Rule Extraction: From Neural

Architecture to Symbolic Representation
Gail A. Carpenter* and Ah-Hwee Tan!

Center for Adaptive Systems
and
Department of Cognitive and Neural Systems
Boston University
111 Cummington Street
Boston, Massachusetts 02215, USA
Email: gail@cns.bu.edu/atan@cns.bu.edu

A EEEEE X EXRD

Running head: Rule Extraction
Keywords: Fuzzy ARTMAP, rule, confidence factor, pruning.

February 2, 1994

*Supported in part by ARPA (ONR-N00014-92-J-4015), the National Science Foundation (NSF-IRI-90-

00530), and the Office of Naval Research (ONR-N00014-91-J-4100).
tSupported by a graduate fellowship from the Institute of Systems Science, National University of

Singapore.

Abstract

This paper shows how knowledge, in the form of fuzzy rules, can be derived
from a supervised learning neural network called fuzzy ARTMAP. Rule extrac-
tion proceeds in two stages: pruning, that simplifies the network structure by
removing excessive recognition categories and weights; and quantization of con-
tinuous learned weights, that allows the final system state to be translated into
a usable set of descriptive rules. Rule extraction methods are illustrated in three
benchmark studies: (1) Pima Indian diabetes diagnosis, (2) mushroom classifi-
cation, and (3) DNA promoter recognition. Fuzzy ARTMAP and ART-EMAP
are compared with the ADAP algorithm, the K Nearest Neighbor system, the
backpropagation network, and the C4.5 decision tree. The ARTMAP rule ex-
traction procedure is also compared with the Knowledgetron and NOFM algo-
rithms, that extract rules from backpropagation networks. Simulation results
consistently indicate that ARTMAP rule extraction produces compact sets of
comprehensible rules with performance that is comparable, if not superior, to
rules extracted by alternative algorithms in terms of both predictive accuracy

and system complexity.

Contents

1

2

Introduction: Rules and Fuzzy ARTMAP

Fuzzy ARTMAP
21 Fuzzy ART e e e e e e e e e e e
2.2 ARTMAP Prediction and Search e e e e e

ARTMAP Rule Extraction

3.1 Pruning e e e
311 RulePruning
3.1.2 Antecedent Pruning.

3.2 Quantizing Weight Values

Backpropagation Rule Extraction
41 Knowledgetron o i
42 NOFM Algorithm

Comparative Simulations
5.1 Pima Indian Diabetes Diagnosis (cf: ADAP)
5.2 Mushroom Classification (cf: Knowledgetron)

5.3 DNA Promoter Recognition (cf: KNN, Backpropagation, NOFM, C4.5, and
ART-EMAP) . . . e e e

53.1 KNN Simulations L 0 o o
5.3.2 Backpropagation, NOFM, and C4.5 Simulations
5.3.3 ART-EMAP Spatial Evidence Accumulation
534 ARTMAP Simulations
5.3.5 ARTMAP Rule Extraction

5.3.6 Semantic Interpretation and Comparison

14
14
15
16
16

16
17
17

17
17
20

List of Figures

1 Fuzzy ARTMAP architecture. The ART, complement coding preprocessor
transforms the M,-vector a into the 2M,-vector A = (a, a®) at the ART, field
Fg. A is the input vector to the ART, field F¢. Similarly, the input to F} is
the 2M;-vector (b, b®). When ART, disconfirms a prediction of ART,, map
field inhibition induces the match tracking process. Match tracking raises
the ART, vigilance (p,) to just above the Fg-to-F§ match ratio |x*|/|A|.
This triggers an ART, search which leads to activation of either an ART,
category that correctly predicts b or to a previously uncommitted ART,

category node. L. e e e e e e e e e 6
2 Analogy between ART 1 and fuzzy ART. 8
3 Schematic diagram of a rule in fuzzy ARTMAP. Each F} node maps a pro-

totype feature vector (antecedents) to a prediction (consequence). 14
4 The ADAP architecture. oo oo vee e e e 19

5 57-position DNA sequence. Each position takes one of the four nucleotide
values (A,G,T,C) or unknown (?). Using local representation, each DNA
sequence is expanded into a 228-bit nucleotide string. 25

6 Average predictive error rate of KNN on the promoter data set over 100 runs
using K.=1to 50 neighbors. 26

7 (a) Contrast enhancement by the power rule with p = 2. (b) Contrast
enhancement by the K-max rule. T3 is the input to F3 node j. y? is the
contrast enhanced activityofnode j. 28

8 Ten-run average predictive error rate of ART-EMAP on the promoter data
set, compared to fuzzy ARTMAP choice at F§. p is the power used in the
power rule and K is the number of F? recognition categories used in the
K-max rule. With the power rule, compression increases towards choice as
p — oo. With the K-max rule, compression decreases from choice to a linear
representation of the input as K goesfrom1toN. 29

EEEEREEREEER

1 Introduction: Rules and Fuzzy ARTMAP

Fuzzy ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992) is a neu-
ral network architecture that performs incremental supervised learning of recognition cat-
egories (pattern classes) and multidimensional maps of both binary and analog patterns.
When performing classification tasks, fuzzy ARTMAP formulates recognition categories of
input patterns, and associates each category with its respective prediction. The knowledge
that ARTMAP discovers during learning, is compatible with if-then rules which link sets of
antecedents to their consequences. At any point during the incremental learning process,
the system architecture can be translated into a compact set of rules analyzable by human
experts. This paper describes such a procedure for translating fuzzy ARTMAP network
architecture into a compact rule-based representation.

Rules can be derived more readily from an ARTMAP network than from a backprop-
agation network, in which the roles of hidden units are usually not explicit. In a fuzzy
ARTMAP network, each category node in the F§ field (Figure 1) roughly corresponds to
a rule. Each node has an associated weight vector that can be directly translated into a
verbal description of the antecedents in the corresponding rule. However, large databases
typically cause ARTMAP to generate too many rules to be of practical use. The goal of the
rule extraction task is thus to select a small set of highly predictive category nodes and to
describe them in a comprehensible form. To evaluate a category node, a confidence factor
that measures both usage and accuracyis computed. Removal of low confidence recognition
categories created by atypical examples produces smaller networks. Removal of redundant
weights in a category node’s weight vector reduces the number of antecedents in the cor-
responding rule. In order to describe the knowledge in simplified rule form, real-valued
weights are quantized into a small set of values.

The ARTMAP rule extraction algorithm has been evaluated using a Pima Indian di-
abetes (PID) data set obtained from the UCI repository of machine learning databases
(Murphy and Aha, 1992). Simulation results (Carpenter and Tan, 1993) show that prun-
ing consistently produces rule sets that are more accurate than the full system but 1/3 the
size. Quantization produces more comprehensible rules at only a slight cost in terms of
performance.

In addition to the Pima Indian diabetes benchmark, this paper reports two other bench-
mark studies that compare ARTMAP rule extraction with two other neural network rule
extraction algorithms. Performance is assessed in terms of predictive accuracy and system
complexity. Predictive accuracy is measured by the performance of the extracted rules on
an unseen test set. System complexity is measured by the number of rules and antecedents
in the rule set.

map field F®®

W b >
X
ART, }kt l ART,
Fo| v Fr{ yb
reset reset
W, W
a match b

F x4 tracking F xD

I — |
Fol A=(a &) [o@) Fo| B=(86) =G

a b

Figure 1: Fuzzy ARTMAP architecture. The ART, complement coding preprocessor trans-
forms the M,-vector a into the 2M,-vector A = (a, a®) at the ART, field F¢. A is the input
vector to the ART, field F¢. Similarly, the input to F? is the 2M;-vector (b, b¢). When
ART, disconfirms a prediction of ART,, map field inhibition induces the match tracking
process. Match tracking raises the ART, vigilance (p,) to just above the F-to-F§ match
ratio |x®|/|A|. This triggers an ART, search which leads to activation of either an ART,
category that correctly predicts b or to a previously uncommitted ART, category node.

