 7"

i

Figure 7. (a) The product rule unplies a physical substrate of memory that is a multiplicative weight
(McCulloch and Pitts, 1943). (b) The capacity rule implies a memory unit that is a fuzzy sieve (Zadeh.
1963). (¢) The distributed outstar implies a:memory unit that is a subtractive threshold.

The distributed outstar network derives from a computational analysis of stable pattern
learning by distributed codes. In the distributed outstar, the adaptive threshold rule of
synaptic transmission solves a catastrophic forgetting problem caused by other rules. Since
each formal transmission rule corresponds to a physical theory of synaptic transmission.
computational analysis implies physiological prediction. Each transmission rule assumes a
physical memory unit: a multiplicative weight (Figure Ta), a fuzzy capacity, or sieve (Figure
7b), or a subtractive threshold (Figure 7c¢). Experiments that probe distributed coding
in a living organism may be able to distinguish the three types of memory unit. Similarly.
distributed outstar computations imply distinct physical realizations of optical and electronic
neural networks.
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