The first benchmark problem partitions mushroom feature vectors into two classes,
edible or poisonous, using a mushroom data set (Schlimmer, 1987). ARTMAP rule extrac-
tion is compared with a backpropagation rule extraction system called Knowledgetron (Fu,
1992). Simulation results indicate that the ARTMAP pruning procedure derives rules that
are more accurate and far fewer in number than the Knowledgetron conjunctive rules.

The second data set, which recognizes promoters in DNA sequences, is an expanded
version of the promoter data set maintained by Craven and Shavlik (1993, 1994). Fuzzy
ARTMAP and ART-EMAP are compared with the K Nearest Neighbor system, the back-
propagation network, and the C4.5 decision tree. The ARTMAP rule extraction procedure
is also compared with the NOFM algorithm that extracts rules from backpropagation net-
works (Craven and Shavlik, 1993, 1994). Preliminary simulations (Tan, 1994) indicated
that while the performance of ARTMAP rules was equivalent to that of NOFM rules,
ARTMAP had faster learning but the NOFM rules had better code compression. In this
paper, a new ARTMAP rule pruning strategy and an antecedent pruning procedure further
reduce the complexity of ARTMAP rules. Using the revised pruning method on the pro-
moter simulations, the ARTMAP rule sets are comparable to NOFM rules both in accuracy
and in system size, while maintaining the fast learning advantage.

To make this article self-contained, Section 2 provides a summary of fuzzy ARTMAP.
Section 3 describes the ARTMAP rule extraction algorithm. Section 4 reviews the Knowl-
edgetron system and the NOFM algorithm. The final section reports simulation results of
the Pima Indian diabetes, mushroom, and DNA promoter benchmark studies.

2 Fuzzy ARTMAP

Fuzzy ARTMAP is a generalization of binary ARTMAP system (Carpenter, Grossberg,
and Reynolds, 1991) that learns to classify inputs by a fuzzy set of features, or a pattern
of fuzzy membership values between 0 and 1 indicating the extent to which each feature is
present. This generalization is accomplished by replacing the ART 1 modules (Carpenter
and Grossberg, 1987, 1991) of the binary ARTMAP system with Fuzzy ART modules
(Carpenter, Grossberg, and Rosen, 1991). Where ART 1 dynamics are described in terms of
set-theoretic operations, Fuzzy ART dynamics are described in terms of fuzzy set-theoretic
operations (Zadeh, 1965; Kosko, 1986) (Figure 2).

Each ARTMAP system includes a pair of Adaptive Resonance Theory modules (ART,
and ART};) that create stable recognition categories in response to arbitrary sequences of
input patterns (Figure 1). During supervised learning, ART, receives a stream {a(?)} of
input patterns and ART, receives a stream {b(®)} of input patterns, where b(®) is the
correct prediction given alP). An associative learning network and an internal controller

ART 1 Fuzzy ART

(BINARY) (ANALOG)
CATEGORY CHOICE

T Aw,| L AW

Tj= o +1w;| = O +IW;|

'MATCH CRITERION

Nwy_ o AW p
T T

(new) i (old) (new) (old)
logical AND fuzzy AND
N= ~in?ersection N= min?mum

Figure 2: Analogy between ART 1 and fuzzy ART.

link these modules to make the ARTMAP system operate in real time. The controller
creates the minimal number of ART, recognition categories, or “hidden units,” needed to
meet accuracy criteria. A Minimax Learning Rule that enables ARTMAP to learn quickly,
efficiently, and accurately as it conjointly minimizes predictive error and maximizes code
compression. This scheme automatically links predictive success to category size on a
trial-by-trial basis using only local operations. It works by increasing the ART, vigilance
parameter (p,) by the minimal amount needed to correct a predictive error at ART,.

An ART, baseline vigilance parameter p, calibrates the minimum confidence needed for
ART, to accept a chosen category, rather than search for a better one through automatically
controlled search. Lower values of p; enable larger categories to form, maximizing code
compression. Initially, p, = ps. During training, a predictive failure at ART, increases
pa by the minimum amount needed to trigger ART, search, through a feedback control
mechanism called match tracking (Carpenter, Grossberg, and Reynolds, 1991). Match
tracking sacrifices the minimum amount of compression necessary to correct the predictive
error. Hypothesis testing selects a new ART, category, which focuses attention on a cluster
of a(® input features that is better able to predict b(®. With fast learning, match tracking
allows a single ARTMAP system to learn a different prediction for a rare event than for a
cloud of similar frequent events in which it is embedded.

2.1 Fuzzy ART

Fuzzy ART (Carpenter, Grossberg & Rosen, 1991) incorprates computations from fuzzy
set theory into ART systems. The crisp (nonfuzzy) intersection operator (N) that describes
ART 1 dynamics (Carpenter and Grossberg, 1987) is replaced by the fuzzy AND operator
(A) of fuzzy set theory in the choice, search, and learning laws of ART 1 (Figure 2). By
replacing the crisp logical operations of ART 1 with their fuzzy counterparts, fuzzy ART
can learn stable categories in response to either analog or binary patterns.

ART field activity vectors: Each ART system includes a field Fy of nodes that
represent a current input vector; a field F; that receives both bottom-up input from Fj
and top-down input from a field F3 that represents the active code, or category. Vector
I = (l1,...,1p) denotes Fy activity, with each component I; in the interval [0,1], for
i=1,..., M. Vector x = (z1,...,zrp) denotes F; activity and y = (y1,...,yn) denotes F,
activity. The number of nodes in each field is arbitrary.

Weight vector: Associated with each F, category node j(j = 1,...,N) is a vector
w; = (wj1, ..., wim) of adaptive weights, or long-term memory (LTM) traces. Initially

wjl(O) =...= w,-M(O) = 1; (1)

Ta,

T
N !
- 1 L8

then each category is uncommitted. After a category codes its first input it becomes
committed. Each component w;; can decrease but never increase during learning. Thus
each weight vector w;(¢) converges to a limit. The fuzzy ART weight, or prototype, vector
w; subsumes both the bottom-up and top-down weight vectors of ART 1.

Parameters: A choice parameter o > 0, a learning rate parameter 8 € [0,1], and a
vigilance parameter p € [0, 1] determine fuzzy ART dynamics.

Category choice: For each input I and F; node j, the choice function T; is defined by

]I/\le (2)

T;(I) = ,
J() a+ IWJI
where the fuzzy intersection A (Zadeh, 1965) is defined by

(P A q); = min(p;, ¢;) (3)

and where the norm | - | is defined by
M
lpl=>_1Inil. (4)
=1

The system makes a category choice when at most one F; node can become active at a
given time. The index J denotes the chosen category, where

TJ=max{Tj:j=1...N}. (5)

If more than one T; is maximal, the category with the smallest j index is chosen. In

particular, nodes become committed in order j = 1,2,3,... . When the J* category is

chosen, y; = 1; and y; = 0 for j # J. In a choice system, the F; activity vector x obeys

the equation :

x = {I if F, is inactive (6)

IAwy if the Jt* F, node is chosen.

Resonance or reset: Resonance occurs if the match function |[IAw]/|I| of the chosen

category meets the vigilance criterion:

|IAWJ' S 5

T (7)

that is, by (6), when the J** category becomes active, resonance occurs if
x| = [TA wy| > p|T]. (8)
Learning then ensues, as defined below. Mismatch reset occurs if

IAw,;|
]Il J <p; (9)

10

that is, if

x| = [TAwy| < p|I]. (10)
Then the value of the choice function 77 is set to 0 for the duration of the input presentation
to prevent the persistent selection of the same category during search. A new index J

represents the active category, selected by (5). The search process continues until the
chosen J satisfies the matching criterion (7).

Learning: Once search ends, the weight vector w; learns according to the equation
wi™ = BIAWSD) + (1 - H)wi. (1)

Fast learning corresponds to setting # = 1. The learning law of the NGE system (Salzberg,
1990) is equivalent to (11) in the fast-learn limit with the complement coding.

Fast-commit, slow-recode: For efficient coding of noisy input sets, it is useful to set
B =1 when J is an uncommitted node, and then to take 8 < 1 for slower adaptation after
the category is already committed. The fast-commit, slow-recode option makes W(J“ew) =1
the first time category J becomes active. Moore (1989) introduced the learning law (11),
with fast commitment and slow recoding, to investigate a variety of generalized ART 1
models. Some of these models are similar to fuzzy ART, but none uses complement coding.
Moore describes a category proliferation problem that can occur in some analog ART
systems when many random inputs erode the norm of weight vectors. Complement coding
solves this problem.

Normalization by complement coding: Normalization of fuzzy ART inputs pre-
vents category proliferation. The Fy — F; inputs are normalized if, for some v > 0,

.ZI,-= 1| =~ (12)
for all inputs I. One way to normalize each vector a is:
a
I=—. (13)
|al

Complement coding normalizes the input but it also preserves amplitude information, in

contrast to (13). Complement coding represents both the on-response and the off-response

to an input vector a (Figure 1). In its simplest form, a represent the on-response and a¢,
the complement of a, represents the off-response, where

al=1-—a;. (14)
The complement coded Fy — Fj input I is the 2M-dimensional vector
I=(a,a°) =(a1,-...,am,af,...,ak). (15)

11

A complement coded input is automatically normalized, because

I = I(al a’)|
= Z a; + (M — Z a;)
=1
= M. (16)
With complement coding, the initial condition
wjl(O) =...= w,-,gM(O) =1. (17)

replaces the fuzzy ART initial condition (1).

The close linkage between fuzzy subsethood and ART choice/search/learning forms the
foundation of the computational properties of fuzzy ART. In the conservative limit, where
the choice parameter a = 0%, the choice function 7; measures the degree to which w; is
a fuzzy subset of I (Kosko, 1986). A category J for which w; is a fuzzy subset of T will
then be selected first, if such a category exists. Resonance depends on the degree to which
Iis a fuzzy subset of wy, by (7) and (9). When J is such a fuzzy subset choice, then the

match function value is:
TAwy| |wsl

o
Choosing J to maximize |w;| among fuzzy subset choices, by (2), thus maximizes the
opportunity for resonance in (7). If reset occurs for the node that maximizes |wy|, then
reset will also occur for all other subset choices.

(18)

2.2 ARTMAP Prediction and Search

Fuzzy ARTMAP incorporates two fuzzy ART modules ART, and ART, that are linked
together via an inter-ART module F% called a map field. The map field forms predictive
associations between categories and realizes the ARTMAP match tracking rule. Match
tracking increases the ART, vigilance parameter p, in response to a predictive error, or
mismatch, at ART,. Match tracking reorganizes category structure so that subsequent
presentations of the input do not repeat the error. An outline of the ARTMAP algorithm
follows.

ART, and ART;: Inputs to ART, and ARTy are complement coded. For ART,,
I= A = (a,a%); and for ART}, I = B = (b, b¢) (Figure 1). Variables in ART, or ART}
are designated by subscripts or superscripts “a” or “b”. For ART,, x* = (z§...2%,)

denotes the F{* output vector; y* = (yf...y%,) denotes the F§ output vector; and w} =
(w¥, w%, ..., wjanm,) denotes the j** ART, weight vector. For ART;, x* = (z3.. szb)

12

denotes the F? output vector; y* = (y}...y%,) denotes the FZ output vector; and w} =
(why, why, ..., W} 9ps,) denotes the k% ART, weight vector. For the map field, x** = (2%,
...,z%) denotes the F*® output vector, and w#* = (w%,...,w?},) denotes the weight
vector from the j** F$ node to F*®. Vectors x%,y%,x% y?, and x? are reset to 0 between
input presentations.

Map field activation: The map field F2® receives input from either or both of the
ART, or ART, category fields. A chosen F$ node J sends input to the map field F via
the weights w%. An active Fy node K sends input to F'*® via one-to-one pathways between
F} and F°. If both ART, and ART, are active, then F°® remains active only if ART,
predicts the same category as ART;. The F*® output vector x*® obeys:

y® Aw% if the J F¢ node is active and F? is active

ab . th . . b . . .
xob — I W3 if the J** F§ node is active and F is inactive (19)
y? if F¢ is inactive and F} is active
0 if F¢ is inactive and F? is inactive.

By (19), x** = 0 if y® fails to confirm the map field prediction made by w3. Such a
mismatch event triggers an ART, search for a better category, as follows.

Match tracking: At the start of each input presentation ART, vigilance p, equals
a baseline vigilance parameter p,. When a predictive error occurs, match tracking raises
ART, vigilance just enough to trigger a search for a new F coding node. ARTMAP detects
a predictive error when
x*] < pasly’l, (20)
where p,; is the map field vigilance parameter. A signal from the map field to the ART,
orienting subsystem causes p, to “track the F{* match.” That is, p, increases until it is
slightly higher than the F¢ match value |[A A w4||A|~1. Then, since

|xa| = |A /\Wf}l < paIAla (21)

ART, fails to meet the matching criterion, as in (10), and the search for another F3 node
begins. The search leads to an F3 node J with

Ix*| = |[AAW5| > pa|A| (22)
and
x*| = [y* A w5 > pasly®. (23)

If no such node exists and if all F§ nodes are already committed, Fi§ automatically shuts
down for the remainder of the input presentation.

Map field learning: Weights w2} in F§ — F°® paths initially satisfy
w2 (0) = 1. (24)

13

—— 4| Map Field d
ART, ART,
:F"CS{ﬁEe'{iﬁ&l _________ ﬂ: }r _______________ i
IF;ooooaLooo I { th’}
| o |
i - =
r[ééeooobe | | P
I [L !
Input Features Output Prediction

Figure 3: Schematic diagram of a rule in fuzzy ARTMAP. Each F§ node maps a prototype
feature vector (antecedents) to a prediction (consequence).

During resonance with the ART, category J active, w3 approaches the map field vector
x° as in (11). With fast learning, once J learns to predict the ART, category K, that
association is permanent; i.e., w3 = 1 for all time.

3 ARTMAP Rule Extraction

In an ARTMAP network, each node in the F§ field represents a recognition category of
ART, input patterns. Through the inter-ART map field, each such node is associated
to an ART, category in the F} field, which in turn encodes a prediction. Learned weight
vectors, one for each Fj node, constitute a set of rules that link antecedents to consequences
(Figure 3). The number of rules equals the number of F§ nodes that become active during
learning.

3.1 Pruning

To reduce the complexity of fuzzy ARTMAP, a rule pruning procedure aims to select a
small set of rules from trained ARTMAP networks based on their confidence factors. To

14

derive concise rules, an antecedent pruning procedure aims to remove antecedents from
rules while preserving accuracy.

3.1.1 Rule Pruning

The rule pruning algorithm derives a confidence factor for each F§ category node in terms
of its usage frequency in a training set and its predictive accuracy on a predicting set.
The confidence factor identifies good rules with nodes that are frequently and correctly
used. This allows pruning of ARTMAP. Pruning removes rules that have low confidence.
Overall performance is actually improved when the pruning algorithm removes rules that
were created to handle misleading special cases.

Specifically, the pruning algorithm evaluates a F} recognition category j in terms of a
confidence factor C'Fj:
CF; =1U; + (1 —7)A;, (25)

where Uj is the usage of node j, A; is its accuracy, and v € [0,1] is a weighting factor.

For an ART, category j that predicts outcome k, its usage U; equals the fraction of training
set patterns with outcome k£ coded by node j (F;), divided by the maximum fraction of
training patterns coded by any node J (Fj):

Uj = Fj/maz{FJ}. (26)

For an ART, category j that predicts outcome k, its accuracy A; equals the percent of
predicting set patterns predicted correctly by node j (P;), divided by the maximum percent
of patterns predicted correctly by any node J (Py) that predicts outcome k:

A; = Pj/maxz{P; : node J predicts outcome k}. (27)

After confidence factors are determined, recognition categories can be pruned from the
network using one of following strategies:

Threshold Pruning - This is the simplest type of pruning where the F3 nodes with
confidence factors below a given threshold = are removed from the network. A typical
setting for 7 is 0.5. This method is fast and provides an initial elimination of unwanted
nodes. To avoid over-pruning, it is sometimes useful to specify a minimum number of
recognition categories to be preserved in the system.

Local Pruning - Local pruning removes recognition categories one at a time from an
ARTMAP network. The baseline system performance on the training and the predicting
sets is first determined. Then the algorithm deletes the recognition category with the

15

lowest confidence factor. The category is replaced, however, if its removal degrades system
performance on the training and predicting sets.

A variant of the local pruning strategy updates baseline performance each time a cate-
gory is removed. This option, called hill-climbing, gives slightly larger rule sets but better
predictive accuracy. A hybrid strategy first prunes the ARTMAP systems using threshold
pruning and then applies local pruning on the remaining smaller set of rules.

3.1.2 Antecedent Pruning

During rule extraction, a non-zero weight to an Fj category node translates into an an-
tecedent in the corresponding rule. The antecedent pruning procedure calculates an error
factor for each antecedent in each rule based on its performance on the training and pre-
dicting sets. When a rule makes a predictive error, each antecedent of the rule that also
appears in the current input has its error factor increased in proportion to the smaller of its
magnitudes in the rule and in the input vector. After the error factor for each antecedent
is determined, a local pruning strategy, similar to the one for rules, removes redundant
antecedents.

3.2 Quantizing Weight Values

When learning analog patterns or with slow learning, ARTMAP learns real-valued weights.
In order to describe the rules in words rather than real numbers, the feature values rep-
resented by weights w¢ are quantized. A quantization level @ is defined as the number of
feature values used in the extracted fuzzy rules. For example, with @ = 3, feature values
are described as low, medium, or high in the fuzzy rules. Quantization by truncation divides
the range of [0,1] into @ intervals and assigns a quantization point to the lower bound of
each interval;i.e.,, for g =1...Q, let V, = (¢ — 1)/Q. When a weight w falls in interval g,
the algorithm reduces the value of w to V,. Quantization by round-off distributes @ quan-
tization points evenly in the range of [0,1], with one at each end point; ie.,forg=1...Q,
let V, = (¢—1)/(Q —1). The algorithm then round-offs a weight w to the nearest V, value.

4 Backpropagation Rule Extraction

Two algorithms that extract symbolic rules from backpropagation networks are now re-
viewed. Both algorithms use clustering techniques during training to facilitate rule extrac-
tion.

16

4.1 Knowledgetron

Knowledgetron (Fu, 1992) consists of the Knowledgetron Backpropagation (KTBP) trainer
and the Knowledgetron (KT) translator. The KTBP trainer iterates the process of adapt-
ing a multi-layer neural network and clustering the hidden units to encode information
more compactly. The KT translator searches the rule space for confirming and discon-
firming rules. Positive (negative) attributes refer to attributes which link to a unit with
positive (negative) weights. For each unit, the algorithm forms confirming rules by ex-
ploring combinations of positive attributes and negated negative attributes that turn on
the unit. Similarly, the algorithm forms disconfirming rules by exploring combinations of
negative attributes and negated positive attributes that turn off the unit.

4.2 NOFM Algorithm
The NOFM algorithm (Table I) constructs rules of the form:
If N of the M antecedents are true, then ...

from a trained feedforward network. The NOFM algorithm was originally used to extract
symbolic rules from knowledge based neural networks in which the topology and initial
weights had been specified by an approximately correct domain theory (Towell and Shav-
lik, 1992). Its domain was extended by Craven and Shavlik (1993, 1994) who trained
backpropagation networks using soft weight-sharing (Nowlan and Hinton, 1992), that en-
courages weights to form clusters during training. On a promoter data set, Craven and
Shavlik showed that the NOFM algorithm induced rules with better predictive accuracy
than rules produced by the symbolic learning algorithm C4.5 (Quinlan, 1993).

5 Comparative Simulations

5.1 Pima Indian Diabetes Diagnosis (cf: ADAP)

The Pima Indian Diabetes (PID) task seeks to determine whether a patient develops dia-
betes, based on eight clinical indices. The PID data set (Table II) contains 768 cases, of
which 268 (34.9%) are positive, from patients who are diagnosed to be diabetic. The ADAP
(adaptive) learning routine (Smith, Everhart, Dickson, Knowler, and Johannes, 1988) has
previously been applied to the PID data set. The three-layer ADAP architecture (Figure 4)
uses fixed connections from the sensor layer to the association layer, and error feedback to
adapt connections from the association layer to the responder layer. Smith et al. converted

17

(1) Clustering: The weights converging on each hidden and output unit are grouped
into clusters using a standard clustering method, known as the join algorithm
(Hartigan, 1975).

(2) Averaging: The value of each weight is set to the average value of the weights
in its cluster.

(3) Eliminating: Clusters that are not needed to correctly activate a unit are
eliminated.

(4) Optimizing: Unit biases are retrained after the changes.

(5) Extracting: Each hidden and output unit is translated into a set of N-of-M rules
that describe the conditions under which the unit will be activated.

Table I: A summary of the NOFM algorithm.

the 8 feature values into 37 binary variables. The simulations used 100,000 association
units. Real-valued predictions were converted to binary prediction using a selected cutoff.
After training on 576 inputs, the sensitivity (percent correct of actual positive cases) and
specificity (percent correct of actual negative cases) on the 192 test set cases were each
76%, using a cutoff of 0.448.

In order to compare fuzzy ARTMAP with ADAP performance, each simulation used
the same 576 training set inputs. For extracting rules and evaluating the performance
of rules, the 768 cases were partitioned into three subsets, to train, predict, and test.
Two partitions, 576/96/96 and 384/192/192, were evaluated. The latter, reported below,
yields slightly more stable results. During pruning, the weighting factor v and the pruning
threshold 7 were each fixed at 0.5. Two indices are used to compare performance, namely
(1) accuracy, equal to the percent correct by binary prediction at 0.5 cutoff; and (2) the
c-index. The c-index is a cutoff-independent evaluation of the predictive score, equal to
the average probability, over all possible pairs of cases with different outcome, that the
classifier will assign a higher score to a positive case. The entire simulation, including the
training of fuzzy ARTMAP, extraction of Tules,and performance evaluation, was repeated
ten times for each method. Using voting strategy, an ARTMAP system was trained in
several simulation runs with inputs presented in different orderings. For each test case,
voting across 20 simulations produces a net predictive score between 0 to 1.

Voting fuzzy ARTMAP is about as accurate as ADAP but uses far fewer nodes (Ta-
ble III). With fast learning, ARTMAP learns the 576 training patterns in 6 to 15 input
presentations. The reduced rule sets do not classify correctly all the training patterns.

18

Sensory
Layer

Table II: The eight input features of a PID input and their statistics. The PID data set is
obtained from the UCI machine learning repository {Murphy and Aha, 1992).

fixed connection

x
!

e
x

changable
path strength

Responder
Layer

<

Association Layer

Figure 4: The ADAP architecture. i

No. Feature Description Mean SD
1 PREG Number of times pregnant 3.8 3.4
2 PGC Plasma glucose concentration 120.9 32.0
3 DBP Diastolic blood pressure (mm Hg) 69.1 194
4 TSFT Triceps skin fold thickness (mm) 20.5 16.0
5 S 2-Hour serum insulin {mu U/ml) 79.8 115.2
6 BMI Body mass index 320 7.9
7 DPF Diabetes pedigree function 0.5 0.3
8 AGE Age (years) 332 118

19

Data Set # Nodes Training Predicting Testing
Methods Partition /Rules Acc cind Acc cind Acc c-ind
ADAP 576/192 100,000 - - - - 76.0 -
Fuzzy ARTMAP 576/192 63.5(49-82) 100.0 1.000 - - 759 0.819
Threshold Pruning 384/192/192 19.6 (12-30) 86.7 0.940 88.2 0.942 78.5 0.848
Pruning + Q=10 384/192/192 19.7 (11-28) 79.3 0.854 82.7 0.855 79.0 0.842
Pruning + Q=5 384/192/192 19.6 (11-28) 75.7 0.801 80.7 0.804 77.5 0.829
Pruning + Q=3 384/192/192 19.6 (12-26) 70.5 0.737 69.9 0.725 69.3 0.731

Table III: Simulation results of ADAP, fuzzy ARTMAP, and systems obtained by com-
binations of rule extraction methods. ARTMAP results are obtained by voting across 20
simulations. Rule pruning improves test set performance, while quantization gradually
degrades performance.

However, reduced overfitting on the training set leads to better performance on the test set
(Table III). In particular, the threshold pruning procedure yields about 1/3 as many rules
but gives better test set performance in terms of both accuracy and the c-index. Quanti-
zation degrades the performance gradually as the number of quantized steps @ decreases.
Quantization with Q = 3 produces significantly poorer performance across all three sub-
sets. Thus the PID prediction problem cannot be solved by quantized rules using only
“low, medium, and high” as feature values. A good compromise uses @ = 5 quantized
steps.

Table IV shows six PID rules extracted by rule pruning and quantization (Q = 5).
Each row can be directly translated into a fuzzy rule. Because of complement coding, fuzzy
ARTMAP learns a pair of weights for each feature. These weights specify a minimum and
a maximum value, or interval, for each feature in each rule. For example, row 1 can be
interpreted as the rule shown in Table V. The rules extracted can be verified and adapted
by medical experts. Novel rules discovered through the rule extraction process can be added
to expert knowledge and may provide new insights for human and machine diagnosis.

5.2 Mushroom Classification (cf: Knowledgetron)

The mushroom classification problem is to determine whether a mushroom is edible or
poisonous based on its observable features. The mushroom database (Schlimmer, 1987)
consists of 8124 instances, each of which is characterized by 22 nominal features (Table VI).
There are 3916 poisonous mushrooms, constituting 48.2% of the total population.

On this problem, Fu (1992) used 1000 inputs to train a backpropagation network con-

20

Pre- Feature Weights Rule Statistics Testing

dict PREG PGC DBP TSFT SI BMI DPF AGE TUsage Acc CF # Acc
+ 3-5 35 35 -3 1.2 14 12 24 1.00 0.80 090 7 0.71
+ 1-2 35 34 -3 14 34 1.3 1-2 0.78 0.62 0.70 18 0.83
+ 1-3 3-5 35 -3 1.5 3 1-3 1-4 0.33 1.00 0.67 8 0.88
- 1-2 34 34 -2 1.2 23 12 1-2 1.00 0.94 097 19 0.89
- 1-2 2-4 34 -3 12 24 13 1-2 054 0.88 0.71 12 0.92
- 1-2 3-4 34 -3 12 23 12 1-2 0.38 1.00 0.69 10 1.00

Table IV: Six PID rules extracted by pruning and quantization (@ = 5). The pruned set
of 23 rules predicts correctly 78.2% train, 77.6% predict, and 76.0% test set vectors. Each
rule is described in terms of a set of intervals of quantized feature values. Interpretation of
weight values: 1=very low, 2=low, 3=medium, 4=high, and 5=very high. “1-5” means a
feature is irrelevant.

IF number of times pregnant is medium to very high
and Plasma glucose concentration is medium to very high
and Diastolic blood pressure is medium to very high
and Triceps skin fold thickness is very low to medium
and 2-Hour serum insulin is below medium
and Body mass index is not very high ,
and Diabetes pedigree function is below medium
and Age is not extreme
THEN diabetes is likely.

Table V: Interpretation of rule 1 in the sample PID rule set (Table IV).

21

No. Features Values 7

1 cap-shape bell /conical /convex/flat /knobbed /sunken

2 cap-surface fibrous/grooves/scaly/smooth

3 cap-color brown/buff/cinnamon/gray/green/ pink/purple/red/white/yellow

4 bruises true/ false

5 odor almond/anise/creosote/fishy /foul/musty /none/pungent/spicy

6 gill-attachment attached/descending/free/notched

7 gill-spacing close/crowded/distant

8 gill-size broad/narrow

9 gill-color black/brown/buff/chocolate/gray/green/orange/pink/purple/red/
white/yellow

10 stalk-shape enlarging/tapering

11 stalk-root bulbous/club/cup/equal/rhizomorphs/rooted /missing

12 stalk-surface-above-ring ibrous/scaly/silky/smooth

13 stalk-surface-below-ring ibrous/scaly/silky/smooth

14 stalk-color-above-ring brown/buff/cinnamon/gray/orange/pink/ red /white/yellow

15 stalk-color-below-ring brown/buff/cinnamon/gray/orange/pink/red /white/yellow

16 veil-type partial/universal

17 veil-color brown/orange/white/yellow

18 ring-number none/one/two

19 ring-type cobwebby/evanescent /flaring/large/none/pendant /sheathing/zone

20 spore-print-color black/brown/buff/chocolate/green/orange/purple/white/yellow

21 population abundant/clustered /numerous/scattered /several /solitary

22 habitat grasses/leaves/meadows/paths/urban/waste/woods

Table VI: The 22 input features of the mushroom data set.

Systems Data Partition # Rules # Ante Train(%) Predict(%) Test(%)

Backpropagation 1000/0/1000 - - 100.0 - 99.0
Knowledgetron 1000/0/1000 233 - 100.0 - 99.6
Fuzzy ARTMAP 1000/0/7124 5.8(4-7) - 100.0 - 99.8
Rule Pruning 1000/1000/6124 5.1(4-7) 366.0 99.9 99.9 99.8
Antecedent Pruning 1000/1000/6124 5.1(4-7) 51.0 99.9 99.9 99.8

Table VII: Comparison between fuzzy ARTMAP, ARTMAP rule extraction methods, back-
propagation, and Knowledgetron on the mushroom data set. Data partitions indicate the
number of training, predicting, and test patterns; # rules shows the average number and
range of rules; # ante counts the total number of antecedents summing over all rules.

taining 127 input units, 63 hidden units, 2 output units, and 8127 connections. The network
classified the 1000 training cases with 100% accuracy and a disjointed test set of 1000 cases
with 99.0% accuracy. Knowledgetron then generated a system of 233 rules, which classified
the 1000 training cases with 100% accuracy and the 1000 test cases with 99.6% accuracy.

In ARTMAP simulations, the 22 nominal features were converted into 125 binary at-
tributes. Complement coding was applied to represent both the presence and absence of
each attribute. ARTMAP learning and testing were performed with the following param-
eter values: a = 0.001, # = 1 and g, = 0. The simulation results averaged over 20 runs
are summarized in Table VII. When ARTMAP is trained with 1000 cases, an average of
5.8 rules are created, compared to the 233 of Knowledgetron. All simulations are almost
100% accurate over the remaining 7124 cases.

In the rule extraction simulations, 1000 cases were used as the training set, 1000 cases
as the predicting set, and the system was tested on the remaining 6124 cases. Rule pruning
and antecedent pruning were applied using the local pruning strategy to reduce the rule set
complexity. As shown in Table VII, the rule and antecedent pruning procedures combine to
remove an average of 315 antecedents but only 0.7 rules from the already small sets of rules.
After pruning, the ARTMAP rule sets, with an average of 5.1 rules and 51 antecedents,
maintain predictive accuracy at 99.8%. Table VIII shows a sample set of four ARTMAP
rules created in the simulations.

23

Predict Edible (Conf 1.00 Usage 1.00 Accuracy 1.00 Predict 835 Test Acc 1.00)
IF ring-type is not none)
and spore-print-color is not chocolate

Predict Edible (Conf 0.85 Usage 0.69 Accuracy 1.00 Predict 2286 Test Acc 1.00)

IF cap-surface is not grooves

and odor is not creosote, not foul, and not pungent
and gill-color is not buff

and stalk-surface-below-ring is not scaly

and spore-print-color is not green

and population is not abundant and not numerous
and habitat is not meadows

Predict Poisonous (Conf 0.78 Usage 0.56 Accuracy 1.00 Predict 483 Test Acc 1.00)
IF habitat is not waste

Predict Poisonous (Conf 1.00 Usage 1.00 Accuracy 1.00 Predict 2520 Test Acc 1.00)

IF odor is not almond, and not anise

and stalk-color-above-ring is not gray

and stalk-color-below-ring is not gray

and veil-color is not brown, and not orange

and population is not abundant, not numerous, and not solitary

Table VIII: A sample set of four ARTMAP rules with a total of 22 antecedents for classifying
mushrooms. These rules classify correctly 99.9% of the 8124 mushrooms in the data set.

24

S7—-position DNA sequence
|??2ACGTAGACCTGTCTTATTGAGCTTTCCGGCGAGAGTTCAATGGGACAGGTCCAG? |

v N

'7'799 1000 cocvveccces 0100 +evvevvoncnns 0010 cccvvveorananans 0007 ¢ ceveeee

228-bit nucleotide string

Figure 5: 57-position DNA sequence. Each position takes one of the four nucleotide values
(A,G,T,C) or unknown (?). Using local representation, each DNA sequence is expanded
into a 228-bit nucleotide string.

5.3 DNA Promoter Recognition (cf: KNN, Backpropagation,
NorM, C4.5, and ART-EMAP)

The third simulation is that of recognizing promoters in DNA sequences. Promoters are
short nucleotide sequences that occur before genes and serve as binding sites for the enzyme
RNA polymerase during gene transcription. The promoter data set (Craven and Shavlik,
1993) is an expanded version of the 106-case promoter data set in the UCI repository.
It consists of 468 patterns, half of which are positive instances (promoters). Each input
pattern represents a 57-position window, with the leftmost 50 window positions labeled -50
to -1 and the rightmost seven labeled 1 to 7 (Figure 5). Each position is a nominal feature
which takes one of the four nucleotide values (A, G, T, C) or unknown (?). Using local
representation, each DNA sequence is expanded into a 228-bit (57*4) nucleotide string.
Missing feature values comprise 1%-of the total feature population.

In the following sections, fuzzy ARTMAP and ARTMAP rule extraction algorithms are
compared with KNN, C4.5, backpropagation and NOFM algorithms. All systems handle
missing values differently. KNN replaces missing values by ones to obtain a better predictive
accuracy. Backpropagation network assigns 0.25 to missing features. ARTMAP ignores
features with missing values by replacing them with zeroes.

5.3.1 KNN Simulations

The K Nearest Neighbor (KNN) algorithm is a look-up system that stores all training
patterns in its memory. Given a test pattern, its category is determined by a vote of the }
categories of the K training patterns closest to the test pattern. The test set performance
of KNN on the promoter data set was very accurate (Figure 6), with a minimal error

25

Error (%)
20 [l I [| T]_ L2—Norm

61— T _ _
4 L -
2 |- _
0 1
tl B 1 1 | 10K
0 10 20 30 40 50

Figure 6: Average predictive error rate of KNN on the promoter data set over 100 runs
using K =1 to 50 neighbors.

rate of 5.5% obtained using K = 30 neighbors. However, since KNN performs no data
compression, it is most useful for problem domains with small data sets. For the promoter
data set, KNN stores all 468 patterns with a total of 26,676 attributes. The NOFM and
ARTMAP rule extraction simulations reported below create approximately 10 to 20 rules
with a total of 100 antecedents, but have error rates around 10%. Therefore, a tradeoff
needs to be made between system complexity and predictive accuracy.

5.3.2 Backpropagation, NOFM, and C4.5 Simulations

Craven and Shavlik (1993, 1994) used the promoter data set to evaluate their NOFM
algorithm against the symbolic learning system C4.5 (Quinlan, 1993). Using a ten-fold
cross-validation methodology, the accuracy and the system size of backpropagation network
and NOFM rules were compared with those of C4.5 decision tree and extracted C4.5 rules.

Backpropagation network trained using soft-weight sharing achieved an error rate of

26

Systems # Rules # Antecedents Error (%)

C4.5 decision trees - - 16.9
C/4.5 rules 23.2 47.3 13.5
Backpropagation Networks - - 7.9
NOFM rules 8.2 119.6 11.1
NOFM rules (after pruning) 8.1 97.2 10.2

Table IX: Performance of C4.5 decision trees, C4.5 rules, backpropagation networks with
soft-weight sharing, and NOFM rules on the promoter data set.

7.9% (Table IX), less than half the 16.9% error rate of C4.5 decision trees. The NOFM
rules produced an error rate of 11.1%, still lower than the 13.5% error of C/.5 rules.
However, the C4.5 rules were more concise than the NOFM rules in terms of the number
of antecedents. To reduce the system size, Craven and Shavlik derived a rule/antecedent
pruning algorithm which reduced both the complexity and the error rate of NOFM rules.

5.3.3 ART-EMAP Spatial Evidence Accumulation

The promoter data set has very few (468) examples given the dimension of its input vectors
(228). For such problems with sparse data points, the ART-EMAP spatial evidence accu-
mulation process (Carpenter and Ross, 1993), that integrates distributed activity across Fy
category nodes, is effective in classifying noisy or novel inputs. In ARTMAP systems with
category choice, only the F§ node J that receives maximal F* — F3 input 7} predicts
ART, output. In simulations,

. 1 if j = J where T¢ > T¢ for all k # J

Yi ={ 0 otherwise, (28)

as in (5). ART-EMAP uses the choice rule (28) during the initial period of supervised
learning. However, during performance, the F§ output vector y* represents a less extreme
contrast enhancement of the F{* — F§ input T*. Two algorithms that approximate contrast
enhancement by competitive networks (Grossberg, 1973) are studied below.

Power Rule: The power rule, as used in the ART-EMAP system, raises the input 7% to
the j** F$ node to a power p and mormalizes the total activity:

va_ (TP

Vi = k(Te)r (#)

(Figure 7a). The power rule converges toward the choice rule as p becomes large.

27

1

Figure 7: (a) Contrast enhancement by the power rule with p = 2. (b) Contrast enhance-
ment by the K-max rule. T7 is the input to F§ node j. y¢ is the contrast enhanced activity
of node j.

K-max Rule: In the spirit of the K Nearest Neighbor (KNN) system, the K-max rule
picks the set of K F3 nodes with the largest input T} for prediction. The Fy activities yf
are then:

T ifjed
y;-‘ ={ Yies It (30)

0 otherwise,

where @ is the set of K category nodes with the largest T values (Figure 7b). The K-max
rule with K = N is equivalent to the power rule with p = 1.

After the Fg¢ activity vector y* is contrast enhanced by (29) or (30), the input x° from
F¢ to the map field F°b is:
x® = Zw;by;‘ (31)
J

(Figure 1).

5.3.4 ARTMAP Simulations

The ten-fold cross-validation methodology of Craven and Shavlik (1993, 1994) was also
used to evaluate ARTMAP performance. The data set was divided into ten partitions.
ARTMAP was trained on nine partitions and tested on the remaining partition left out,
using parameter values: a = 10, § = 1, and g, = 0. The probabilistic score produced

28

=)
<% B

I | | | I1 p/K

5 10 15 20 25

Figure 8: Ten-run average predictive error rate of ART-EMAP on the promoter data set,
compared to fuzzy ARTMAP choice at F§. p is the power used in the power rule and
K is the number of F§ recognition categories used in the K-max rule. With the power
rule, compression increases towards choice as p — 0o. With the K-max rule, compression
decreases from choice to a linear representation of the input as K goes from 1 to N.

by ART-EMAP spatial evidence accumulation was thresholded at 0.5 to produce a binary
prediction.

The ART-EMAP power rule and the K-max rule both perform consistently better than
the choice rule (Figure 8). F§ choice is equivalent to the K-max rule when K =1 and to
the power rule as p — co. When K = N, K-max rule is the same as the power rule with
p = 1. The K-max rule reduces the error rate from 17.8% with K = 1 (choice) to 8.0%
with K = 20 predictive categories. The power rule performs best with small p. The best
performance of 7.4% error is obtained with p = 2 (Figures 7a and 8). Both the power rule
and the K-max rule simulations indicate that distributed F§ activity improves predictive
accuracy compared to compressed code representations. All rule extraction simulations use
the power rule with p = 2.

29

Systems # Rules # Antecedents Error (%)

Backpropagation Networks - - 7.9
NOFM rules 8.2 119.6 11.1
NOFM rules (after pruning) 8.1 7 97.2 10.2
KNN (K=30) 468 26,676 5.5
Fuzzy ARTMAP h 117.0 - 74
Threshold rule pruning 39.3 286.6 9.8
Local rule pruning 25.6 188.1 10.3
Local antecedent pruning 19.9 87.5 104
Voting ARTMAP (voting across 10 simulations) 5.5
Threshold rule pruning {(voting across 10 simulations) 7.0

Table X: Performance of ARTMAP networks and pruning methods on the promoter data
set comparing to backpropagation networks, the NOFM algorithm, and the KNN system.
ARTMAP networks used the ART-EMAP power rule with p = 2.

5.3.5 ARTMAP Rule Extraction

In ARTMAP rule extraction simulations, seven of the partitions were used to train and
evaluate usage of each rule; two of the ten input partitions were used to evaluate accuracy;
and the remaining one to test the extracted rules. Setting the usage/accuracy weighting
factor v (25) equal to 0.4 gave 60% weight to accuracy and 40% to usage in the confidence
factor. To avoid over-pruning, the system always preserved a minimum of 36 rules. No
quantization was needed as the input patterns were binary and fast learning was used in
simulations.

Table X summarizes ARTMAP performance on the promoter data set together with
those obtained by backpropagation, NOFM, and KNN algorithms. The performance of
fuzzy ARTMAP is slightly better than that of backpropagation network. A pruning thresh-
old 7 = 0.6 reduces the number of ARTMAP rules from 117 to 39.3, which increases the
error rate from 7.4% to 9.8%. Local rule pruning with hill-climbing takes away an addi-
tional 13.7 Tules and 98.5 antecedents. Finally, local antecedent pruning removes over half
of the antecedents from the remaining rules. The resultant rule sets with an average of
19.9 rules and 87.5 antecedents produces a predictive error of 10.4%, which is comparable
to that of the NOFM rules. Comparimg the system complexity, the NOFM rule sets have
fewer rules but have more antecedents than the ARTMAP rule sets.

Also reported are the results obtained with 10-voting ARTMAP. Under the voting strat-
egy, an ARTMAP system is trained in multiple simulatior runs using different orderings

N

of input patterns. The output predictions of ARTMAP across runs are averaged to form
a final prediction for each test case. This technique was used by Towell, Shavlik, and
Noordewier (1990) in their promoter simulations to obtain a slight improvement in perfor-
mance. The rule extraction simulations of Craven and Shavlik (1993, 1994) however did
not utilize this technique. When extracting rules, the predictions of rule sets extracted
across runs are averaged to form a final prediction. Voting gives ARTMAP a significant
improvement in performance. Even after threshold pruning, the rules still performs slightly
better than the original neural networks. Voting has been a generally useful technique for
ARTMAP systems in which fast learning leads to different sets of recognition categories
and hence different types of predictive errors across simulations.

5.3.6 Semantic Interpretation and Comparison

Table XI shows a sample set of rules extracted from a fuzzy ARTMAP system. Rules
with consequences Py, P,,..., P are created by positive instances (promoters) and thus
are called positive rules. Rules with consequences Ny, N,..., Njg are created by negative
instances (non-promoters) and are called negative rules. The system prediction is made
by the “promoter” rule that emulates ART-EMAP computation, summing evidences of
promoter across the positive rules. Note that the positive rules for identifying promoters
are quite simple, while the negative rules for identifying non-promoters are slightly more
complicated. This is perhaps due to the randomness of non-promoters. Certain interesting
regularities in the rules can also be observed. For example, features like T@-36, T@-35,
and G@-34 consistently appear across the positive rules and none of them appears in the
negative rules. This suggests that these features are good indicators for promoters.

ARTMAP rules are different in form from NOFM rules (Table XII). ARTMAP creates
rules for detecting features of both promoters and non-promoters, while NOFM rules focus
only on positive instances (promoters), then use a closed-world assumption to identify
non-promoters. By using ART-EMAP evidence accumulation, ARTMAP rules include
intermediate variables (Py, Ps, ..., Ps and N1, Ns,..., Nyg) that correspond to Fi§ category
nodes, whereas the intermediate variables of NOFM rules correspond to hidden units in
backpropagation networks. The negative weights in backpropagation networks allow NOFM
rules to include negative terms; in ARTMAP rules, the effect of negative terms can be
obtained through complement coding of input patterns. Complement coding however is
not used in ARTMAP promoter simulations.

Neither system requires an exact match to fire a rule. The NOFM rules are fired
based on the satisfaction of individual condition (NOFM) stated within each rule, whereas
ARTMAP rule firing is based on competition among all positive and negative rules, on top
of the ART, vigilance (p,) criterion. Considering each rule independently, an ARTMAP

31

Conseq- Feature Template/ Rule Statistics

uence Conditions CF Usage Acc
Promoter :- Y%, f(P,) > 0.5 where f(z) = z2/(X%, P? + Y19, N?)
P :- T@-36 GQ-34 TQ@-13 A@-12 TQ@-8 1.00 1.00 1.00
P - T@-36 G@-34 T@-30 A@-11 092 0.80 1.00
P; :- T@-35 T@-14 AQ@-13 T@-12 A@-10 0.88 0.70 1.00
P, - G@-37 T@-35 A@-31 0.84 , 0.60 1.00
Py :- T@-36 0.84 0.60 1.00
Ps - T@-38 0.60 0.50 0.67
51 - C@-13 C@-6 0.80 0.50 1.00
Ny - AQ@-17 GQ@6 0.76 040 1.00
Nj - C@-15 T@-14 G@-1 0.76 0.40 1.00
Ny - G@-33 G@-15 C@-5 0.76 0.40 1.00
N - CQ@-43 G@-26 G@-24 G@-21 0.76 0.40 1.00
Ng - GQ@-47 GQ@-37 T@-34 A@-28 C@-12 G@-11 G@-3 C@4 C@5 0.72 0.30 1.00
Ny :- C@-35 A@-34 C@-10 G@-7 G@3 0.72 030 1.00
Ng - C@-40 G@-2 G@7 0.72 0.30 1.00
Ny :- A@-8 GQ@-6 . 0.64 0.10 1.00
Ny - G@-4 TQ@7 0.50 0.50 0.50

Table XI: A sample set of 17 ARTMAP rules consisting of 68 antecedents. The antecedent
notation T@-36 indicates the nucleotide T in the position 36 nucleotides before the start
of a putative gene.

32

promoter :-2of { hidden-3, hidden-4, hidden-5 }.

hidden-3 :- 7of = { not(A@-36), not(G@-35), not(A@-34), not(G@-33), CQ-32,
not(C@-31), not(C@-21), not(C@-15), T@-12, TQ@-8 }.

hidden-4 :- 10 of { not(G@-44), not(C@-36), T@-35, not(G@-33), not(GQ-32),
not(C@-31), not(G@-13), not(C@-12), AQ@-11, not(G@-10),
not(G@-9), not(GQ@-8), T@-7, not(GQ@2) }.

hidden-5 :-4of { T@-36,not(A@-35), not(G@-13), A@-10, not(G@-3) }.

Table XII: Sample NOFM rules extracted from a backpropagation promoter network
(Craven and Shavlik, 1994).

positive or negative rule is roughly equivalent to a (M X p,)-of-M rule. However, when
functioning as a whole, each ARTMAP rule affects each other’s activities by the ART-
EMAP contrast enhancement process. Another feature of ARTMAP rules is that each of
them can be assigned a confidence factor which reflects its usefulness and reliability. This
information can be very useful to human experts when assigning priorities to rules.

In summary, ARTMAP rules and NOFM rules are roughly comparable in terms of
both predictive accuracy and system complexity. Although the two approaches differ in
many aspects, both employ certain variants of inexact match construct to maximize code
compression. Preserving properties of neural networks in rules thus leads to a more powerful
symbolic representation of knowledge.

Acknowledgements

The authors wish to thank Mark Craven and Jude Shavlik for sharing the promoter data
set and the NOFM simulation details. We are also grateful to David Touretzky for suggest-
ing the DNA promoter benchmark and for providing useful comments on the comparison
between NOFM and ARTMAP rules.

References

Carpenter, G. A. and Grossberg, S. (1987) A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision, Graphics, and Image
Processing, 37, 54-115.

Carpenter, G. A. and Grossberg, S. (Ed.) (1991) Pattern Recognition by Self-Organizing
Neural Networks. Cambridge, MA: MIT Press.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., and Rosen, D. B. (1992)
Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of
analog multidimensional maps. IEEE Transactions on Neural Networks, 3, 698-713.

Carpenter, G. A., Grossberg, S., and Rosen, D. B. (1991) Fuzzy ART: Fast stable learn-
ing and categorization of analog patterns by an adaptive resonance system. Neural
Networks, 4, 759-TT1.

Carpenter, G. A. and Ross, W. D. (1993) ART-EMAP: A neural network architecture for
object recognition by evidence accumulation network. Proceedings, World Congress on
Neural Networks, Portland, OR, Vol 111, pp. 649-656. Hillsdale, NJ: Lawrence Erlbaum

Associates. P

Carpenter, G. A. and Tan, A. H. (1993) Fuzzy ARTMAP, rule extraction and medical
databases. Proceedings, World Congress on Neural Networks, Portland, OR, Vol , pp.
501-506. Hillsdale, NJ: Lawrence Erlbaum Associates.

Craven, M. W. and Shavlik, J. W. (1993) Learning symbolic rules using artificial neural
networks. Proceedings, 10th International Machine Learning Conference, Amherst,
MA, pp. 73-80. San Mateo, CA: Morgan Kaufmann.

Craven, M. W. and Shavlik, J. W. (1994) Understanding neural networks via rule extraction
and pruning. Proceedings, 1993 Connectionist Models Summer School, pp. 184-191.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Fu, L. M. (1992) A neural network model for learning rule-based systems. Proceedings,
International Joint Conference on Neural Networks, Baltimore, MD, Vol 1, pp. 343-
348. Piscataway, NJ: IEEE Service Center.

Grossberg, S. (1973) Contour enhancement, short term memory, and constancies in rever-
berating neural networks. Studies in Applied Mathematics, 52, 217-257.

“Hartigan, J. A. (1975) Clustering Algorithms. New York, NY: Wiley.

34

'-")

Kosko, B. (1986) Fuzzy entropy and conditioning. Information Science, 40, 165-174.

Moore, B. (1989) ART 1 and pattern clustering. Proceedings, 1988 Connectionist Models
Summer School, pp. 174-185. San Mateo, CA: Morgan Kaufmann.

Murphy, P. M. and Aha, D. W. (1992) UCI repository of machine learning databases
[machine-readable data repository]. Irvine, CA: University of California, Department
of Information and Computer Science.

Nowlan, S. J. and Hinton, G. E. (1992) Simplifying neural networks by soft weight-sharing.
Neural Computation, 4, 473-493.

Quinlan, J. R. (1993) C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

Salzberg, S. (1990) Learning with Nested Generalized Ezamplars. Hingham, MA: Kluwer
Academic.

Salzberg, S. (1991) A nearest hyperrectangle learning method. Machine Learning, 6,
251-276.

Schlimmer, J. S. (1987) Concept Acquisition Through Representational Adjustment. PhD
thesis, Department of Information and Computer Science, University of California,
Irvine.

Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., and Johannes, R. S.
(1988) Using the ADAP learning algorithm to forecast the onset of diabetes mellitus.
Proceedings, Symposium on Computer Applications and Medical Care, pp. 261-265.
IEEE Computer Society Press.

Tan, A. H. (1994) Rule learning and extraction with self-organizing neural networks.
Proceedings, 1993 Connectionist Models Summer School, pp. 192-199. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Towell, G. G. and Shavlik, J. W. (1992) Interpretation of artificial neural networks: Map-
ping knowledge-based neural networks into rules. Advances in Neural Information
Processing Systems 4, pp. 977-984. San Mateo, CA: Morgan Kaufmann.

Towell, G. G., Shavlik, J. W., and Noordewier, M. O. (1990) Refinement of approximately
correct domain theories by knowledge-based neural networks. Proceedings, 8th National
Conference on Al, Boston, MA, pp. 861-866. AAAI Press/The MIT Press.

Zadeh, L. (1965) Fuzzy sets. Information Control, 8, 338-353.

35

1
J

